
A Run-Time Reconfigurable Architecture
for Embedded Program Flow Verification

Joseph ZAMBRENO, Tanathil ANISH and Alok CHOUDHARY 1

Department of Electrical and Computer Engineering, Northwestern University

Abstract. Poorly written software can pose a serious security risk. Applications de-
signed for embedded processors are especially vulnerable, as they tend to be written
in lower-level languages for which security features such as runtime array bounds
checking are typically not included. The problem is exacerbated by the fact that
these potentially insecure embedded applications are widely deployed in a variety
of high-risk systems such as medical devices, military equipment, and aerospace
systems. These observations motivate additional research into embedded software
security. In this paper, we present a compiler module and reconfigurable architec-
ture for verifying the integrity of embedded programs. Our architecture prevents
several classes of program flow attacks, as opposed to many current approaches
which tend to address very specific software vulnerabilities. We demonstrate the
correctness and feasibility of our approach with an FPGA-based prototype imple-
mentation that is effective in protecting applications with minimal performance
overhead.

Keywords. Security, software protection, buffer overflows, reconfigurable architectures

Introduction

Embedded applications are typically not the main focus of secure solutions providers, as
the personal and business computing world has been the traditional target for wide-scale
attacks. This is a cause for concern for two reasons. Firstly, embedded software tends
to be written in low-level languages, especially when meeting real-time constraints is a
concern. These languages tend to not have facilities for runtime maintenance which can
often cover programming errors leading to security holes. Secondly, embedded systems
are used in a variety of high-risk situations, for which a malicious attack could have
devastating consequences.

Many current approaches merely apply stopgap measures - either by patching spe-
cific vulnerabilities or disallowing behavior that is representative of the attacks consid-
ered. While effective at preventing the most popular exploits, these approaches are not
able to handle an unexpected weakness or an unknown class of attacks. Clearly, addi-
tional research is needed to find a more general solution.

1Correspondence to: Alok Choudhary, Department of Electrical and Computer Engineering, Northwestern
University, 2145 Sheridan Road, Evanston, IL 60208 USA; Tel.: +1 847 467 4129; Fax: +1 847 467 4144;
E-mail: choudhar@ece.northwestern.edu.

6 bar(int numS, char *Strs[]) {
7 char cmd[100];
8 int i;
9

10 for (i = 1; i < numS; i++) {
11 strcpy(cmd, Strs[i]);
12 /* ... */
13 }
14 /* ... */
15 return;
16 }

6 bar(int numS, char *Strs[]) {
7 char cmd[100];
8 int i;
9

10 for (i = 1; i < numS; i++) {
11 strcpy(cmd, Strs[i]);
12 /* ... */
13 }
14 /* ... */
15 return;
16 }

High Addresses

Low Addresses

Process Memory Layout

instructions for
function foo

instructions for
function bar

1 foo() {
2 /* ... */
3 bar(numS, Strs);
4 return;
5 }

1 foo() {
2 /* ... */
3 bar(numS, Strs);
4 return;
5 }

C
o

d
e (text)

S
eg

m
en

t
D

ata
S

eg
m

en
t

S
tack S

eg
m

en
t

.

.

.

foo’s local static
variables

frame pointer
return address
char cmd[100]
bar’s other local
static variables

frame pointer
return address

Figure 1. Process memory layout of an application with a potentially exploitable buffer overflow.

In this paper, we present an architecture and compiler module that can prevent a more
general class of attacks. The input program is first analyzed by our compiler to generate
program flow metadata. When the application is loaded onto the processor, this data is
then stored in the custom memories on our architecture. Since this approach requires
only a passive monitoring of the instruction fetch path, we are able to continually verify
the program’s execution with a minimal performance penalty.

To demonstrate the correctness of our architecture, we implemented a prototype on
a Xilinx ML310 FPGA development board. The results presented here detail the perfor-
mance of the protected applications given various architectural configurations. The feasi-
bility of the total approach is also considered, with experimental results on both the area
consumption of our architecture and the increase in application size due to the inclusion
of the program flow metadata.

The remainder of this paper is organized as follows. We start with an explanation
of unchecked buffer vulnerabilities alongside their commonly-found exploits. In Section
2, we discuss several of the current approaches to addressing this problem. We then
present our proposed solution in Section 3, followed by a description of the prototype we
developed on the FPGA board. Finally, we conclude the paper in Section 5 with a brief
overview of future efforts that are planned for this project.

1. Vulnerabilities and Attacks

Consider the simple application depicted in Figure 1. In this C-style pseudo-code, func-
tion bar is called with an array of pointers to character arrays as its input. These input
arrays are copied to a local array using the standard C library strcpy call before further
processing is applied.

In this code example, since the strcpy call does not check to ensure that there
is sufficient space in the destination array to fit the contents of the source string, it is

possible to write enough data to “overflow” the local array. In this example’s process
memory layout, the local variables for function bar are placed in the stack segment, just
on top of run-time variables that are used to ensure proper program flow. The common
convention is for the stack to grow backwards in memory, with the top of the stack being
placed at lower physical addresses and local arrays growing upwards in memory.

When user input is placed into overflowable buffers, the application is vulnerable to
the stack smashing attack [1]. Widespread exploits including the Code Red and SQL-
Slammer worms have convincingly demonstrated that it is possible for an attacker to in-
sert arbitrary executable code on the stack. The stack smashing attack works as follows:

• The attacker first fills the buffer with machine instructions, often called the shell-
code since typical exploit demonstrations attempt to open a command-shell on the
target machine.

• The remainder of the stack frame is filled until the return address is overwritten
with a pointer back to the start of the shellcode region.

• When the vulnerable function attempts to return to its calling parent, it uses the
return address that has been stored on the stack. Since this value has been over-
written to point to the start of the attacker-inserted code, this is where the program
will continue.

The widespread notoriety of stack smashing exploits have led to a considerable
amount of focus on their detection and prevention. In the future, it is likely that more
complex attacks involving buffer overflows (see [2] for a description of arc injection and
pointer subterfuge) will gain in popularity. Note that any arbitrary program flow modifi-
cation can be potentially malicious, not just those involving unprotected buffers.

2. Current Approaches

Several compiler-based solutions currently exist for buffer overflow vulnerabilities.
StackGuard [3] is a compiler modification that inserts a unique data value above the
return address on the stack. The code is then instrumented such that this value is then
checked before returning to the caller function. This check will fail if an overflowing
buffer modifies this value. StackShield is a similar compiler extension that complicates
the attack by copying the return addresses to a separate stack placed in a different and
presumably safer location in memory. While they are effective, it should be noted that
these protections can be bypassed in certain situations [4].

Other similar approaches include obfuscation-driven compiler transformations [5],
where the goal is to limit code understanding through the deliberate mangling of program
structure. In [6] a tamper-proofing approach is proposed where application integrity is
asserted through the insertion instructions that perform code checksums during program
execution. The modified applications are vulnerable to discovery using tools that can be
built to automatically look for obfuscations or checksum instructions. Accordingly, these
protections are only able to delay an eventual attack.

Designating memory locations as non-executable using special hardware tags is be-
coming a popular method for deterring buffer overflow attacks. Although available on a
variety of older processors, most recently AMD has released hardware with their NX (No
eXecute) technology and Intel has followed suit with a differently named yet functionally

L1:

L2:

L3:A
d

d
re

ss
 S

p
a
c
e

L1:

L2:

L3:A
d

d
re

ss
 S

p
a
c
e

(a)

L3:

L2:

L1:

L3:

L2:

L1:

(b)

L1:

L2:L2:

L3:L3:

(c)

ID = 01000
PREV = 00100

ID = 00010
PREV = 00101

ID = 00100
PREV = 00010

Figure 2. (a) Static view of an application’s instructions. (b) Program-flow graph. (c) Runtime execution
information added to the application via the PFencode compiler module.

equivalent XD (eXecute Disable) bit. Software emulation of non-executable memory is
a less secure option for processors that do not include functionality similar to the NX
bit. These approaches are being widely adopted for general-purpose processors, however
they do not address any type of program flow attack that doesn’t involve instructions
being written to and later fetched and executed from data memory.

There have been several hardware-based approaches to protecting software. The au-
thors in [7] utilize their DISE architecture to implement a concept similar to StackShield
in hardware. The SPEF framework proposed in [8] provides options for both obfuscating
and introducing integrity checks to the input application, which are verified at run-time
by custom hardware. The XOM architecture proposed in [9] attempts to ensure that in-
structions stored in memory cannot be modified, with specialized hardware being used
to accelerate cryptographic functionality. The latency overhead introduced by encrypting
the instruction fetch path can be considerable and may not be acceptable in real-time
embedded systems; this problem is currently being examined by the computer architec-
ture community [10,11]. Industry support for secure processors include the companies in
the Trusted Computing Group (TCG) [12], which define the Trusted Platform Module,
a hardware component that provides digital signature and key management functionality
for software protection and Digital Rights Management (DRM).

3. Our Approach

When considering a static view of an application (Figure 2), a basic block is defined as
a subsequence of instructions for which there is only one entry point and one exit point.
Basic block boundaries are typically found at jumps and branch targets, function entry
and exit points, and conditionally executed instructions. The various types of program
flow attacks can all be generalized as invalid edges in a flow graph at the basic block
granularity:

• Flow passing between non-consecutive instructions in the same basic block.

Processor
Core

Processor
Core

L1 instr
cache

Main
Memory
Main

Memory

L1 data
cache

Other caching,
buffering mechanismsD-Bus

Interrupt

I-Bus

Program
Checking

Component

Instructions

Data

Basic Block
Addresses (CAM)

Basic Block
Lengths/IDs (RAM)

V
alidation

M
echanism

Basic Block
Addresses (CAM)

Basic Block
Lengths/IDs (RAM)

V
alidation

M
echanism

Figure 3. Insertion of the PFcheck component into a standard CPU architecture.

• Flow passing between between two blocks with no originally intended relation.
• Flow passing between any two instructions that are not both at basic block bound-

aries.
• Flow passing from an instruction back to that same instruction, when that instruc-

tion is not both the entry and exit point of a single basic block.

Our approach operates at the basic block level. In the example of Figure 2, flow
passes unconditionally from block L1 into L2, where it may either loop back into L1
or pass conditionally into L3. This information is statically knowable by the compiler,
which is typically able to break the input program into basic blocks for analysis. It is also
possible to include a profiling pass to determine more complex program flows. Our com-
piler module, which we call PFencode, assigns identification labels to the basic blocks.
These “IDs” are given a one-hot encoding, for reasons that will become apparent. For
this example, block L1 is encoded as 00010, L2 is encoded as 00100, and L3 is encoded
as 01000.

Next, the compiler generates a table of predecessors for each basic block. Since the
blocks are already encoded with a unique bit, we can create this “prevID” table by just
ORing the IDs or all the blocks that are valid predecessors for each block. As an example,
since since block L2 and the prefix code segment (with an ID of 00001) are both valid
predecessors of L1, the prevID value for L1 is defined as 00101. The compiler also
generates a value representing the length of each basic block.

Figure 3 shows a high level view of how our program flow checking architecture
can be inserted into a standard CPU architecture. Our hardware component, which we
call PFcheck, uses a snooping mechanism to analyze instructions being fetched directly
between the processor core and the lowest level of instruction cache. Since the PFcheck
architecture does not delay the instruction fetch path, it is not expected to incur the same
negative performance impact as other approaches.

The architecture contains several customized memories which it uses to hold the
program flow metadata values. The basic block base addresses are stored in a Content-
Addressable Memory (CAM). Typically on a CAM lookup operation, the output is a
unencoded value of the lines in the memory that match the target address. When an
instruction is being fetched, the PFcheck component sends this address to the CAM. If
there is a match, this means that the instruction is an entry point for a basic block - the
ID of that block is given as the output of the CAM.

On-board
Peripherals
On-board

Peripherals

EthernetM
em

ory C
ontrollers

P
er

ip
he

ra
l C

on
tr

ol
le

rs

CPU
Resources
(PPC, MB)

CPU
Resources
(PPC, MB)

Xilinx XC2PV30 FPGA

On-chip
Memory

Resources

On-chip
Memory

Resources

On-chip Interconnect
(PLB, OPB)

UART

On-board
Storage

On-board
Storage

USB

256 MB
DDR DIMM

512 MB
CF Card

64 Kb Serial
EEPROM PCI

Figure 4. Architectural view of the Xilinx ML310 development platform.

Table 1. PFencode results for a variety of benchmarks

Benchmark App Size Num Basic Block Metadata Size Percentage Increase

adpcm 15.8 kB 75 1.30 kB 8.2%

dijkstra 23.3 kB 257 10.3 kB 44.2%

laplace 15.6 kB 32 0.38 kB 2.4%

fir 22.8 kB 240 9.12 kB 40.0%

susan 90.8 kB 1253 206 kB 226.9%

The basic block lengths and prevID table are stored in a standard RAM. The only
output required by the component is an interrupt signal, which is used to notify the sys-
tem that an invalid flow has been detected. A more detailed description of a PFcheck
implementation is given in the following section.

4. Implementation and Results

We implemented our prototype system on a Xilinx ML310 FPGA development board
(Figure 4), using version 7.1 of their Embedded Development Kit (EDK) for the design
entry, simulation, and synthesis. The ML310 contains a XC2VP30 FPGA that has two
PPC 405 processors, 13696 reconfigurable CLB slices, and 136 Block SelectRAM mod-
ules. The board and FPGA can act as a fully-fledged PC, with 256 MB on-board memory,
some solid-state storage, and several standard peripherals.

We implemented our PFencode compiler as a post-pass of the GCC compiler target-
ing the Xilinx MicroBlaze soft processor [13]. We chose the MicroBlaze over the PPC
for its simplicity and flexibility. Table 1 shows the results when we ran PFencode on a
number of benchmarks customized to support MicroBlaze software libraries. For these
relatively small applications, we found that the size of the metadata increased exponen-
tially with the number of basic blocks. This is due to the fact that for an application with
N basic blocks, our one-hot encoding approach requires an N × N memory to hold
the entire prevID table. For the benchmarks that have relatively short basic blocks, this
increase in application size can be drastic (see susan which is 5.8 times the size of
laplace but requires 542 times the amount of metadata).

N-bit EncoderN-bit Encoder

CAM (NxM)CAM (NxM)

NOR NOR

Base Addresses

RAM (NxN)RAM (NxN)

Previous IDs

Data

Match

MAddr Addr Data

Addri-1

D Q

Addri

D Q

Instr
Addr

Intr1

M
ic

ro
B

la
ze

In
te

rf
ac

e

MM

NN

++

IN OUT

'4'

==

log(N)log(N)

ANDAND…

NN

IDi-1

D
Q

WR

Intr2

IDi-2

D Q
NN

Figure 5. Internals of an implementation of the PFcheck architecture.

Table 2. PFcheck implementation results for a Xilinx XC2VP30 FPGA

Config (N × M) 64x16 64x32 128x32 256x32 512x32

Num Slices 450 (3.2%) 510 (3.7%) 840 (6.1%) 1615 (11.8%) 3031 (22.1%)

Num BRAMs 5 (3.7%) 9 (6.6%) 18 (13.2%) 36 (26.5%) 80 (58.9%)

Clock Freq 71.3 MHz 71.3 MHz 64.9 MHz 56.0 MHz 59.32 MHz

Figure 5 shows the internals of our implementation of the PFcheck architecture. The
instruction addresses (M bits wide) is sent into the CAM module which has M -bit wide
entries for each of the N basic blocks. If there is a match, that means that this instruction
address is a basic block base address - the one-hot ID value for that basic block is the
output of the CAM on a match. Otherwise, the output of the CAM is all zeros indicating
that the current instruction is inside a basic block. The output of the CAM is sent to an
encoder that creates a log(N) wide signal that drives the address of the RAM module
to get the prevID value for the current block. The entry in the prevID table is checked
with the previously fetched ID that is stored in a register. If the bits do not match up, an
interrupt signal is sent to the processor. In the case where the current instruction is not a
basic block entry point, an interrupt will be also be generated if the current instruction
does not directly proceed the previous instruction. This is equivalent to checking that
PC does not equal PC + 4.

Table 2 shows how the area consumption and performance of the PFcheck architec-
ture is depends on the configuration. For our experiments, we synthesized designs with
varying amounts of basic block support and address bus width. Each design is labeled
N × M . Several trends are readily apparent. The BlockRAM and slice usage increase
linearly with N . Decreasing the address bus width has less of an impact on area usage,
and no impact on clock frequency. The limiting factor for this medium-sized FPGA was
the number of BlockRAMs; we were not able to fit the 1024x32 on the device.

To test for correctness, we used PFencode to compile an application that contained
a buffer overflow vulnerability. We attempted to write attack code on the stack and to
overwrite the return address to point back to this buffer. While the architecture did not
protect values on the stack from being overwritten, when the program attempted to return
to this malicious region an interrupt was triggered.

5. Conclusions and Future Work

In this paper we proposed and evaluated a reconfigurable architecture for verifying pro-
gram flow integrity. We demonstrated the effectiveness of our approach with a imple-
mentation protecting a MicroBlaze processor running on a Xilinx ML310 FPGA board.

Further improvements are being made to the PFcheck architecture. We are currently
analyzing the performance overhead of writing the program flow metadata values to the
CAM and RAM. Also, we are investigating a paging architecture that will be able to
protect larger applications (in terms of number of basic blocks) without a loss in the
amount of security provided.

Acknowledgements

This work was supported in part by the National Science Foundation (NSF) under grant
CCR-0325207 and also by an NSF graduate research fellowship.

References

[1] ‘Aleph One’. Smashing the stack for fun and profit. In Phrack, vol. 7, no. 49, Nov. 1996.
[2] J. Pincus and B. Baker. Beyond stack smashing: recent advances in exploiting buffer overruns.

In IEEE Security and Privacy, vol. 2, no. 4, Jul. 2004, pp. 20–27.
[3] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,

and Q. Zhang. StackGuard: automatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security Symposium, Jan. 1998, pp. 63–78.

[4] ‘Bulba’ and ‘Kil3r’. Bypassing StackGuard and StackShield. In Phrack, vol. 10, no. 56, May
2000.

[5] C. Collberg, C. Thomborson, and D. Low. Breaking abstractions and unstructuring data struc-
tures. In Proceedings of the International Conference on Computer Languages (ICCL), May
1998, pp. 28–38.

[6] H. Chang and M. Atallah. Protecting software code by guards. In Proceedings of the ACM
Workshop on Security and Privacy in Digital Rights Management, Nov. 2001, pp. 160–175.

[7] M. Corliss, E. Lewis, and A. Roth. Using DISE to protect return addresses from attack. In
Proceedings of the Workshop on Architectural Support for Security and Anti-Virus (WASSA),
Oct. 2004.

[8] D. Kirovski, M. Drinic, and M. Potkonjak. Enabling trusted software integrity. In Proceedings
of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), Oct. 2002, pp. 108–120.

[9] D. Lie, C. Thekkath, M. Mitchell, and M. Horowitz. Architectural support for copy and tam-
per resistant software. In Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX), Nov. 2000, pp.
168–177.

[10] W. Shi, H-H. Lee, M. Ghosh, C. Lu, and A. Boldyreva. High efficiency counter mode security
architecture via prediction and precomputation. In Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA), Jun. 2005, pp. 14–24.

[11] J. Yang, Y. Zhang, and L. Gao. Fast secure processor for inhibiting software piracy and tam-
pering. In Proceedings of the 36th International Symposium on Microarchitecture (MICRO),
Dec. 2003, pp. 351–360.

[12] Trusted Computing Group, http://www.trustedcomputing.org, 2005.
[13] Xilinx. MicroBlaze Processor Reference Guide, available at http://www.xilinx.com, 2005.

