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1 Introduction

With the enhanced features in recent computer systems, increasingly larger amounts
of data are being accumulated in various fields. Recent trends indicate that data
being collected doubles every year. A survey done by Intel Corporation indicates
that an average person collects 800MB of data a year [Cor05]. This does not in-
clude the scientific data collected by corporations and research institutions. Future
systems are bound to be data intensive. Data would be processed either offline us-
ing data collection tools, or real-time using a streaming data model. Data analysis
tools and frameworks are bound to become more sophisticated. Such complex
analysis tools are bound to be performance-hungry due to the amount of data that
they require to handle.

On the other hand, recent computing trends suggest that the system perfor-
mance (data based on memory and I/0O bound workloads like TPC-H) has been
improving at a rate of 10-15% per year, whereas, the volume of data that is col-
lected doubles every year. The important obstacle is the fact that the performance
of computer systems is improving at a slower rate when compared to the increase
in the data and the requirements of data analysis. Having observed this trend,
researchers have focused on efficient implementations of different data mining al-
gorithms. Among these, a major approach taken is the development of parallel
and distributed versions of such algorithms. While these algorithms have been
efficiently improved, the basic characteristics that define these algorithms remain
under studied. Such information in turn can be utilized during the implementation
of the algorithms and the design/setup of the computing systems. Understanding
the performance bottlenecks is essential not only for processor designers to adapt
their architectures to data mining applications, but also for programmers to adapt
their algorithms to the revised requirements of applications and architectures. This
forms the motivation for this work.

The rest of this report is organized as follows. Sedtion 2 discusses the method-
ology used in this work to perform the characterization. The details of the work-
loads used in this characterization study (the workloads form the NU-MineBench
benchmark suite) are provided in Sectjign 3. The characterization results are not
provided in this document to keep the discussion simple.



2 Methodology

The primary goal of this study is to gain an in-depth understanding of the char-
acteristics of data mining applications. In other words, a detailed workload char-
acterization of data mining applications is the primary goal of this work. This
is achieved by studying data mining applications through benchmarking schemes.
The ultimate goal is to assemble a benchmark that effectively represents data min-
ing applications.

Benchmarks play a major role in all domains. SPEC [Sta01] benchmarks have
been well accepted and used by several processor manufacturers and researchers
to measure the effectiveness of their design. Other fields have popular benchmark-
ing suites designed for the specific application domain: TPC [Tra04] for database
systems, SPLASH_[WQT95] for parallel machine architectures, MediaBench
[LPMS97] for media and communication processors. Benchmarks do not only
play a role in measuring the relative performance of different systems. They also
aid programmers in the specific domain in various ways. For example, a program-
mer implementing a new data mining application can compare the performance
(in terms of output quality, scalability, and execution time) of the new application
to the applications in the benchmarking suite. In addition, the programmer can
use certain types of algorithms and programming styles from the applications in
the existing suite.

Although there has been previous work analyzing individual data mining ap-
plications [BF98| KQH98], analyzing the behavior of a complete benchmarking
suite will certainly give a better understanding of the underlying bottlenecks for
data mining applications. This work analyzes data mining applications from many
perspectives and presents the key characteristics of these applications. Another
important aspect of this study is implementing and analyzing scalable versions
of the benchmark applications. As the size of the available datasets and their
high-dimensionality grow, high performance computers are becoming essential
platforms to execute the data mining applications.

The first question that is addressed by this work is the uniqueness of data min-
ing applications. If they are unique, the next task lies in identifying the charac-
teristics that make them distinct from other existing applications and domains. In
order to answer these questions, this work takes up an extensive characterization
study. The various perspectives of the characterization study is shown in Figure 1.
Like traditional studies, applications are studied from an algorithmic perspective
by analyzing their execution times, run times (order of execution) and other high
level metrics. Various system characteristics involving runtime overheads, system
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Figure 1: The various perspectives of evaluation attempted in this characterization
study

resources (locks), synchronization costs are also studied. A low-level architectural
study is then performed extensively to understand the system architecture perfor-
mance. This includes several components like the cache, processor, memory, and
disks. Another important factor in data mining is the input data sizes. This study
also characterizes the workload behavior based on input data sizes.

Scalability is deemed to be an important (and unavoidable) requirement in fu-
ture systems. Scalability comes in many forms in both hardware and software.
Traditionally, scalable versions of applications are developed by purely extend-
ing high-performance, parallel and distributed paradigms to the respective serial
versions of the algorithms. This study analyzes various traditional scalability ap-
proaches as well. This is crucial since the final goal of this work is to enable
development of high performnace data mining systems and algorithms. Hence,
this work studies the scalability of applications based on processor resources and
data sizes (dimensionality, etc) as well.

The following section describes the workload named as NU-MineBench that
is developed and used for this study.
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Figure 2: A data mining taxonomy. This leaf node of the graph shows well-known
methodologies for performing data mining.

3 Data Mining Workload

Data mining, a technique to understand and present raw data, is becoming popular
and is starting to be used in a variety of fields like marketing, business intelligence,
scientific discoveries, biotechnology, internet searches and multimedia. In data
mining, the process of extracting information from raw data is automated, and
mostly predictive. This is the aspect that makes data mining different from OLAP
and common database techniques. Data mining is essential to automatically find
useful (predictive) information from such large input data. For instance, a cellu-
lar phone company would appbjusteringto find aprobablecustomer segment
(regular travelers?) suitable for a new cellular phone plan.

Data mining applications are broadly classified into classification, clustering,
association rule mining, sequence mining, similarity search, text mining, multi-
media mining, and other categories based on the nature of their algorithms. Al-
gorithmically, each domain is different. For instance, classification algorithms
perform mining by building predictive models that represent data classes or con-
cepts, whereas, clustering involves grouping a set of physical or abstract objects
into categories of similar objects. Figure 2 shows a taxonomy of data mining ap-
plications (partly based oh [HK00]). As can be seen, each data mining application
differs by the nature of mining it performs.

A classification of data mining applications was shown in Figuire 2. A subset
of application domains of Figufe 2 is used to establish NU-MineBench, a bench-
marking suite containing well-known (and representative) data mining applica-
tions. The selection of categories as well as the applications in each category is
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based on how commonly these applications are used in industry and how likely to
be used in the future, thereby achieving a realistic representation of the existing
applications. Another concern of the algorithm selection is the scalability when
executing on parallel or distributed systems.

NU-MineBench has applications from several domains and categories. The
applications as well as important characteristics of the applications are listed in
Table[1. Note that these are full-fledged application implementations of these
algorithms (as against stand-alone algorithmic modules), which have been exten-
sively optimized to remove all implementation inefficiencies. Also, the algorithms
and the set of operations performed within them can be seen in commercial data
mining tools, like Clementine (SPSS Inc.), Intelligent Data Miner (IBM Corpora-
tion) and SAS Enterprise Miner (SAS Institute Inc.).

There are several types of clustering algorithms in this study. The first cluster-
ing application in MineBench is K-mearis [Mac67]. K-means is a partition-based
method and is arguably the most commonly used clustering technique. K-means
represents a cluster by the mean value of all objects contained in it. Given the
user-provided parameter k, the initial k cluster centers are randomly selected from
the database. Then, K-means assigns each object to its nearest cluster center based
on the similarity function. For example, for spatial clustering, usually the Euclid
distance is used to measure the closeness of two objects. Once the assignments
are completed, new centers are found by finding the mean of all the objects in each
cluster. This process is repeated until two consecutive iterations generate the same
cluster assignment. The clusters produced by the K-means algorithm are some-
times called “hard” clusters, since any data object either is or is not a member of
a particular cluster.

The Fuzzy K-means algorithm [Bez81] relaxes this condition by assuming
that a data object can have a degree of membership in each cluster. The Fuzzy
K-means assigns each pair of object and cluster a probability. For each object, the
sum of the probabilities to all clusters equals to 1. Compared to the Euclid dis-
tance used in K-means, the calculation for the fuzzy membership results in higher
computational cost. However, the flexibility of assigning objects to multiple clus-
ters might be necessary to generate better clustering qualities.

BIRCH [ZRL96] is one of the hierarchical clustering methods that employ a
hierarchical tree to represent the closeness of data objects. BIRCH first scans the
database to build a clustering-feature (CF) tree to summarize the cluster represen-
tation. Then, a selected clustering algorithm, such as K-means, is applied to the
leaf nodes of the CF tree. For a large database, BIRCH can achieve good perfor-
mance and scalability. It is also effective for incremental clustering of incoming
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Table 1: Algorithms used in the study and their descriptions

Algorithms Category Description
k-Means Clustering Mean based data partitioning
method
Fuzzy k-Means Clustering Fuzzy-logic based data partitioning
method
BIRCH Clustering Hierarchical data segmentation
method
HOP Clustering Density based grouping method
Naive Bayesian Classification Statistical classifier
ScalParC Classification Decision tree based classifier
Apriori ARM Horizontal database, level-wise
mining based on Apriori property
Eclat ARM Vertical database, equivalence
class based method
Utility ARM Utility based association rule min-
ing method
SNP Bayesian Network Hill-climbing search method for
DNA dependency extraction
GeneNet Bayesian Network Microarray based structure learn-
ing method for gene relationship
extraction
SEMPHY Expectation Maximization Phylogenetic tree based structure
learning method for gene sequenc-
ing
Rsearch Pattern Recognition | Stochastic Context-Free Gram-
mar based RNA sequence search
method
SVM-RFE Support Vector Machines Recursive feature elimination
based gene expression classifier
PLSA Dynamic Programming | Smith  Waterman optimization

method for DNA sequence align
ment




data objects.

Density-based methods grow clusters according to the density of neighbor-
ing objects or according to some other density function. HOP [EH98], originally
proposed in astrophysics, is a typical density-based clustering method. After as-
signing an estimation of its density for each particle, HOP associates each particle
with its densest neighbor. The assignment process continues until the densest
neighbor of a particle is itself. All particles reaching this state are clustered as a
group. HOP is highly scalable when applied to large databases.

The Naive Bayesian classifier [DF96], a simple statistical classifier, uses an
input training dataset to build a predictive model (containing classes of records)
such that the model can be used to assign unclassified records into one of the
defined classes. It is based on Bayes’ Theorem. It is comparable in performance
to decision tree based classification algorithms, and exhibits high accuracy and
speed when applied to large databases. ScalParC, a scalable decision tree based
classifier [JKK98], builds the decision tree by recursively splitting the training
dataset based on an optimal criterion until all records belonging to each of the
partitions bear the same class label.

Apriori [AMS 796] is arguably the most influential association rule mining
(ARM) algorithm. It explores the level-wise mining using the Apriori property:
all nonempty subsets of a frequent itemset must also be frequent. [Eclat [Zak99],
another ARM algorithm, uses a vertical database format instead of the hash trees
(horizontal format) as in apriori. This enables breaking the search space into
small, independent, and manageable chunks. Efficient lattice traversal techniques
are used to identify all the true maximal frequent itemsets.

Utility mining is another association rule based data mining technique where
higher “utility” itemsets are identified from a database by considering different
values of individual items astilities. The work of utility mining to restrict the
size of candidate set (so that memory and time usage can be reduced) and to
simplify the total number of computations for calculation of utility or profit of
items. The ultimate goal is to discover all the itemsets whose utility values are
more than user specified threshold in a transaction database and to eliminate the
itemsets having lower utility valué [LLCO05].

The primary goal of Bayesian network based methods is to build a learning
network that represents the input data set. This is done by identifying the statis-
tic relationship between the several variables present in the input data. A scor-
ing function is introduced that evaluates a network with respect to the training
data and outputs a value that reflects how well the network scores relative to the
available data. Then the possible network structures are searched to find the best
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scored network, which usually is considered to be the network learned from the
data. In general, the search problem is NP-hard, most algorithms use heuristic
search methods, such as the MCMC (Markov Chain Monte Carlo) sampling, K2,
Simulated Annealing etc., of which the greedy hill-climbing algorithm is the most
efficient and popular approach [CDD5].

Single nucleotide polymorphisms (SNPs) are DNA sequence variations that
occur when a single nucleotide is altered in the genome sequence. ldentifying
valid sequence variations is a goal of genomic research. This work focuses on a
version of SNP that uses the hill climbing search method [CD8). This method
first selects a specific point (an initial Bayesian Network structure) in the search
space as the starting point. Algorithm then searches all the nearest neighbors for
the current point in the search space, and then selects the neighbor that has the
highest score as the new current point. This procedure iterates until no neighbor
has higher score than the current point (i.e., reached a local maximum). GeneNet
[CDD™05] uses a similar hill climbing algorithm as in SNP. The difference here
is that the input data is the microarray data, which requires lot more computations
to perform the learning process. There are lot more variables used during the
learning.

SEMPHY [CDD"05] is a structure learning algorithm that is based on phylo-
genetic trees. Phylogenetic tree represents the genetic relationship of species by a
tree where closely related species are placed in nearby branches. For DNA/protein
sequences from different species, a phylogenetic relationship among them can be
inferred to reflect the course of evolution. The goal of this algorithm includes
searching for the best tree topology and the best branch lengths representing the
distance between the two neighbors. Note that there are numerous branch length
probabilities for each topology. SEMPHY uses Structural Expectation Maximiza-
tion (probability estimation) algorithm to address this complication.

Typically, RNA sequencing problems involve searching the gene database for
homologous RNA sequences. Rsearch [CIDB] uses a grammar based approach
to achieve this goal. Rsearch uses SCFG (Stochastic Context-Free Grammar) to
build and to represent a single RNA sequence with its secondary structure, and
utilizes a local alignment algorithm named CYK algorithm, which is a decoding
algorithm for SCFG, to search a database for homologous RNAs.

Support Vector Machines Recursive Feature Elimination (SVM-RFE) [CO#)
is a feature selection method that uses SVM techniques to refine and identify the
optimum feature set in the feature data. It selects or omits dimensions of the data
depending on a performance measure of SVM classifier. It is much more robust to
data overfitting than other methods, including combinatorial search. SVM-RFE
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uses microarray data as the input data for analysis. SVM-RFE is used extensively
in disease finding (gene expression). It eliminates gene redundancy automatically
and yields better and more compact gene subsets. The selection is obtained by
recursive feature elimination process: at each RFE step, a gene is discarded from
the active variables of a SVM classification model. The features are eliminated
according to a criterion related to their support to the discrimination function and
the SVM is re-trained at each step.

Sequence alignment is an important tool in bioinformatics used to identify the
similar and diverged regions between two sequences, e.g. biological DNA/protein
sequences or text strings. PLSA [CDOGB] uses a dynamic programming ap-
proach to solve this sequence (string) matching problem. It is based on the algo-
rithm proposed by Smith and Waterman, which uses the local alignment to find
the longest common substring in sequences. Since this method is dependent on
the sequence length, it is computationally very intense.

3.1 Evaluation Datasets

Input data is an integral part of data mining applications. The data considered
for the experiments are either real data got from various fields or widely-accepted
synthetic data generated using existing tools that are used in scientific and statis-
tical simulations. During evaluation, multiple data sizes were used to investigate
the characteristics of the NU-MineBench applications.

For non-bioinformatics applications, three input data were used in 3 different
sizes: Small, Medium, and Large. For ScalParC and Nave Bayesian, three syn-
thetic datasets (see Talple 2 - “Classification”) were generated by the IBM Quest
data generator [Sys04]. The notation Fx-Ay-DzK denotes a dataset with Function
X, Attribute size y, and Data comprising of z*1000 records. Function 26 is a rela-
tively complex function and produces large trees. Apriori and Eclat use three syn-
thetic datasets from IBM Quest data generator (see Table 2 - “ARM”"). D denotes
the number of transactions, T is the average transaction size, and | is the average
size of the maximal potentially large itemsets. In Tdhle 2, the number of items
is 1000 and the number of maximal potentially large itemsets is 2000. For HOP
and BIRCH, three sets of real data were extracted from a cosmology application,
ENZO [NSLD99], each having 61440 particles, 491520 particles and 3932160
particles. A section of the real image database distributed by Corel Corporation is
used for K-means and Fuzzy K-means. This database consists of 17695 scenery
pictures. Each picture is represented by two features: color and edge. The color
feature is a vector of 9 floating points while the edge feature is a vector of size 18.
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Table 2: Classification and Association Rule Mining Dataset Characteristics
(Dataset size in MB).
Dataset Classification ARM

Parameter (Size) Parameter (Size
Small | F26-A32-D125K (27) | T10-14-D1000K  (47)
Medium | F26-A32-D250K  (54) | T20-16-D2000K (175)
Large | F26-A64-D250K (108)| T20-16-D4000K (350)

Both K-means implementations use Euclid distance as the similarity function and
execute it for the two features separately. Since the clustering quality of K-means
methods highly depends on the input parameter k, both K-means were executed
with ten different k values ranging from 4 to 13.

Utility mining uses both real datasets as well as synthetic datasets. The syn-
thetic data constitutes of two databases generated using the IBM Quest data gen-
erator. The first synthetic dataset is a dense database, T10.16.DX000K, where
the average transaction size is 10; other is a sparse database, T20.16.DX000K,
where average transaction size is 20. The average size of the potentially frequent
itemsets is 6 in both sets of databases. In both sets of databases, the number of
transactions varies from 1000K to 8000K and the number of items varies from 1K
to 8K. The real dataset constitutes of only one database of size 73MB, where the
average transaction length is 7.2.

For the bioinformatics applications, the datasets were provided by Intel Corpo-
ration [CDD"05]. SNP uses the Human Genic Bi-Alletic Sequences (HGBASE)
database [BLS0Q] containing 616,179 SNPs sequences. For GeneNet, the mi-
croarray data used for this study is assembled from [SBF. they are the most
popular cell cycle data of Yeast. SEMPHY considers three datasets from Pfam
database [BCD04]. The three datasets (labelled in this work as S,M,L) and their
characteristics is shown in Taljle 3. The software and the corresponding dataset
for Rsearch were obtained from [Lab05]. The experiments use the sequence “mir-
40.stk” with the length of 97 to search a part of database “Yeastdb.fa” with size
of 100KB. SVM-RFE uses a benchmark microarray data set on ovarian cancer
[AMO2]. This dataset contains 253 (tissue samples) x 15154(genes) expression
values, including 91 control and 162 ovarian cancer tissues with early stage can-
cer samples. For PLSA, nucleotides ranging from 30K to 900K length are chosen
as test sequences. Since true sequences can seldom satisfy this specific size, some
artificial sequences were used in the experiments [COH). To make the ex-
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Table 3: SEMPHY datasets and their characteristics
Dataset: S M L

Taxa number | 53 | 108 | 220
Sequence length394 | 397 | 389

periments more comprehensive, several real DNA sequences were also chosen
from a test suite provided by the bioinformatics group at Penn Stat University.
The longest sequence pair used here is named TCR where the human sequence is
319,030 bp long and the mouse sequence is 305,636 bp long.

4 Summary

Data mining has become one of the most essential tools for various businesses as
well as researchers in diverse fields. The surge in the operational speed of com-
puting systems, and also the emergence of compact, low-cost, high-performance
parallel and distributed systems have provided abundant venues for improving the
performance of data mining algorithms. However, in recent years, there has also
been a tremendous increase in the size of data that is collected and also the com-
plexity of data mining algorithms themselves. The rate of this growth exceeds the
rate of performance improvements in computing systems, thus widening the per-
formance gap between data mining systems and algorithms. In this work, the goal
is to narrow this gap by enabling designers to build systems that are tuned in accor-
dance with the requirements and developments of data mining algorithms. This
is achieved by performing a detailed characterization of a set of representative
data mining programs from both the hardware and software perspectives. Several
widely-used data mining algorithms from multiple categories were studied and
then, a benchmark suite was designed. Named NU-MineBench, this benchmark-
ing suite contains representative data mining applications. NU-MineBench suite
includes applications from diverse applications ranging from cosmology, grocery
stores to bioinformatics. The applications in NU-MineBench were evaluated us-
ing real systems and simulators.
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