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Abstract 

Data mining has become one of the most essential tools for various businesses as well as researchers in 
diverse fields. The surge in the operational speed of computing systems, and also the emergence of 
compact, low-cost, high-performance parallel and distributed systems have provided abundant venues for 
improving the performance of data mining algorithms. However, in recent years, there has also been a 
tremendous increase in the size of data that is collected and also the complexity of data mining algorithms 
themselves. The rate of this growth exceeds the rate of performance improvements in computing systems, 
thus widening the performance gap between data mining systems and algorithms. In this paper, our goal is 
to narrow this gap by enabling designers to build systems that are tuned in accordance with the 
requirements and developments of data mining algorithms. We achieve this by performing a detailed 
characterization of a set of representative data mining programs from both the hardware and software 
perspectives. We first study several widely-used data mining algorithms from multiple categories and, 
then, use them to design NU-MineBench, a benchmarking suite containing representative data mining 
applications. MineBench suite includes two classification, two association rule mining, and four 
clustering applications. We evaluate the NU-MineBench applications on an 8-way shared memory 
parallel machine and analyze important performance characteristics of the applications. We believe that 
this information can aid designers of future systems as well as programmers of new data mining 
algorithms to achieve better system and algorithmic performance. Moreover, current trends indicate that 
systems are moving towards the deployment of multiple processing cores as a way to increase their total 
computation power. Hence, scalability is an inevitable factor expected in future algorithms and systems. 
With this in mind, we vary both the input data sets and the number of processors used in our evaluation 
process. We present the results based on various characteristics that span from the software level to the 
hardware level, such as I/O complexity, fraction of time spent in the OS mode, breakdown of execution 
cycles, memory hierarchy behavior, communication/synchronization overhead.  

1. Introduction 
With the enhanced features in recent computer systems, increasingly larger amounts of data are being 
accumulated in various fields. Without any sophisticated analysis tools, this data is useless. Especially, as the 
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data sizes are exponentially increasing, the need to use automated tools to extract information from the 
collected data becomes clear. Therefore, data mining programs have become essential tools in many domains 
including marketing, customer relationship management, scoring and risk management, recommendation 
systems, and fraud detection. In addition, data mining techniques have been adopted by various scientists to 
analyze the vast amounts of data representing real-world systems. For example, data mining techniques have 
been utilized in cosmology simulation, climate modeling, bioinformatics, drug discovery, and intrusion 
detection.  

As the amount and dimensions of data collected increases, we will need to utilize even more sophisticated 
data mining applications. However, one important obstacle that has to be addressed is the fact that the 
performance of computer systems is improving at a slower rate compared to the increase in the requirements 
of data mining applications. Recent trends suggest that the system performance (data based on memory and 
I/O bound workloads like TPC-H) has been improving at a rate of 10-15% per year, whereas, the volume of 
data that is collected doubles every year.  Also, existing data mining tools are not able to run efficiently on 
existing systems. Researchers have focused on efficient implementations of different data mining algorithms 
by proposing numerous algorithmic optimizations and by proposing parallel and distributed versions of these 
algorithms. However, it is clear that even such optimized versions of algorithms have long run times. We 
believe that in order to close this gap, the key is to develop an understanding of the characteristics of data 
mining applications and to identify the way these applications get mapped on to existing computing systems. 
This is the goal of this paper. This information in turn can be utilized during the implementation of the 
algorithms and the design/setup of the computing systems. Understanding the architectural bottlenecks is 
essential not only for processor designers to adapt their architectures to data mining applications, but also for 
programmers to adapt their algorithms to the revised requirements of applications and architectures.  

Data mining is a relatively new application area and it involves algorithms and computations from 
different domains such as mathematics, machine learning, statistics, and databases. For this reason, very little 
is known in terms of the characteristics of the underlying computations and data manipulation, and their 
impact on computer systems. We address this issue in this paper by trying to investigate data mining 
applications and their characteristics for a sequential processor as well as for a representative parallel 
architecture. We first establish a benchmarking suite of applications that encompasses algorithms commonly 
used in data mining. Then, we analyze the architectural properties of these applications in detail to investigate 
the bottlenecks associated with them. Specifically, in this paper we make the following contributions:  

 

1) We introduce NU-MineBench, a benchmarking suite that includes popular data mining applications from 
various categories,  

2) We analyze the architectural properties of the applications on a sequential processor and highlight 
important performance bottlenecks, and  

3) We analyze the scalability of these applications in terms of data and parallelization.  

 

Benchmarks play a major role in all domains. SPEC [23] benchmarks have been well accepted and used by 
several processor manufacturers and researchers to measure the effectiveness of their design. Other fields 
have popular benchmarking suites designed for the specific application domain: TPC [24] for database 
systems, SPLASH [26] for parallel machine architectures, MediaBench [15] for media and communication 
processors. Benchmarks do not only play a role in measuring the relative performance of different systems. 
They also aid programmers in the specific domain in various ways. For example, a programmer implementing 
a new data mining application can compare the performance (in terms of output quality, scalability, and 
execution time) of the new application to the applications in the benchmarking suite. In addition, the 
programmer can use certain types of algorithms and programming styles from the applications in the existing 
suite. 
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Although there has been previous work analyzing individual data mining applications [3, 14], analyzing 
the behavior of a complete benchmarking suite will certainly give a better understanding of the underlying 
bottlenecks for data mining applications. We analyze each application in our benchmark on a sequential 
processor and present the key characteristics of each algorithm. Using our experimental results, we show that 
data mining applications are highly computation intensive, where the OS, I/O and synchronization overheads 
usually constitute a small fraction of the overall execution times.  

Another important aspect of our study is implementing and analyzing parallel versions of our benchmark 
applications. As the size of the available datasets and their dimensionality grow, parallel computers are 
becoming essential platforms to execute the data mining applications. In fact, data mining is rapidly becoming 
the most widely executed application category for supercomputers [11]. Some of the existing data mining 
applications have already been parallelized. However, the parallelization is usually made in an ad-hoc 
manner. We analyze the characteristics of the applications in shared-memory Multi-Processor (SMP) 
machine. Despite their limited scalability, SMPs have become the most common parallel computing type in 
the industry due to their simplicity. By analyzing the application characteristics in this representative 
multiprocessor system, we provide an insight into the parallel applications, which can be potentially helpful 
when developing parallel data mining algorithms on SMPs.  

We believe that our study is unique in nature. While data mining algorithms are typically characterized by 
people who propose them, we believe that our study highlights some of the major issues that have been 
assumed to be true during such studies. It should be noted that we do not study just a single data mining 
algorithm. Instead, we consider applications (not algorithms) from various data mining domains. Moreover, 
our atypical approach, which is a bottom-up approach to understanding data mining algorithms, identifies the 
real performance bottlenecks. The results are from real system evaluation as against a simulation setup. This 
provides new insights and hence, new venues for optimizations.  

The rest of the paper is organized as follows. In the next section, we overview the related work. In Section 
3, we discuss the data mining applications that are included in our benchmarking suite. Section 4 presents the 
evaluation methodology. The characteristics of our benchmark applications are presented in Section 5. 
Section 6 summarizes the results. 

2.   Related work 
Since fast-growing, tremendous amount of data, collected and stored in large and numerous databases, has far 
exceeded our human ability for comprehension without powerful tools, data mining technologies, which can 
perform fast data analysis and uncover important data patterns, have attracted a great deal of attention in 
various domains in the recent years [7, 18]. However, the increase in application requirements far exceeds the 
increase in computing power of systems, which suggests parallel computing as a potential solution to meet the 
requirements. In the past decade, most research on parallel data mining [7, 12, 28] has been focused on 
distributed-memory parallel machines due to its capability for massive parallelism. However, share-memory 
parallel machines are becoming the dominant types of parallel machines in industry because of its simplicity 
and low to medium degree of parallelism besides its nominal price. A few parallel algorithms on SMPs have 
been proposed in [27, 28].  

We include some of the commonly used data mining algorithms as representatives of each category into 
our NU-MineBench, and we perform evaluation on shared-memory parallel machines at the architecture level. 
Similar performance characterization work of database workloads is seen in [8, 13], and specifically targeted 
for SMPs in [22, 25]. Performance characterization of individual data mining algorithm has been done in [3, 
14], where they focus on the memory and cache behaviors of a decision tree induction program. However, we 
believe that analyzing the behaviors of a complete data mining benchmarking suite will certainly give a better 
understanding of the underlying bottlenecks for data mining applications. 
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3.   NU-MineBench Application Suite 
Data mining applications are broadly classified into classification, clustering, association rule mining, 
sequence mining, similarity search, text mining, multimedia mining, and other categories based on the nature 
of their algorithms [7]. We first establish NU-MineBench, a benchmarking suite containing data mining 
applications. The selection of categories as well as the applications in each category is based on how 
commonly these applications are used in industry and how likely to be used in the future, thereby achieving a 
realistic representation of the existing applications. Another concern of the algorithm selection is the 
scalability when executing on parallel or distributed systems. For instance, the flow and the set of operations 
performed by algorithms in our suite can be seen in various data mining tools currently available from the 
industry, like Clementine [31], IBM Intelligent Data Miner [32] and SAS Enterprise Miner [33]. NU-
MineBench has 8 applications from three of the categories listed above: classification, association rule mining 
(ARM), and clustering. We parallelize 5 out of the 8 applications because they show good scalability and 
performance on very large-scale databases in literature. The applications as well as important characteristics 
of the applications are listed in Table 1, which presents the applications, the category they belong to, a short 
description of the applications, and the programming language used to implement it. In the following sections, 
we discuss each application in detail according to the category they belong to. 

3.1   Classification Programs 
A classification problem has an input dataset called the training set which consists of example records with a 
number of attributes. The objective of a classification algorithm is to use this training dataset to build a model 
such that the model can be used to assign unclassified records into one of the defined classes. Classification 
has applications in diverse fields such as retail marketing, fraud detection, and design of telecommunication 
service plans [7]. Representative algorithms include decision tree, Bayesian classification, backpropagation, 
and neural networks. 

ScalParC is an efficient and scalable variation of decision tree classification [12]. The decision tree model 
is built by recursively splitting the training dataset based on an optimal criterion until all records belonging to 
each of the partitions bear the same class label. Decision trees can easily be converted to classification rules 
[7, 12]. Among many classification methods proposed over the years, decision trees are particularly suited for 
data mining, since they can be built relatively fast compared to other methods, especially when database is 
large. They are also easy to interpret [21]. Decision tree classifiers obtain similar, and often better, accuracy 
compared to other methods [19].  

Bayesian classifiers are statistical classifiers. They predict the probability that a record belongs to a 
particular class. It is based on Bayes’ Theorem. A simple Bayesian classifier, called Naive Bayesian classifier 
[5], is comparable in performance to decision trees and exhibits high accuracy and speed when applied to 
large databases. 

3.2 Clustering programs 
Clustering is the process of discovering the groups of similar objects from a database to characterize the 
underlying data distribution. It has wide applications in market or customer segmentation, pattern recognition, 
biological studies, and spatial data analysis [7]. Generally, clustering algorithms can be classified into four 
categories: partitioning-based, hierarchical-based, density-based, and grid-based.  

The first clustering application in NU-MineBench is K-means [16]. K-means is a partition-based method 
and is arguably the most commonly used clustering technique. K-means represents a cluster by the mean 
value of all objects contained in it. Given the user-provided parameter k, the initial k cluster centers are 
randomly selected from the database. Then, K-means assigns each object to its nearest cluster center based on 
the similarity function. For example, for spatial clustering, usually the Euclid distance is used to measure the 
closeness of two objects. Once the assignments are completed, new centers are found by finding the mean of 
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Algorithms Category Description Lang. 

Table 1. MineBench applications. Category that the application belongs 
to, a short description of the application, and the programming language used 
to implement it. 

all the objects in each cluster. This process is repeated until two consecutive iterations generate the same 
cluster assignment. 

ScalParC Classification Decision tree classifier  C 
Naïve Bayesian Classification Statistical classifier based on class 

conditional independence 
C++ 

K-means Clustering Partitioning method C 
Fuzzy K-means Clustering Fuzzy logic based K-means C 
BIRCH Clustering Hierarchical method C++ 
HOP Clustering Density-based method C 
Apriori ARM  Horizontal database, level-wise min-

ing based on Apriori property 
C/C++ 

Eclat ARM  Vertical database, break large search 
space into equivalence class 

C++ 

 

The clusters produced by the K-means algorithm are sometimes called "hard" clusters, since any data 
object either is or is not a member of a particular cluster. The Fuzzy K-means algorithm [2] relaxes this 
condition by assuming that a data object can have a degree of membership in each cluster. The Fuzzy K-
means assigns each pair of object and cluster a probability. For each object, the sum of the probabilities to all 
clusters equals to 1. Compared to the Euclid distance used in K-means, the calculation for the fuzzy 
membership results in higher computational cost. However, the flexibility of assigning objects to multiple 
clusters might be necessary to generate better clustering qualities.  

BIRCH [29] is one of the hierarchical clustering methods that employ a hierarchical tree to represent the 
closeness of data objects. BIRCH first scans the database to build a clustering-feature (CF) tree to summarize 
the cluster representation. Then, a selected clustering algorithm, such as K-means, is applied to the leaf nodes 
of the CF tree. For a large database, BIRCH can achieve good performance and scalability. It is also effective 
for incremental clustering of incoming data objects. 

Density-based methods grow clusters according to the density of neighboring objects or according to some 
other density function. HOP [6], originally proposed in astrophysics, is a typical density-based clustering 
method. After assigning an estimation of its density for each particle, HOP associates each particle with its 
densest neighbor. The assignment process continues until the densest neighbor of a particle is itself. All 
particles reaching this state are clustered as a group. HOP is highly scalable when applied to large databases 
[30]. HOP can be applied in diverse applications in molecular biology, geology, and astronomy.  

3.3   Association Rule Mining(ARM) programs 
Association rule mining is to find the set of all subsets of items or attributes that frequently occur in database 
records. In addition, ARM programs extract rules on how a subset of items influence the presence of another 
subset [7, 28]. ARM can discover interesting association relationships among large number of business 
transaction records. This can aid business decision-making processes, such as catalog design, cross-
marketing, and loss-leader analysis [7].  

Apriori [1] is arguably the most influential ARM algorithm. It explores the level-wise mining of Apriori 
property: all nonempty subsets of a frequent itemset must also be frequent. At the kth iteration (for k > 1), it 
forms frequent (k+1)th-itemset candidates based on the frequent k-itemsets and  scans the database to find the 
complete set of frequent (k+1)th-itemsets,  Lk+1. To improve the efficiency, a hash-based technique is used to 
reduce the size of the candidate k-itemsets.  
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Eclat [28] uses a vertical database format. It can determine the support of any k-itemset by simply 
intersecting the id-list of the first two (k-1)-length subsets that share a common prefix. It breaks the search 
space into small, independent, and manageable chunks. Efficient lattice traversal techniques are used to 
identify all the true maximal frequent itemsets. 

3.4   Parallel implementation 
As mentioned in the earlier sections, part of our goal is to study the scalability of data mining applications on 
SMPs. Hence, parallel versions of our benchmark applications are also provided. Parallel experimental results 
have been provided for 5 applications out of the 8 benchmark applications: ScalParC (Classification), K-
means, Fuzzy K-means, HOP (Clustering), and Apriori (ARM). We chose these applications not only because 
these parallel algorithms are commonly found in the literature, but also because they demonstrate good 
performance and scalability when applied to large-scale databases. ScalParC is parallelized on SMPs using 
the scheme presented in [27]. Simple data parallelism is exploited to parallelize K-means, Fuzzy K-means, 
and HOP. We implement parallel Apriori based on the Common Candidate Partitioned Database (CCPD) 
strategy described in [28].  

3.5   Discussion 
In this section, we have presented eight applications that are included in NU-MineBench. All of these 
applications are complete applications as opposed to kernels or procedures, i.e. each application can be 
executed independently without affecting the others. This is an important property for the benchmarks. Our 
goal is not to study a small portion of the tool, but rather to look at the whole application and investigate 
bottlenecks that might be caused by I/O, OS, or the application itself. Typically algorithm developers evaluate 
their algorithms based on their optimizations and also based on a fixed computing system. We believe that 
when applications are implemented based on these algorithms, there are various factors that affect the overall 
performance of the algorithm (for instance, the operating system overheads). Another important aspect is the 
relation between the implementation and the algorithm. It is natural to question whether a bottleneck arises 
because of the inefficiency of the implementation or because of the inherent nature of the algorithm. 
Therefore, we have rigorously optimized the applications for our system. Hence, any characteristic we 
observe during the evaluation process is likely to be inherent in the algorithm. However, due to the nature of 
our study, we emphasize on the trends and relative results rather on the exact performance numbers. Such 
trends and relative results are usually independent of the specific implementation. 

4.   Evaluation Methodology 
Benchmarks are used to evaluate architectures, methodologies, implementations and application algorithms. 
Hence, applications in a benchmark need to have distinct characteristics. In the next section, we consider the 
applications from our NU-MineBench suite, and distinguish the characteristics that make each application 
unique by studying it both from the algorithmic and the system perspective. For this, we first consider a 
parallel environment and port our applications to that system. Then, each application is evaluated for 
performance and scalability by varying the number of processors and data sizes. Routines within each 
application are analyzed in detail both from the functional and architectural granularity, to identify the key 
parameters in each algorithm.  

In the following part, we present the parallel setup that forms the basis for our experiments. Subsequently, 
we elaborate on the software tools that we used for parallelization, algorithm evaluation and also for studying 
the architectural performance. The input data set considered in our experiments is discussed in Section 4.3. 

4.1.   Hardware setup 
We chose an Intel IA-32 multiprocessor platform for evaluation purposes. Our setup consists of an Intel  
Xeon 8-way Shared Memory Parallel (SMP) machine running Red Hat  Linux Advanced Server 2.1 operating 
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system. The system has a 4GB shared memory and 1024 KB L2 cache for each processor. Each processor has 
16KB non-blocking, integrated L1 instruction and data caches. 

4.2.  Software tools 
In all the experiments, we use VTune Performance Analyzer [10] for profiling the functions within our 
application, and for measuring their execution times. To trace subroutine calls, we use VTune calling graph, 
which presents a hierarchical decomposition of the execution time. VTune counter monitor provides a wide 
assortment of metrics. We look at different characteristics of the applications: execution time, fraction of time 
spent in the OS space, communica-tion/synchronization complexity, I/O complexity, memory behavior, and 
CPI behavior. Related VTune parameters are used to collect data for these properties.  

In parallel implementations of the applications, we use OpenMP pragmas [20]. OpenMP is a specification 
for a set of compiler directives, library routines, and environment variables that can be used to specify shared 
memory parallelism. Due to its simplicity, OpenMP is quickly becoming one of the most widely used 
programming styles for SMPs. In SMPs, processors communicate through shared variables in the single 
memory space. Synchronization is used to coordinate processes. Similar to other parameters, VTune provides 
the aggregate time spent on different types of pragmas that are used for job parallelization and 
synchronization (includes individual loops and routines as well). This way we can accurately measure the 
time spent on synchronization, and other relevant contentions. For compiling applications, we use the parallel 
Intel C++ compiler, version 7.1 for Linux. 

4.3.   Dataset Characteristics 
Input data is an integral part of the data mining applications. The data considered for our experiments are 
either real data got from various fields or widely-accepted synthetic data generated using existing tools that 
are used in scientific and statistical simulations. During evaluation, we use multiple data sizes to investigate 
the characteristics of the NU-MineBench applications. Particularly, for each application we generate input 
data in 3 different sizes: Small, Medium, and Large. For ScalParC and Naïve Bayesian, we use three synthetic 
datasets (see Table 2 – “Classification”) generated by the IBM Quest data generator [9]. The notation Fx-Ay-
DzK denotes a dataset with Function x, Attribute size y, and Data comprising of z*1000 records. Function 26 
is a relatively complex function and produces large trees. For Apriori and Eclat, we also use three synthetic 
datasets from IBM Quest data generator (see Table 2 – “ARM”). D denotes the number of transactions, T is 
the average transaction size, and I is the average size of the maximal potentially large itemsets. In Table 2, the 
number of items is 1000 and the number of maximal potentially large itemsets is 2000. For HOP and BIRCH, 
we use three sets of real data from a cosmology application, ENZO [4], each having 61440 particles, 491520 
particles and 3932160 particles. We use a section of the real image database distributed by Corel Corporation 
for K-means and Fuzzy K-means. This database consists of 17695 scenery pictures. Each picture is 
represented by two features: color and edge. The color feature is a vector of 9 floating points while the edge 
feature is a vector of size 18. Both K-means implementations use Euclid distance as the similarity function 
and execute it for the two features separately. Since the clustering quality of K-means methods highly 
depends on the input parameter k, we perform both K-means with ten different k values ranging from 4 to 13. 
The timing results provided in this paper are the accumulated time for the ten runs. 
Table 2. Classification and Association Rule Mining Dataset Characteristics. (Dataset size in MB) 
 

Classification ARM 
Dataset 

Parameter Size Parameter Size 

Small F26-A32-D125K 27 T10-I4-D1000K 47 

Medium F26-A32-D250K 54 T20-I6-D2000K 175 

Large F26-A64-D250K 108 T20-I6-D4000K 350 
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5. Program characteristics 
In this section, we analyze several characteristics of NU-MineBench programs. For each characteristic, we 
analyze how the results vary when we change the input data and when we change the number of processors 
used in the execution. During the experiments, we investigate the performance scalability of the applications 
from NU-MineBench on the SMP machine. The benefits and drawbacks of using a shared memory model for 
our data mining algorithms are also discussed. Our measures of interest include the overall program execution 
time, the operating system overheads, I/O times and synchronization times. The numbers presented in this 
paper are for the entire application, and in relevant contexts, we present the individual processor breakups as 
well. 

5.1.   Execution time 
Table 3 shows the application execution times on 1 processor and speedups with respect to 1 processor 

case. For all benchmarks, the data size is varied from Small (S), to Medium (M), and finally to Large (L) 
based on the parameters of Section 4.3. We measure the scalability of the parallel applications by executing 
them on 1, 4 and 8 processors. The performance numbers for the 2-processor case is not presented in our 
paper due to the fact that there is minimal (or in some cases, none) improvement in performance when the 
application is executed on 2 processors.  

For our parallel applications, the best speedup (improvement in execution time with respect to the 1 
processor case) is seen in the decision tree algorithm (ScalParC). A speedup of 6.19 for 8 processors arises 
due to the balanced partitioning of data on to processors. This avoids concurrent read-write operations to the 
shared variables, which minimizes the contention during memory access (note: ours is a shared memory 
model). If data is evenly distributed, each processor is able to work independently (faster) by accessing only 
its respective data block in the memory without requiring access to memory blocks of other processors. HOP 
follows ScalParC in terms of the achieved speedups. Apriori has limitations when extended to SMPs. This is 
due to the significant amount of atomic access to the shared hash-tree structure and the nature of unbalanced 
transaction data. Overall, it is evident from Table 3 that data mining algorithms are scalable. Care should be 
taken to make sure shared operations are minimal in applications. That way applications can be efficiently 
hosted on multiple processing cores to exploit parallelism, and thus, to achieve high speedups. Typically, in 
data mining algorithms, the computation kernels are significant and constitute majority of the total execution 
times. It will be evident from further sections that the data retrieval is fast but data reuse is not very efficient, 
which we attribute to the nature of data mining algorithms. 

Table 3. Execution times for NU-MineBench applications. S is the small data set, M is 
medium data set and L is the large data set, except for K-means, in which case, S is color and M 
is edge data. P1, P4, P8 represent 1, 4 and 8 processor cases. The values shown under the column 
for P1 are the actual execution times in seconds, while the columns P4 and P8 show the speeds 
attained with respect to the 1 processor case. 

Data set = S Data set = M Data set = L 
Program 

P1 P4 P8 P1 P4 P8 P1 P4 P8 
HOP 6.3 3.5 5.25 52.7 1.92 6.06 435.3 3.4 5.34 

K-means 5.7 2.85 4.38 12.9 3.9 4.96 - - - 

Fuzzy K-means 164.1 3 6.02 146.8 3.44 5.42 - - - 
BIRCH 3.5 - - 31.7 - - 172.6 - - 

ScalParC 51.0 3.78 4.9 110.6 3.88 5.12 225.9 3.9 6.19 
Bayesian 12.6 - - 25.1 - - 51.5 - - 
Apriori 6.1 2.03 2.35 102.7 2.66 3.36 200.2 2.76 3.18 
Eclat 11.8 - - 81.5 - - 127.8 - - 
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5.2.   Operating system overhead 
For any program, the CPU utilization is split into operating system (OS) and user space. The OS overheads in 
a program include factors like system calls (for process/thread management, invoking locks, handling 
hardware interrupts), and allocation of intermediate system buffers during program execution. In Figure 1, we 
present the OS component (as a percentage of total execution time) of each individual application. When the 
number of processors equals to one, the operating system overheads are minimal. The OS overheads that arise 
in the single processor case are primarily from due to intermediate buffer allocations. The maximum overhead 
(1.7%) is seen for BIRCH. When the number of processors deployed is increased, the OS component 
increases drastically due to the parallelization overheads. Under the OpenMP programming environment, 
each OpenMP (_omp) directive adds extra cycles of overhead. These directives include the ones used during 
program initialization, thread spawning, barrier controls and also program loop hints. The individual program 
locks (which are basically system locks) used during parallelization also contribute to the OS overheads. 
Collectively, it is seen that when the code is parallelized to more processors, the OS overheads increase. 
Among the applications, K-means has the worst overhead. The OS overheads can help explain the poor 
performance of a given code. For instance, K-means shows an average speed up of 4.96 for 8 processors. This 
is as a result of the 40% OS overhead (Figure 1) from the omp directives and locks during the parallelization 
of K-means. The percentages of user space are similar for all data sizes and hence are not presented. 

0

5

10
15

20

25

30
35

40

45

HOP K-means Fuzzy K-means BIRCH ScalParC Bayesian Apriori Eclat

P1 P4 P8

Figure 1. OS overheads of NU-MineBench applications as a percentage of the 
total execution time. Data size is medium (M) for each application. 

 

5.3   I/O time 
As mentioned earlier, the external overheads of a program could affect the overall performance drastically. In 
general, I/O is a key component that could affect the overall performance of a system. Figure 2 shows the 
time for performing I/O as a percentage of the overall execution time. It is clear that the overheads arising 
from I/O operations generated during the data retrieval process in our applications are typically small except 
for Bayesian. For Bayesian, data is read as ASCII characters one by one, whereas for ScalParC (another 
classification algorithm), data is read in bulk string mode (less read operation overheads). This indicates that 
bulk loading of data could help. Considering the growth in memory technology (more storage, compact and 
partitioned layouts, faster access and cheaper cost), such mechanisms must be easy to implement. Data 
mining algorithms are yet to take full advantage of such technology advancements. To study how the I/O 
scales with respect to increasing data sizes, we varied the input data sets (S, M, L). Figure 2 shows that for a 
few applications, the I/O scales in an orderly fashion. For instance, in ScalParC and Apriori, on increasing the 
data sizes from S to M to L, the corresponding I/O percentages reduce. When the system reads more data 
(implies more I/O), the CPU gets more data to “mine”. Thus, CPU computations outperform the I/O 
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Figure 2. Percentage of I/O time with respect to the overall execution times. 
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Figure 3. Synchronization time in CPU cycles for all applications. The 
synchronization time increases when computation is scaled to multiple 
processor. 

operations, which implies, the CPU is well utilized. Overall, these results highlight the computation-intensive 
nature of our benchmark. 

5.4 Communication/Synchronization Overhead 
In a shared memory model, the inter-processor communication is achieved by accessing shared memory 

addresses. To access a shared variable (which in turn is a shared location in the memory), the processors have 
to pay a penalty. Processors request read permission to the shared variables and then “wait”. This could be a 
considerable bottleneck if the shared variable is locked by another processor, in which case the requesting 
processor must wait until the lock is released. Moreover, during parallel execution, there are execution 
breakpoints where all processors need to synchronize their data values for all their local/shared variables. This 
again, could be another bottleneck. All such inter-processor communication overheads are reflected in the 
synchronization measurement of our benchmark. The synchronization costs are shown in Figure 3 for 1, 4 and 
8 processor case. When using one processor, the synchronization overheads are negligible due to no inter-
processor communication. When more processors are involved, shared and private variables arise. In our case, 
the synchronization overheads increase as more processors are brought into the system. We found that for all 
parallel applications, the average synchronization time is just 0.14% of the overall execution time. This 
implies that the idle time spent in synchronization is very less and the CPU is very well utilized for mining 
information from the input data. 

The synchronization times increase when more data is brought into the system. This is due to the increase 
in the amount of data that is shared between processors, which in turn increases the need for timely 
synchronizations. This is shown in Figure 4. It should be noted that in case of K-means, S is color dataset and 
M is the edge dataset, which are independent datasets. This is the reason for the drop in synchronization 
cycles as we move from S to M. 
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Figure 4. Synchronization time in CPU cycles for all applications for different 
datasets. The synchronization time increases when data size is increased.  

 

5.5 Memory Analysis 
Studies have indicated that memory hierarchy is a significant performance bottleneck in modern computing 
systems [17]. This is more relevant in our case due to the low I/O overhead, as seen in the pervious section. 
When data is read, it is brought to the memory, which implies, understanding the program characteristics from 
the memory hierarchy is essential to improve the overall performance. Here, we present the performance 
characteristics of our programs with respect to the L1, L2 data caches and memory. 

 

 
5.5.1 L1 D-Cache  

Figure 5 shows the L1 cache miss ratio (percentages) when our applications are executed on 1, 4 and 8 
processors. It is clear that the applications are drastically different in their L1 cache behaviour. The 
applications can be categorized into two: one that has less cache misses (<0.6%) and those having more than 
2% cache misses. The maximum cache miss ratio (system-wide) is less than 7%, which is less considering the 
amount of data that is processed in our applications. We also measure the misses that occur on individual 
processors. It is not presented here as the trends are similar to the overall application trends except that the 
master processor incurs supplementary misses due to its additional task of managing and coordinating tasks 
that run on other processors. We also varied the data sizes to study the effect of increased data processing on 
L1 caches. Figure 6 shows the results. In general, the misses increase when data sizes are increased. This is 
due to the limited capacity of L1 cache (16KB). 
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Figure 5. L1 miss ratio (percentages) for NU-MineBench applications on 1, 4 
and 8 processors. 
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Figure 6. L1 miss ratio (percentages) for NU-MineBench applications with 
S, M and L datasets for the single processor case. 
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Figure 7. L2 miss ratio (percentages) for NU-MineBench applications on 1, 
4 and 8 processors. 
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Figure 8. L2 miss ratio (percentages) for NU-MineBench applications with S, 
M and L datasets for the single processor case. 

 

5.5.2 L2 Cache  

We also performed an analysis of the L2 cache behavior as well. Figure 7 shows the L2 miss ratios 
(percentages) for the NU-MineBench applications when executed on 1, 4 and 8 processors. Figure 8 shows 
the L2 miss ratio for varying data sizes. It is evident that L2 cache performance is dissimilar across 
applications, for both the cases when processor sizes and data sets are increased. In certain cases, the L2 cache 
misses increase, while in others it decreases. One reason for this behavior is that the data distribution is 
random as we use dynamic scheduling for parallelization of our applications. In dynamic schemes, the 
processor gets assigned a new block of data in a random fashion as it becomes available. Hence, the data gets 
distributed to multiple caches in a random fashion, which increases the likelihood of not finding “spatial” 
(nearer items in space) or “temporal” (nearer items in time) data. The scenario changes when the data size is 
increased. For a single processor case, the cache is not able to accommodate all of the requested data. Hence, 
as requests increase, misses also increase. But in the case of multiple processors (with large input data sizes), 
each processor is able to accommodate more data (note: each processor has a 1024KB cache). Each cache is 
able to accommodate more temporal and spatial data (each processor requests it). In our case, the misses 
reduce when 4 processors are used instead of 1 (graphs not presented here due to space restrictions). The 
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misses resume to increase once data is extended to 8 processors, which implies the 4 processor case is the best 
alternative for the large data sets and L2 cache size. 

Overall, the cache misses are high for these applications bearing in mind the fact that data has already been 
loaded efficiently into the memory (as seen before, I/O times are less for the benchmark applications). This 
implies that there is poor data reuse in applications. We found that a set of applications that have high miss 
rates incur nearly 0.013 misses per instruction. This indicates that an instruction is bound to miss more than 
1% of the time. Considering the fact that there are applications in the suite with lesser misses per instruction 
(in the order of 0.0001), it is evident that there is more room for cache optimizations in data mining 
algorithms.  

 

5.5.3 Memory Accesses 
To understand the effects of caching, we study the number of memory accesses that go out of the cache to 

the memory. The access cycles spent in requesting and receiving memory data is presented in Figure 9 for 1, 4 
and 8 processor cases. Memory contention has a bad effect on the overall performance as can be seen in the 
case of Apriori. There are a lot of memory cycles spent during data accesses (arises from wait/synchronization 
modes), which results in poor speedups. ScalParC has a speedup of 3.8 on 4 processors, but 4.9 on 8 
processors. This non-uniform trend in speedups (failure to attain linear speedups) is also attributed to memory 
contention as well. The memory access times increase when more processors are used due to the repeated data 
accesses (arising from cache misses, multiple data reads) and the increased time spent in memory idle cycles 
(during synchronization, waiting for data). 
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Figure 9. Memory access cycles corresponding to requests going to the memory 
from cache, for 1, 4 and 8 processors. This includes all memory read/write requests 
that miss the cache and access the memory. 

 

5.6 CPI behavior 
To understand the efficiency of our applications, we studied the Cycles Per Instruction (CPI). CPI is the ratio 
of the total execution cycles to the number of instructions successfully handled by a processor. We show the 
CPI for our applications, and with multiple processors in Table 4. The results shown are for the M dataset. For 
other dataset, the trends were similar. Even though, the CPI for ScalParC and HOP are comparatively less, 
they outperform other applications by avoiding repeated synchronizations. That is, the CPI is consistent 
throughout the program execution for ScalParC, whereas for other applications (like Apriori), there is a huge 
variation of CPI during program execution due to the presence and absence of synchronizations. This 
disparity in behavior highlights the fact that data mining applications need to better utilize the processor 
computational resources by hiding the overheads that arise from other non-computational components. 
Memory latency hiding techniques (like prefetching) should be useful. 
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Table 4. CPI for applications from NU-MineBench suite. P1, P4, P8 represent 1, 4 and 8 
processor cases. 

Programs P1 P4 P8 
HOP 1.53 1.36 1.45 
K-means 1.82 1.56 1.72 
Fuzzy K-means 1.36 1.53 1.61 
BIRCH 1.29 - - 
ScalParC 2.96 2.63 2.61 
Bayesian 1.20 - - 
Apriori 3.83 2.66 3.44 
Eclat 9.59 - - 

 

6. Conclusions 
In this paper, we introduce and evaluate NU-MineBench, a benchmarking suite for data mining applications. 
NU-MineBench can be efficiently used by system designers as well as programmers for new data mining 
applications. It contains 8 representative applications: two association rule mining algorithms, two 
classification algorithms, and four clustering algorithms. We have studied important characteristics of the 
applications when executed on an 8-way SMP machine. While our results do highlight some existing trends in 
data mining algorithms, it also identified the major bottlenecks from a different perspective. This fresh 
outlook has also given us the opportunity to highlight trends that have never been studied before.  The 
following summarizes the broad trends seen in our benchmark applications, and also suggests newer vistas for 
system and algorithm optimizations.  

• Data mining applications are favorably scalable, but special care must be taken when processors share the 
data, especially in a shared memory environment. Designers can optimize the system bus (interconnect) 
and network mechanisms, while the algorithm specialists can make sure their algorithms have minimal 
data sharing requirements. 

• Typically, the OS overhead, the synchronization overhead, and the I/O times are usually small in NU-
MineBench applications.  

• The L1 cache miss rates are typically small. However, the L2 cache miss rates are considerably high, 
which is not seen in typical applications run on computing systems. We compared these miss rates with 
those of SPEC and TPC-H benchmarks. Results indicate that data mining applications are unique.   

• The weak memory hierarchy performance might be attributed to the small instruction-level parallelism 
(measured in CPI). These results indicate that improvements in the performance of processors are likely 
to have a significant impact on the overall performance of data mining systems. In addition, techniques, 
like prefetching, should also improve the performance of the processor considerably. To improve the 
performance of their applications, the programmers can utilize this information and achieve better system 
performance. 

Overall, our results indicate that there is ample scope for improvements in the performance of both data 
mining algorithms and systems. We believe our results could guide programmers and designers to achieve 
this goal with ease. 
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