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Data-driven methods are attracting growing attention in the field of materials science. In particular, it is
now becoming clear that machine learning approaches offer a unique avenue for successfully mining
practically useful process-structure-property (PSP) linkages from a variety of materials data. Most pre-
vious efforts in this direction have relied on feature design (i.e., the identification of the salient features
of the material microstructure to be included in the PSP linkages). However due to the rich complexity of
features in most heterogeneous materials systems, it has been difficult to identify a set of consistent
features that are transferable from one material system to another. With flexible architecture and
remarkable learning capability, the emergent deep learning approaches offer a new path forward that
circumvents the feature design step. In this work, we demonstrate the implementation of a deep learning
feature-engineering-free approach to the prediction of the microscale elastic strain field in a given three-
dimensional voxel-based microstructure of a high-contrast two-phase composite. The results show that
deep learning approaches can implicitly learn salient information about local neighborhood details, and
significantly outperform state-of-the-art methods.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Material systems used in advanced technologies often exhibit
rich heterogeneity over a hierarchy of well-separated length scales.
Most material properties are influenced strongly by certain, not yet
clearly identified, details of this heterogeneity in the material
structure. However, the natural hierarchy of the well-separated
material structure length scales allows the adoption of hierarchi-
cal multiscale modeling approaches [1—4]. Central to these ap-
proaches is the efficient communication of the salient information
between the hierarchical structure scales with a sharp focus on the
details that strongly influence the overall properties and perfor-
mance characteristics of the material.

Homogenization deals with the transfer of salient information
from a lower material structure scale to a higher material structure
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scale. Most often this involves capturing the effective (i.e., ho-
mogenized) properties defined at the higher material structure
scale, while accounting for the heterogeneity that exists at the
lower material structure scale. A large number of strategies have
been developed and established in literature for addressing ho-
mogenization, ranging from the elementary bounding theories
[5—7] to the self-consistent approaches [8—10] to the sophisticated
statistical continuum theories [11—13].

Localization, on the other hand, deals with the transfer of salient
information from a higher material structure scale to a lower ma-
terial structure scale. As a specific example, it might deal with the
microscale spatial distribution of a macroscopically imposed stress
(or strain rate) tensor. An illustration of localization in hierarchical
multiscale modeling is shown in Fig. 1. As such, localization prob-
lems are much more difficult compared to homogenization, and
have received only limited attention in current literature [14—23].
Indeed, localization plays an important role in the assessment or
prediction of failure-related properties. For instance, both high-
and low-cycle fatigue properties of metals are strongly affected by
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Fig. 1. Illustration of localization in hierarchical multiscale modeling.

the localization of the stress and plastic strain at the microscale
[24—26]. Since the underlying physics behind both homogenization
and localization problems is essentially described by exactly the
same set of governing field equations, it stands to reason that the
localization solutions often automatically embed homogenization
solutions within them [27—-29].

Localization problems have largely been addressed in literature
using either numerical approaches (e.g., the finite element method
(FEM) [30,31]) or iterative methods employing Green's functions
and fast Fourier transforms (FFTs) [14,16,32]. Neither of these ap-
proaches are particularly suited to fast exploration of the vast
microstructure design space because of their relatively high
computational cost. One of the main drawbacks of these ap-
proaches is that they do not focus on learning transferable
knowledge from one microstructure to another microstructure. In
other words, they are not formulated to take advantage of previ-
ously aggregated information on different microstructures to make
predictions for new microstructures. One of the most promising
approaches to the localization problem is the Materials Knowledge
Systems (MKS) approach [17—20,22—24,33] that employs cali-
brated Green's function based kernels in a non-iterative series so-
lution. The main challenge comes from the difficulty in engineering
the local features needed to establish highly accurate localization
relationships. In general, the features of interest in establishing
localization relationships are all related to the local neighborhood
details at the focal voxel of interest (i.e., the voxel under exami-
nation) in a given microstructure. In high-contrast composites, the
local interactions between microscale voxels extend to larger
lengths and demand the consideration of larger neighborhood re-
gions. It was shown in prior work [23] that the number of features
that need to be defined for the larger microstructure neighborhood
explodes exponentially, posing significant hurdles in the calibration
of the kernels through standard machine learning approaches.

In recent decades, deep learning approaches have proven their
superior performance over traditional machine learning ap-
proaches [34—36]. Deep learning techniques have also recently
gained attention in the materials science field, and have been
successfully employed in materials image segmentation [37,38],
materials data prediction [39—41], homogenization structure-

property linkages [42—45], microstructure reconstructions
[46,47], and microstructure generation [48,49] with generative
adversarial networks (GAN) [50]. In contrast to traditional machine
learning approaches, deep learning offers an end-to-end frame-
work where it usually takes raw data as input (i.e., without the need
for any feature engineering). Because of its flexible structure and
remarkable learning capability, deep learning can automatically
extract higher-order information embedded in the raw input. It was
shown in prior work [44] that convolutional neural networks (CNN)
can automatically extract important higher-order microstructure
statistics (i.e., up to 1000-point statistics) central to establishing
reliable homogenization structure-property linkages for high
contrast material systems. The extraction of this level of informa-
tion is not computationally feasible through standard feature
extraction methods. In this work, we focus on two high-contrast
composite material systems, with contrast values of 10 and 50
(these represent the ratios of Young's moduli of the constituent
phases in the composite). More specifically, we propose a deep
learning model to efficiently and accurately predict microscale
elastic strain field of three-dimensional (3-D) high contrast elastic
composites. In order to critically evaluate the performance of pro-
posed model, the results obtained via deep learning approach are
compared to three different benchmark approaches that solve the
localization problem via other data-driven techniques [19,20,22].

2. Benchmark methods for localization

Elastic localization has been modeled for 3-D microstructures
through single and multi-agent feature extraction methods [19,20],
and the materials knowledge system (MKS) framework [22]. These
methods are used in this study as benchmarks to evaluate the
performance of deep learning methods, and are briefly described
next.

2.1. Feature extraction methods

The first two benchmarks used in this paper are based on feature
extraction methods [19,20]. Liu et al. [19] extracted a relatively
large set of features to identify the local neighborhood around the
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focal voxel of interest, applied feature ranking methods to establish
a reduced set of features that preserve the most significant infor-
mation, and then used random forest techniques to predict
microscale elastic strain field. However, such a single-agent feature
extraction method does not effectively capture the embedded
correlations in the trained data. Thus, in a following study [20], Liu
et al. developed a multi-agent feature extraction method to further
improve the model's performance. More specifically, this method
consisted of two steps. In the first step, the ensemble of micro-
structures were divided into categories using metrics such as vol-
ume fraction and pair-correlation functions so that these different
categories would have low inter-similarity and high intra-
similarity. In the second step, the reduced set of features in
Ref. [19] were used to characterize the microstructures in each
category and the random forest algorithms were extended sepa-
rately to these categories to predict microscale elastic strain field.
The multi-agent feature extraction approach did result in a trained
model that exhibited higher accuracy compared to the single-agent
feature extraction methods.

2.2. First-order localization series of MKS framework

Another data-driven method used as benchmark in this paper is
the localization series of MKS framework. MKS framework ad-
dresses the localization problem in the form of a series expansion
derived from the statistical continuum theories [12,13]. Each term
in the series is defined as a convolution product of the Green's
function based kernel over the microstructure descriptor. For the
elastic localization problem, the first-order MKS expansion for a
macroscale imposed strain component (&) can be written mathe-
matically as

(ZZ& +>< > (1)

where m? provides the digital representation of the microstructure
(reflects the volume fraction of material local state h occupying the
spatial bin or voxel s [51]), r systematically indexes all of the
neighboring voxels near the focal voxel of interest, o' denote the
model fit parameters (or weights) that need to be trained using the
available data, and s denotes the localized strain (model output) in
the focal voxel of interest. In the case where each spatial voxel is
occupied by one distinct phase, m! takes the value of either 0 or 1
[22,52—55]. In the MKS framework, af' are called influence co-
efficients and are usually calibrated to the data aggregated from
executing finite element simulations on a large number of digitally
created microstructures. The model calibration is often pursued
using standard linear regression techniques. There are two major
distinctive features of the model form presented in Eq. (1): 1) The
influence coefficients are defined only in terms of relative distance r
to the focal voxel of interest, s. Hence, they are independent of
microstructure morphology. Once they are obtained, they can be
used to predict the response field of any new microstructure of the
same material system. 2) Since the expression shown in Eq. (1)
involves a convolution product, fast Fourier transform (FFT) algo-
rithms can be exploited for computational efficiency. Consequently,
the MKS predictions for new microstructures can be obtained
several orders of magnitude faster compared to the physics-based
finite element approaches.

3. Convolutional neural networks for localization

Convolutional neural networks (CNN), introduced by LeCun
et al. [56], are widely applied in computer vision field to solve

various difficult problems related to feature recognition and image
segmentation [57—62]. A conventional CNN model usually has a
stack of several convolutional layers and pooling layers. The con-
volutional layers employ filters to learn the important local features
of images along with their relative importance. The pooling layers
reduce dimensionality, while preserving the most important in-
formation. The output of multiple stacks of convolutional and
pooling layers are then fed into fully connected layers which have
the final list of predictors on which the model is trained. In this
study, CNNs are built for the elastic localization in 3-D micro-
structures of high contrast composite microstructures using the
typical CNN architecture illustrated in Fig. 2.

3.1. Convolutional layer

Convolutional layer is the core component of CNN and it uses
filters to extract the salient features from images. The readily
accessible implementations of CNN employ 2-D filters on 2-D im-
ages. Since our application involves 3-D microstructures, we need
to find a suitable workaround for this limitation that does not
significantly increase the computational cost involved in the
training of the model. In this study, we accomplished this by
treating the 3-D neighborhood around the focal voxel as multiple
channels of 2-D layers, where each layer is then convolved with a 2-
D CNN filter. While this approach provides us a pseudo 3-D filter, it
should be recognized that it is not exactly the same as using 3-D
filters. For example, the trained model in the approach used here
is likely to be sensitive to which planes are selected for converting
the 3-D neighborhoods into stacks of 2-D layers. In this work, the 2-
D layers are selected perpendicular to the maximum principal
strain direction.

A general convolution layer in the present implementation takes
as input N channels of 2-D images, where each image (i.e., each
channel) is defined on a uniform square grid of voxels. The N
channels of 2-D images are then convolved with multiple sets of N
2-D CNN filters, each of size m x m. The common practice is to use
an odd value for m (ensures symmetry in the number of voxels on
either side of the central voxel in the convolution). The convolution
employed in this process can be mathematically expressed as

N-1 m-1

;Z B 1(x =Ty iy -

-1 .
mT +1, k)
k=0

(2)

where [ and O denote the input and output, x and y index the po-
sition of voxels in an input 2-D image, and w and b denote the
corresponding weights and bias captured by a set of filters (to be
trained). It should be noted that each set of 2-D filters produces a 2-
D output image (by using Eq. (2) for all x and y values in an input 2-
D image). Each 2-D output image from the convolution then serves
as an independent input channel for the next convolution layer.

In CNN approaches, the output O from Eq. (2) is passed through
an activation function to obtain the final output at voxel (x,y) from
the convolution layer (i.e., the use of an activation function is an
inherent component of the convolution layer). The main purpose of
the activation function is to capture the nonlinear complex func-
tional mappings between input and output (note that the convo-
lution operation described above involved only a linear mapping).
One of the most commonly used activation function in deep
learning is ReLU (rectified linear unit) [63] formulated as f(x) =
max(0,x). This activation function is applied to all voxels in the 2-D
output image from the convolution, and the output image is then
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Fig. 2. Illustration of a typical convolutional neural network (CNN) used in this study for building localization linkages.

called a feature map. Thus multiple feature maps (one per channel
per convolutional layer) produced in this manner are expected to
capture the diverse range of salient features in the input that are
strongly correlated to the selected output. Note that if one desires
to keep the size of the input images (describing the neighborhood
of a focal voxel) and of the output feature maps of the convolutional
layer as same, zero padding needs to be applied when considering
focal voxels in the boundary of the input microstructure. The
alternative to zero-padding is to allow the shrinking of the output
feature maps by ignoring focal voxels in the boundary regions of
the given representative volume element of the microstructure.

3.2. Pooling layer

Pooling layer is used to reduce the dimensionality, while
retaining the most important information in the data. Average
pooling is one of the most widely used pooling operations, and
essentially amounts to coarsening of the image. Mathematically,
one can express this as

s—1 s—1 : :
I(sxX+1,sxy+
Opxy) =y S X XELSXY ) 3)
j=0 i=0

where s denotes the coarsening length scale (in number of voxels),
and (x,y) identifies a voxel in the output of the feature map after
applying the average pooling layer. The pooling layer is applied for
each feature map, which means the number of input and output
feature maps is the same. In most cases, the pooling layer results in
a reduction of the number of the spatial voxels by an integer factor.
The most important advantage of the pooling operation is that it
reduces the computational requirements in training the mathe-
matical model (i.e. regression, classification, etc.) as it reduces the
number of dimensions flowing from convolutional layers to the
fully connected layers. This also helps in the case of regression
problems where overfitting is a major problem, especially for cases
involving a large number of features.

3.3. Fully connected layer

In the final stage of CNN, the output of several stacked con-
volutional layers and/or pooling layers are flattened to a one
dimensional vector, and this vector is fed into a fully connected
layer. A fully connected layer is the same as a layer of conventional
artificial neural network, which consists of multiple neurons. The
operation of a neuron can be formulated as

n—-1
0 _f<Zx(i) x w(i) + b) (4)
i—0

where o represents the output of this neuron, x(i) denotes the it
input, n is the number of inputs to the fully connected layer, and f(.)
represents the activation function. As in convolutional layer, ReLU is
the most commonly used activation function in the fully connected
layer, except that in the final output layer, a linear activation
function is used for regression problems and softmax activation
function is used for classification problems.

3.4. Proposed deep learning model

It is logical that the details of the local neighborhood strongly
influence the accuracy of predictions from localization models. This
neighborhood information is usually referred as the higher-order
microstructure information [51,64]. It is also well-known that
more higher-order information (i.e., more details of the neighbor-
hood) are needed for localization models in high contrast com-
posite material systems. In Refs. [19,20], a 5 x 5 x 5 cube centered
on the focal voxel was used to build the localization models for a
composite with a contrast of 10 in the Young's moduli of its con-
stituents. In order to predict microscale elastic strain field of higher
contrast composites studied here,a 11 x 11 x 11 cube centered on
the focal voxel was taken as input to the deep learning model. As
already mentioned, this means that the input is treated as 11
channels of 2-D images of size 11 x 11 x 11 voxels. The input im-
ages had only binary values, i.e., Os and 1s. The input images were
transformed such that the values at each voxel were assigned
as —0.5 or 0.5 (replacing 0 and 1, respectively) as this was found to
improve the performance of the convolution layers. In addition, the
local strains were scaled by a factor of 10000 to avoid numerical
issues associated with their small magnitudes (recall that these are
elastic strains).

Different CNNs and CNN architectures were explored to find the
best trained model for the present application. The architecture of
deep learning model is crucial to determine its learning capability.
Thus different architectures of CNNs consisting of convolutional
layers with zero-padding, pooling layer and fully connected layers,
were first explored. More specifically, the depth of CNN was grad-
ually increased from 7 layers to 18 layers by stacking additional
convolutional layers and pooling layers. However, the accuracy of
these trained models was inadequate, and did not improve much
with these changes. There might be two reasons for this relatively
poor performance: (1) The size of input image is relatively small
compared with images in conventional computer vision field.
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Consequently, reducing the image size by using pooling layer might
lose too much microstructural information. (2) Due to fact that
input images are binary and small, all the voxels in the images could
have significant effect on the final predictions. Thus adding Os
around the boundary by using zero-padding might confuse the
training process. Therefore, we decided to use a six-layer CNN that
consisted of convolutional layers without zero-padding and fully
connected layers. Because convolutional layer is the core compo-
nent of CNN and it uses filters to capture the salient features from
the images, the number of filters in each convolutional layer was
systematically varied. More specifically, the number of filters in
each convolutional layer was gradually increased to find the best
number of filters in each convolutional layer for the present
application. After that, the number of neurons in fully connected
layers was systematically varied so that the salient features
captured by the conovlutional layers could be effectively utilized by
fully connected layers to make accurate predictions. Finally, L2
regularization with different penalty strengths were explored to
avoid overfitting,.

The architecture of the best CNN model resulting from the many
trials conducted for the present application is shown in Table 1. In
this model, convolutional layers 1 and 2 have 128 and 256 3 x 3
filters, respectively, and zero-padding is not employed in the
convolution operation. The convolutional layers are followed by
two fully connected layers where the first and second layers
contain 2048 and 1024 neurons, respectively. All the weights in the
CNN are initialized by normalized initialization [65]. This initiali-

zation method samples a U[-r,r] with r = ,/m where
fan_in and fan_out are the number of inputs and outputs of the

layer, respectively. ReLU is used as activation function for all the
convolutional layers and fully connected layers except the output
layer where linear activation function is used. In order to avoid
overfitting, L2 regularization with 0.0001 penalty strength is
applied in each convolutional layer and fully connected layer.

During the training, batch size was set as 252 data points (i.e.,
252 11 x 11 x 11 cubes centered at corresponding focal voxels
were propagated through the network in each training iteration),
and mean squared error was used as loss function. Adam optimizer
[66] was used as it is a more effective optimization algorithm than
conventional stochastic gradient descent algorithm. For the
parameter settings of Adam, the learning rate was 0.001, §; value
was 0.9 and (, value was 0.999. Early stopping technique was
applied to determine when to terminate the training process. More
specifically, the training process was terminated when the value of
loss function on validation set did not improve over 10 epochs (i.e.,
10 complete passes through the entire dataset).

There is a post-processing step after the training is terminated
and the predictions are computed. Since the total strain on a MVE of
FE model is fixed (i.e., 0.001 for both contrast 10 and 50 composites
materials datasets discussed next), the predicted local strain of
focal voxel is multiplied by a scaling factor 0.001/e where e is the
total predicted strain on the MVE so that the total strain on each
MVE of ground truth (i.e., FE model) and predictions are the same

Table 1
The dimensionality of each layers in the proposed CNN (bs. Denotes the batch
size).

Layer Dimension

Input Layer bs.x 11x 11 x 11
Convolutional Layer 1 bs. x 9x 9x 128
Convolutional Layer 2 bs. x 7 x 7 x 256
Fully Connected Layer 1 bs. x 2048

Fully Connected Layer 2 bs. x 1024
Output Layer bs. x 1

(i.e., the total predicted strain on each MVE is 0.001). The datasets
and the performance of the proposed deep learning models are
presented in the next section.

4. Results and discussion
4.1. Datasets

As mentioned before, the goal of this paper is to predict micro-
scale elastic strain field for 3-D high contrast elastic composites
using CNN approaches. In this study, we used digitally generated
microstructures and finite element (FE) tools to produce the data
needed to train the linkages. Even though using 3-D microstructures
obtained via experimental methods sounds more attractive, such
datasets are scarce. Since deep learning approaches require more
datasets than traditional machine learning techniques, accumu-
lating a training set from experiments is expensive and time-
consuming. Hence, simulation datasets are employed in this study
to explore the viability of the deep learning techniques for predicting
microscale elastic strain field for 3-D microstructures.

To train CNN for localization, two ensembles of microstructures
with contrasts of 10 and 50 were generated. Each 3-D volume of
microstructure is referred to as microscale volume element (MVE)
and they were discretized into a uniform grid of size 21 x 21 x 21.
Each voxel is occupied by one of the phases. The soft and hard
phase are indicated by 0 and 1, respectively. The phases were
assigned to the voxels in a randomized manner. The contrast 10
ensemble have MVEs with volume fractions ranging from 0.01% to
99.43% for hard phase. On the other hand, the 50 contrast ensemble
had volume fractions in the range of 0.01%—99.99% for hard phase.

Once the MVEs were generated, finite element (FE) simulations
were executed by using the commercial software of ABAQUS [67].
Each voxel in the MVE was converted into a 3-D 8-noded C3D8
element [67]. All simulations employed periodic boundary condi-
tions where all macroscale strain values had zero values except the
normal strain in direction 1 (i.e., (¢j;) = 0 except (e11) =0 wherei,j =
1,2, 3 and () represent the volume average). The macroscale normal
strain component in direction 1 is taken as (¢11) = 0.001 for both
ensembles. The local response field of interest was selected as e11. It
should be noted that the strategy proposed in this paper can be
repeated for a total of six macroscale strain conditions to obtain the
full field of deformation using the superposition principle [68,69].

As mentioned before, two ensembles of datasets with contrasts
of 10 and 50 were generated to evaluate the viability of deep
learning approaches developed for elastic localization linkages.
Both microscale constituents (i.e., distinct phases) were assumed to
be isotropically elastic and the Poisson ratio, », for both phases in
both ensembles was taken as 0.3. The contrast in elastic composites
was defined as the ratio between the Young's modulus of the two
distinct phases. For contrast-10 dataset, the Young's modulus of
hard and soft phases were selected as E; = 120GPa and E; =
12GPa, respectively. On the other hand, for contrast-50 dataset, the
modulus of the hard phase is kept the same while the soft phase
was assigned a Young's modulus of 2.4GPa. An example MVE with
contrast-10 and its elastic strain field of e1; is depicted in Fig. 3.

For the ensemble of contrast-10, 2500 MVEs were generated.
1200 and 300 of these MVEs were used for training and validation
of CNN, respectively. The remaining of 1000 MVEs were not
included in the training and used only as a testing set. To be more
specific, there were 100 vol fraction categories and 25 MVEs in each
volume fraction category for this dataset. For each volume fraction,
12 MVEs were randomly selected for training set, 3 MVEs were
randomly selected for validation set and rest 10 MVEs were used for
testing set. In this way, all the three sets contained representations
from all the volume fraction. Each MVE has 21 x 21 x 21(=9261)



340 Z. Yang et al. / Acta Materialia 166 (2019) 335—345

—

%107
1.5
NS
i
g
g
N 1
NI
‘\g
\g
\Z
g
i 0.5
g
\g!
g
\g
\E
\g

Fig. 3. Visualization of an example contrast-10 MVE (left) and its strain field (right). The white and black voxels in the MVE correspond to hard and soft phases, respectively.

voxels where each voxel provides one data point for building and
evaluating the desired models. Hence, training, validation and test
sets had 1200 x 9261(= 11,113,200), 300 x 9261(= 2,778,300),
and 1000 x 9261(=9,261,000) voxels, respectively. On the other
hand, 3000 MVEs were generated for contrast-50. Using the similar
data splitting strategy, this ensemble was split into 2000 training,
500 validation and 500 testing MVEs, respectively. This resulted in
2000 x 9261(= 18,522,000), 300 x 9261(= 2,778,300), and
500 x 9261(= 4,630, 500) data points for training, validation, and
testing of the ensemble of contrast-50. Both datasets are large
enough to develop deep learning models.

We used Python 2.7 and Keras [70], which is a high-level neural
networks library built on top of TensorFlow [71] to implement deep
learning model. Scikit-learn [72] and PyMKS [73] are used for
implementing benchmark methods. CNN trials were carried out on
a NVIDIA DIGITS DevBox with 4 TITAN X GPUs with 12 GB memory
for each GPU and Core i7-5930K 6 Core 3.5 GHz CPU with 64 GB
DDR4 RAM. In order to get a fair comparison, model performance is
evaluated by the mean absolute strain error (MASE) [19], which is
defined as below,

1 S
s=1

~

Ps — Ps
(e11)

x 100% (5)

where (e11) is the macroscopic strain tensor component applied to
MVE via periodic boundary conditions. This metric is used to
measure average error for a single MVE. ps and p, denote the local
strain in the voxel s from the FE model and CNN model, respec-
tively. The performance of predicting microscale elastic strain field
associated with CNN is also compared to benchmark methods using
the same error metric.

4.2. Results of contrast-10 composites dataset

Table 2 shows the comparison of the average MASE of entire
testing set for the proposed deep learning model and the

Table 2

Results comparison of different models for contrast-10 dataset (standard deviations
are available only for MKS method and deep learning model because studies
describing other benchmarks did not present results of standard deviation).

Method Average MASE for testing set

Single-agent based method [19] 13.02%

MKS method 10.86%+4.30%
Multi-agent based method [20] 8.04%

Deep learning model 3.07%+1.22%

benchmark methods. The proposed deep learning model achieves
3.07% average MASE for the entire testing set, and the standard
deviation of MASE across all the MVEs in the testing set is 1.22%. By
comparing with benchmark methods, we observe that the pro-
posed deep learning model improves the previous best prediction
performance in terms of MASE by as much as around 61.8% (1—3.07/
8.04), which shows that deep learning model can produce a more
accurate predictive model. Further, to evaluate and quantify the
robustness of the proposed deep learning model, we constructed
and evaluated 10 deep learning models on different training-
testing splits (but same hyper-parameters). The average MASE
across the 10 trials is 3.23% with a standard deviation of 0.22%,
which is relatively small, suggesting that the proposed deep
learning model is quite robust. In addition, in Ref. [20], training data
is divided into several groups by some dividing criterion and then
individual model is developed for each data group. However, the
proposed deep learning model is directly trained on overall training
set, which produces a model with better generalization.

Fig. 4 shows the plot of MASE for each individual MVE in testing
set versus volume fraction with error bars of contrast-10 compos-
ites dataset using the proposed deep learning model. We can
observe that the MASE for MVEs with around 40% volume fraction
for hard phase has the largest error and variance (i.e. large average
MASE and standard deviation).

The results in Fig. 4 assess the performance of deep learning
model (DL) on an average basis. Since the problem at hand is elastic
localization, we also compare the local strain fields obtained from
FE method to DL and MKS methods. The comparison of FE, DL and
MKS methods at the level of individual voxel is shown in Fig. 5 for
two slices selected to represent results from the best and worst
predictions (based on MASE values of DL). For the MVE with best
MASE, the strain field histogram of DL predictions matches that of
ground truth very well, except that the curve of Phase 1 prediction
shifts slightly to the right. The difference of the strain map of a
randomly selected slide between DL predictions and ground truth
is indistinguishable, while the performance of MKS method is
significant worse. On the other hand, even for the MVE with worst
MASE, the trend of strain field histogram of DL predictions matches
that of ground truth very well. The differences of DL prediction and
ground truth in the strain field maps are unnoticeable, while MKS
method tends to underestimate the strain field.

4.3. Results of contrast-50 composite dataset

The same architecture and hyperparameters used to train the
ensemble of contrast-10 were also used to train the CNN on the
ensemble of contrast-50. For this case study, it was only possible to
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Fig. 4. Plot of MASE for each individual MVE in testing set versus volume fraction with
error bars of contrast-10 dataset using the proposed deep learning model.

use one benchmark as the studies describing other benchmarks did
not present results on contrast-50 dataset, nor is their code avail-
able. The results in Table 3 show the comparison of average MASE of
entire testing set between proposed deep learning model and the
first-order MKS method. The proposed deep learning model ach-
ieves 5.71% average MASE on entire testing set, and the standard
deviation of MASE across all the MVEs in the testing set is 2.46%. In
contrast, the MASE of the benchmark method is 26.46%, which is
significantly higher. In other words, the proposed deep learning
model improves the performance by as much as around 78.4%
(1-5.71/26.46) in terms of MASE. Further, to evaluate and quantify
the robustness of the proposed deep learning model, we

Table 3
Results comparison of different models for contrast-50 dataset.

Method

MKS method
Deep learning model

Average MASE for testing set

26.46%+6.91%
5.71%+2.46%

constructed and evaluated 10 deep learning models on different
training-testing splits (but same hyper-parameters). The average
MASE across the 10 trials is 5.38% with a standard deviation of
0.22%, which is again relatively small, suggesting that the proposed
deep learning model is quite robust for contrast-50 dataset as well.

The superior performance of the CNN approach over the MKS
method indicates tremendous promise for a feature-engineering
free approach to predict microscale elastic strain field. This is of
tremendous value to multiscale materials design efforts in higher
contrast composites as the identification of the salient features
has been the central hurdle. Furthermore, the fact that the same
CNN architecture has provided excellent predictive models for
both contrast-10 and contrast-50 datasets supports the conclusion
that the use of deep learning approaches offers a higher
generalization.

Fig. 6 shows the plot of MASE for each individual MVE in testing
set versus volume fraction with error bars of contrast-50 compos-
ites dataset using the proposed deep learning model. The MASE for
MVEs with around 23% volume fraction for hard phase has the
largest error and variance (i.e. large average MASE and standard
deviation), while the MVEs with around 80% volume fraction for
hard phase has the best predictions (i.e. small average MASE and
standard deviation).

To visually demonstrate the predictive power of deep learning
model (DL) for contrast-50 dataset, the MVEs with best MASE and
worst MASE are selected. Fig. 7 shows the comparison of FE, DL and
MKS method at the level of individual voxels. The comparisons are
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Fig. 5. Comparison of FE model (i.e. ground truth), deep learning (DL) method and MKS method predictions for contrast-10 dataset. (a) Strain fields histogram of the MVE with the
best MASE for FE and DL. (b) Strain field map of a randomly selected slide in the MVE with the best MASE for FE, DL and MKS. (c) Strain fields histogram of the MVE with the worst
MASE for FE and DL. (d) Strain field map of a randomly selected slide in the MVE with the worst MASE for FE, DL and MKS.
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Fig. 6. Plot of MASE for each individual MVE in testing set versus volume fraction with
error bars of contrast-50 dataset using the proposed deep learning model.

made for a randomly selected slice from 3-D MVEs that exhibited
the best and the worst MASE of DL. For the MVE with the best
MASE, the trend and the peak of the strain field histogram of DL
predictions and ground truth accurately match each other. The
difference between FE and DL is almost indistinguishable from each
other, while the MKS method tends to overestimate the strain field.
For the MVE with the worst MASE, the overall trend of strain field
histogram of DL predictions and ground truth match each other
very well. Even the strain maps are quite similar to each other
demonstrating the fidelity of the DL models for high contrast
composites, while the MKS method underestimates the strain filed
resulting in a significant error.
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44. Interpretation of what the deep learning model learns

Though deep learning model has a striking learning capability
that is superior to the traditional machine learning methods, it
usually works like a black box due to its complex architecture and
millions of parameters. Thus, the interpretation of what the deep
learning model actually learns merits attention. In this section, we
adjust the inputs of the model and interpret what the deep learning
model has learned by analyzing their corresponding predictions.

In Ref. [19], Liu et al. identify groups of neighboring voxels based
on their distance from the focal voxel of interest. In this classifi-
cation scheme, L level neighbors include all the voxels that are at a
center-to-center Euclidean distance of square root of L from the
voxel of interest (treating each cubic voxel to be of unit length).
Fig. 8 illustrates examples of the first three level neighbors.
Empirically, lower level neighbors have larger effect on the
response of the focal voxel. In order to see if the proposed deep
learning model can capture this information, we adjust the input
data by setting the values of different level neighbors as 0. Note that
the inputs have been rescaled from [0, 1] to [-0.5,0.5] during the
training, thus setting the value as 0 eliminates the contribution
from that voxel. Then we can predict the modified response, and
assess the percentage contribution from the different levels of
neighbors. For this purpose, we define a residual percentage E

E:'yy;ﬂx 100% 6)

where y and y are prediction and ground truth, respectively. A total
of 11 MVEs from the contrast-10 testing set were selected with a
difference of volume fraction around 10% (i.e., their volume frac-
tions are around 1%, 9%, 19%, 29%, ...,99%). Similarly, 11 MVEs from
the contrast-50 testing set were also selected with a difference of
volume fraction around 6% (i.e., their volume fractions are around
20%, 26%, 32%, 38%, .

.., 80%). For each voxel in all these MVEs, we

T T
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(b)

DL
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Fig. 7. Comparison of FE model (i.e. ground truth), deep learning (DL) method and MKS method predictions for contrast-50 dataset. (a) Strain histograms of the MVE with the best
MASE for FE and DL. (b) Strain field map of a randomly selected slide in the MVE with the best MASE for FE, DL and MKS. (c) Strain histograms of the MVE with the worst MASE for
FE and DL. (d) Strain field map of a randomly selected slide in the MVE with the worst MASE for FE, DL and MKS.



Z. Yang et al. / Acta Materialia 166 (2019) 335—345

(a)

(b)

Fig. 8. Illustration of different level neighbors. (a) first, (b) second, and (c) third level neighbor.

compute the residual percentage E of original data input, then
repeated the computations by removing first, second, third, and up
to twenty first neighbor level, one at a time.

Fig. 9 shows the plots of residual percentage after removing
different level neighbors for both contrast-10 and contrast-50
datasets. The plots show that the residual percentage generally
decreases with increasing level of neighbors, and the first and
second level neighbors have the most significant influence on the
response of focal voxel of interest. Since the CNN was not explicitly
provided this knowledge in any manner, it is indeed remarkable
that the CNN model automatically reflects this knowledge. Note
that the CNN model is able to capture this knowledge at both
contrast levels. It is also remarkable that the CNN model captured
higher levels of interactions at a given L in the higher contrast
composite compared to the lower contrast composite. Once again,
the CNN model learned this knowledge also by itself. In addition,
the curves in the plots are not decreasing monotonically. This
means that the distance from focal voxel of interest is not the only
factor that decides the significance of neighbors. In other words, the
contributions from the higher level neighbors could be more sig-
nificant than that from lower level neighbors due to their different
directional relation to the focal voxel of interest. The trained CNN
model is thus found to have implicitly learned all of this salient
information to make accurate predictions.

The CNN models presented in this work show their superiority
compared to traditional machine learning approaches mainly in
two aspects. 1) Accuracy: the results show that the deep learning
approaches can improve the model's performance by more than
50% compared with traditional machine learning approaches,

343

(c)

which attests to their high learning capabilities when there is a
sufficiently large dataset. 2) Generalization: in order to get better
accuracy, multi-agent learning strategy is usually used in tradi-
tional machine learning method. Because the variance of the data is
decreased after it is divided into multiple data clusters, such pro-
cessing could deteriorate the generalization of the model. In addi-
tion, complex problem-specific features could also make the model
difficult to generalize to other material systems. In contrast, deep
learning has the capability to directly train on entire raw dataset
without feature engineering and extract enough useful micro-
structure information, which results in a model with better
generalization. As we know, data is usually limited in material
science research, which hinders the applications of deep learning in
the field. Thus, transfer learning [74] can provide a promising
alternative. Because the 3-D microstructures used in this work do
not have any special constraints, such as volume fraction, orienta-
tion, and shape of either soft or hard phase, the features learned by
the proposed model are general enough to well characterize gen-
eral two-phase microstructures. Thus, the proposed model can
serve as a pre-trained model for transfer learning to assist re-
searchers in developing models to predict materials properties of 3-
D two-phase microstructures. Therefore, it can accelerate the ap-
plications of deep learning in material science research. In addition,
considering the advantages mentioned above, the other two main
use cases for the proposed data-driven model could be, 1) It can
allow rapid evaluation of a large number of microstructures in
designing new materials meeting desired mechanical responses.
This is because the data-driven models are computationally cheap
compared to the numerical tools such as FEM models. In fact,
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Fig. 9. Plots showing contributions of the different level neighbors in the trained CNN models. The dashed lines in both figures show the average percentage contributions of
selected MVE in the datasets, and the solid lines in both figures show the average residual percentage of a collection of selected MVEs in the datasets. (a) plot for contrast-10 dataset.

(b) plot for contrast-50 dataset.
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design of material microstructure using FEM models is prohibi-
tively expensive and its viability has not been demonstrated in any
prior literature. However, the data-driven models have the poten-
tial to address this gap [75—77]. 2) The data-driven models can also
help in objective calibration of the many parameters present in the
physics-based microscale models to the often limited amount of
experimental data [78—80]. However, there are also limitations for
this work. Because large amount of experimental data is not
available, the proposed model is trained only on simulation data-
sets. The effectiveness of the proposed model still needs to be
validated with suitable experimental data. If the proposed model
could also be trained and validated with experimental data, it can
offer a valuable, low cost, and accurate predictive tool for multiscale
material design efforts.

5. Conclusions

In this paper, a convolutional neural network is developed and
tested on both contrast-10 and contrast-50 composite datasets. The
results show that the proposed deep learning model significantly
outperforms benchmark methods by 61.8% and 78.4% in terms of
average MASE of testing set on contrast-10 and contrast-50 data-
sets, respectively. It is clear from these trials that deep learning is a
promising technique to build a feature-engineering-free, high ac-
curacy, low computational cost, and high generalization model to
study PSP linkages in complex materials systems. Moreover, since
the proposed deep learning architecture worked well for a large
range of contrasts, it can be used as a pre-trained model with
transfer learning approach to establish PSP linkages for other high
contrast composites materials when the dataset is limited. There
are several possible directions for future works based on this study.
As an example, we only show the relative importance of neighbors
based on the distance from focal voxel in section 4.4, one could
further investigate the relative importance of neighbors based on
other criterion, such as the shape of phase, which might provide
more insights about relationship between focal voxel and its
neighbors. Such insights if established reliably could lead to a new
easy way to implement design rules for microstructures (aimed at
meeting a desired property).
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