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Abstract—Data-driven methods are becoming increasingly
popular in the field of materials science. While most data-
driven models are trained on simulation data as it is relatively
easier to collect a large amount of data from physics-based
simulations, there are many challenges in applying data-driven
methods on experiments: 1) experimental data is usually not
clean; and 2) it generally has a greater degree of heterogeneity.
In this project, we have developed a data-driven methodology to
address these challenges on an industrial magnet dataset, where
the goal is to predict magnetic properties (forward models) at
different stages of the experimental workflow. The data-driven
methodology consists of data cleaning, data preprocessing, feature
extraction, and model development using traditional machine
learning and deep learning methods to accurately predict magnet
properties. In particular, we have developed three different types
of predictive models: 1) numerical model using only numerical
data containing composition and processing information; 2) im-
age model using image data representing structure information;
and 3) combination model using both types of data together. In
addition to predictive models, the analysis and comparison of
results across the models provide several interesting data-driven
insights. Such data-driven analytics has the potential to help
guide future experiments and realize the inverse models, which
could significantly reduce costs and accelerate the discovery of
new magnets with superior properties. The proposed models are
already deployed in Toyota Motor Corporation.

Index Terms—Deep learning, Gradient boosting, Heteroge-
neous data, Industrial magnet properties prediction, Materials
informatics

I. INTRODUCTION

The field of materials science relies on experiment and

physics-based simulation to understand the underlying char-

acteristics of different materials systems and design alterna-

tive materials for desired properties [1]–[4]. However, these

conventional methods are not efficient. More specifically,

experimentation is generally a trial-and-error method which

is very expensive in terms of time and cost. Physics-based

simulation is more efficient than experiment, but the simulation

needs to solve the complex governing field equations for each

material sample. Thus, it could still take prohibitively long to

do the simulation of a large amount of material samples. In

order to accelerate the process of materials discovery, the need

for material informatics is emphasized by Materials Genome

Initiative [5]. One of the advantages of using data-driven

methods in materials science is its efficiency. Though in some

cases it might take a long time to train the data-driven model,

it is just a one-time effort. After the data-driven model is well

trained, it can make accurate predictions in an efficient manner.

In fact, data-driven methods have become increasingly popular

in the field of materials science.

Traditional machine learning methods have gained great

success in the prediction of materials’ properties and design

of materials system, such as steel fatigue strength prediction

[6], mining of localization linkages [7] and machine learn-

ing system for multiscale materials science problems [8]. In

recent years, deep learning method has shown its superiority

to traditional machine learning methods, and has become a

technique of choice in materials research, such as mining

on homogenization linkages [9], electron microscopy image

segmentation [10] and microstructural materials design [11].

Currently, most of the data-drive methods are based on data

generated from physics-based simulation, because simulation

data is usually clean and relatively easy to collect compared

to experiment data. However, a simulation is still a proxy for

experiment, as it only estimates the experimental outcome.

Thus, performing actual experiments is considered the most

accurate and trustable way to characterize materials. Past

experiments therefore contain rich hidden information that

needs to be uncovered and understood for get actionable

insights, e.g., informing future experiments. Thus, how to

effectively apply data-driven methods on experimental data

has become an important research topic.

However, there are three main challenges to apply data-

driven methods on experimental data: 1) Experimental data is

usually not clean: Firstly, experimental data is generally quite

noisy, because the measurement error could be introduced in

different phases of experiment, such as error from machine

or operations of researchers. Secondly, missing values are

also common in experimental data. Thirdly, experimental data

might contain outliers, which can be caused due to misopera-

tion or incorrect settings of the machine; 2) Experimental data

can be highly heterogeneous: Heterogeneity means consisting

of different types of data. Especially in the materials science
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field, experimental data could have both numerical and image

data, where numerical data records the information about

composition of the material samples and processing param-

eters, and image data (e.g. Scanning Electron Microscope

(SEM) image) represents the structural information of the

material sample. 3) Experimental data is usually wide-shallow

data: Wide means that experimental data usually contains

many features, and shallow means the size of experimental

data is relatively small. Thus, it is crucial to process such

wide-shallow data in a strategic way to avoid the curse of

dimensionality.

The above challenges make it more difficult to clean, extract

salient information, and develop data-driven models based on

experimental data. In this work, we have developed a data-

driven framework to address the above challenges and develop

accurate prediction models for magnet properties prediction.

More specifically, in this work we focus on predicting four

magnet properties separately based on the composition and

processing information of magnet samples as well as SEM

images indicating structural information of magnet samples.

In other words, a strategic way for data cleaning, data prepro-

cessing is introduced in this framework to process the noisy

experimental data. A traditional machine learning and deep

learning methods based method is proposed in the framework

to train predictive models on the heterogeneous wide-shallow

experimental dataset. In particular, three types of models are

proposed, which are numerical model (i.e. purely using numer-

ical data as input), image model (i.e. purely using image data

as input) and combination model (i.e. using both numerical

data and image data as input). The results show that the

proposed framework can accurately predict magnet properties

and some insights obtained from data analysis can help carry

out the experiments in an efficient and effective manner, which

might help to accelerate materials discovery. To the best of

our knowledge, this is the first machine learning work on

such heterogeneous industrial magnet data. In addition, the

proposed framework can be easily extended to other materials

systems which involve heterogeneous wide-shallow datasets,

and it is already deployed in Toyota Motor Corporation.

II. BACKGROUND AND MACHINE LEARNING METHODS

A. Magnet properties prediction

Due to global energy shortage and climate change, research

on green energy has become a hot topic in recent decades.

As renewable energy, electricity is widely used in different

industrial applications. Thus, it is of significant importance to

design better battery as well as its peripheral equipment, such

that it has large capacity and efficient electric conversion rate

with low cost. In this work, we have developed data-driven

models for property prediction of magnetic materials that are

located in the motors, sensors, and so on.

Coercivity (Hcj) and Remanence (Br) are the two main

metrics of interest to measure the performance of a magnet

sample. In order to enhance Hcj and Br, some processing

steps are applied on the magnet samples as shown in Figure

1. More specifically, the raw magnet samples undergo four

different processing steps, which are rapid cooling, molding,

hot deform and heat treatment. During the processing, the

properties (i.e. Hcj and Br) are measured twice separately

after hot deform and heat treatment processing steps, and

SEM images are taken after hot deform (Image) processing

step to visualize the structural information of magnet samples.

Thus, given composition and processing information as well

as structural information, prediction models are developed in

this work to accurately predict two sets of magnetic properties

(i.e. Hcj and Br of Property No.1 and No.2 as shown in Figure

1).

Fig. 1. Demonstration of processing steps of magnet samples.

B. Gradient boosting

Boosting is one of the most commonly used machine

learning methods, and it has been widely used in various

research tasks [12]–[14]. Particularly, gradient boosting [15] is

a variant of boosting method. Gradient boosting involves three

elements: 1) Loss function: One of the advantages of gradient

boosting is that it is a generic framework, which means it

can use a variety of loss functions. In particular, squared error

is a commonly used loss function for regression problems.

2) Weak learner: Decision tree is typically used as the weak

learner in gradient boosting. Decision tree is constructed in a

greedy manner, which chooses the features that can minimize

the loss after splitting the node. 3) Additive model: Gradient

boosting is an iterative training method, which means it adds

a decision tree to the model to reduce the loss in each training

iteration. The training of gradient boosting is stopped when a

predefined number of decision trees are added to the model,

or the loss reaches an acceptable level. In this work, gradient

boosting regressor, which is a gradient boosting method for

regression problems, is used to train the models for magnetic

properties prediction.

C. Transfer learning

In order to train a successful deep learning model, a large

amount of data is usually required. However, in some scientific

domains, such as materials science, it is very expensive to

collect such large amount of labeled data, which hinders the

application of deep learning. To take advantage of deep learn-

ing even with a relatively small dataset, one of the common

approaches is to use transfer learning [16]. Transfer learning

focuses on applying the knowledge learned from solving

one problem to another different but related problem. More

specifically, using pre-trained models as a feature extractor

is one of the most common approaches for transfer learning.

Because of the hierarchical learning strategy of convolutional
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neural network, it can detect simple features, such as edges,

at earlier layers, then later layers combine them to form some

high level features. Since the pre-trained model is trained

on a huge amount of various types of images, the learned

features have the ability to well characterize different types of

images. Thus, the pre-trained model can be used as a feature

extractor to extract features from images so that machine

learning methods could be further applied on the extracted

features to train the prediction model.
In this work, we use a portion of VGG-16 [17] network as

a feature extractor. As shown in Figure 2, VGG-16 consists of

five convolutional blocks and two fully connected layers. As

mentioned above, the convolutional blocks (i.e. blue blocks

in Figure 2) are used to learn the features that can well

characterize images, while the fully connected layers (i.e.

red block in Figure 2) use the learned features to make the

prediction. In this work, we keep the architecture and weights

of all the convolutional blocks of VGG-16 as feature extractor

to extract features from SEM images of magnet samples. Then

gradient boosting regressor is trained on the extracted features

to make the predictions.

Fig. 2. Architecture of VGG16 pre-trained model. (bs. is the abbreviation of
batch size)

III. DATASET

This dataset is collected from experiments by Toyota Motor

Corporation, Japan for magnet properties research, and it

includes numerical data and image data.

A. Numerical data
As shown in Figure 1, there are four processing steps (i.e.

rapid cooling, molding, hot deform and heat treatment) to

improve the mechanical properties of a magnet sample. Thus,

the numerical data mainly contains the processing information

of four processing steps, such as processing time, processing

temperature and pressure. The composition of the magnet

sample is also included in the numerical data. In addition, at

most four magnet properties can be measured for a magnet

sample. More specifically, Property No.1 (i.e. P1 Hcj and

P1 Br) are measured after hot deform processing step, while

Property No.2 (i.e. P2 Hcj and P2 Br) are measured after heat

treatment processing step.

B. Image data

Images of the magnet samples are taken after hot deform

processing step using SEM technique. For each magnet sam-

ple, SEM images are taken at up to eight positions with three

different magnifications (i.e. ×200, ×1000, ×30000) and two

different SEM modes (i.e. COMPO and SEI). In other words,

there are at most 48 (= 8× 3× 2) SEM images for a magnet

sample. Figure 3 (a) shows the two most common positions

where SEM images are available in the dataset, the position

C00 is the center position of the magnet sample, while position

C10 is the position shifted along Z axis compared to position

C00. Figure 3 (b) shows an example of SEM image taken at

C00 position with ×1000 magnification and COMPO SEM

mode.

Fig. 3. (a) Illustration of the positions where SEM images are taken at a
magnet sample. (b) An example of SEM image taken at C00 position with
×1000 magnification and COMPO SEM mode.

IV. METHODS

A. Data preprocessing

Because the dataset is collected from experiments, there

are noise, missing values and outliers in the dataset. In order

to train an accurate prediction model, data preprocessing is

necessary.

1) Data preprocessing for numerical data: For numerical

data, the data preprocessing, such as feature removal and

outlier detection, is mainly based on domain knowledge.

Particularly, a four-step preprocessing method is applied on

numerical data to obtain the corresponding dataset.

• Numerical data includes the features representing com-

position and processing information of magnet samples.

Since the dataset is relatively small, such large number

of features might lead to the curse of dimensionality.

Thus, we remove features that are not related to magnet

properties (i.e. features that do not effect properties based

on domain knowledge) and features that are correlated

with others (i.e. features that can be calculated based on

other features). For example, manufacturing device name

is removed because it is not related to magnet properties,

and the aspect ratio of a sample is removed since it is

correlated with its width and length.

• Then we remove the data points without corresponding

magnet property.
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• In the experiments, the property of a magnet sample is

measured multiple times, and the magnet property of the

same magnet sample might be slightly different due to the

measurement errors of the machine. Thus, we remove the

outliers (i.e., where the magnetic property is significantly

different from other same magnet sample), fill up the

missing values with the average value from the same

magnet sample, and take the average value of the magnet

property of the same magnet sample as the value of its

property.

• The range of different features are highly diverse, so we

rescale each feature individually to unit norm.

After data preprocessing, there are 43 features left and they

can be categorized into four categories:

• Composition: The magnet sample consists of 9 chemical

elements.

• Dimension: There are 4 features describing the physical

dimension of the magnet sample before hot deform

processing step.

• Phase: There are 18 features representing the information

of different phases in the rapid cooling processing step.

• Processing parameters: There are 12 features in total

representing the processing parameters of the rest three

processing steps. More specifically, molding, hot deform

and heat treatment processing steps include 4, 5 and 3

features, respectively.

Note that after data preprocessing, all the 43 features are

available for predicting Property No.2, while only 40 features

are available for predicting Property No.1, since Property No.1

is measured before heat treatment processing step is applied

on the magnet sample.

2) Data preprocessing for image data: As shown in Figure

3 (b), the SEM image has label information at the bottom,

which does not contain any structure information of the mag-

net sample. Thus, the bottom of each SEM image is cropped.

Since the sizes of SEM images of different magnifications are

different, we then resize the SEM images to 224×224. Finally,

the number of data points for each magnet property after data

preprocessing is listed in Table I.

TABLE I
THE NUMBER OF DATA POINTS FOR EACH MAGNET PROPERTY AFTER

DATA PREPROCESSING

Property Number of data points
Property No.1 - Hcj 98
Property No.1 - Br 98
Property No.2 - Hcj 107
Property No.2 - Br 99

B. Proposed models

We compare the performance of different combinations of

machine learning methods such as gradient boosting, random

forest and support vector machine as regressors and pre-

trained networks such as VGG-16, VGG-19 [17] and ResNet

[18] as feature extractors. For each regressor, we performed

an extensive grid search for optimization of hyperparameters

to find the best hyperparameters. For instance, for gradient

boosting regressor, we used a learning rate from [0.01, 0.1,

0.5], number of estimators from [50,100,150,200] and maxi-

mum depth from [1, 3, 5, 10]. Similarly, for each pre-trained

networks, different layers are tried as feature extractor to find

the best image representative for current application. Among

all of the combinations of regressors and feature extractors,

the proposed models that use gradient boosting regressor and

VGG-16 as feature extractor perform the best. In the next

sections, three types of models based on gradient boosting

regressor and VGG-16 are proposed for each magnet property,

which are numerical model, image model and combination

model.
1) Numerical model: Numerical model (referred as Num

model) takes numerical data as input and uses gradient boost-

ing regressor to train the prediction model. More specifically,

gradient boosting regressor with 0.1 learning rate, 100 estima-

tors and maximum depth of 3 is used. The same parameter

settings of gradient boosting regressor is used for both image

model and combination model, which are introduced later. As

mentioned in section 3, the number of features for different

magnet properties are different. More specifically, the number

of input features of numerical model for Property No.1 and

No.2 are 40 and 43, respectively.

Fig. 4. The flowchart of the proposed image models.

2) Image model: After analyzing the image data, we find

that using either three images (i.e. images of position C00
with 3 magnifications and COMPO SEM mode) or six images

(i.e. images of position C00 and C10 with 3 magnifications

and COMPO SEM mode) gives the best performance. Thus,

two image models are proposed in this work. One image

model (referred as 3M model) takes three SEM images of

a magnet sample as input (i.e. images of position C00 with

3 magnifications and COMPO SEM mode), while the other

image model (referred as 6M model) takes six SEM images

of a magnet sample as input (i.e. images of position C00
and C10 with three magnifications and COMPO SEM mode,

respectively). The flowchart of both image models are the

same, and it is shown in Figure 4, and it includes three steps:

• After image preprocessing, we use transfer learning tech-

nique to extract semantic image vectors from images.

More specifically, we truncate VGG-16 by keeping all the
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convolutional blocks (i.e. blue blocks in Figure 2), and

feed the preprocessed image into the truncated network

to get the output (i.e. 512 features maps) of the last

convolutional block.

• However, the dimensionality of the output of the last con-

volutional block is too high, which might lead to the curse

of dimensionality. Thus, we apply two methods to reduce

the dimensionality. First, global average pooling [19] is

applied on each feature maps individual by computing

the average of entries’ values of each feature map. In this

way, we could convert these 512 feature maps to a 1-D

vector with 512 entries and it is the representation of the

input image. Since the image model takes multiple SEM

images as input, we compute such vector for each input

image individually and concatenate them together into

one 1-D vector. However, the dimensionality of this 1-D

vector is still high compared to the number of features of

numerical data, so Principal Component Analysis (PCA)

[20] is applied to further reduce the dimension to 25. In

particular, the summation of explained variance ratio of

the selected principal components are around 91% and

87% for 3M and 6M model, which implies the selected

principal components contain the enough information of

images. In other words, by using transfer learning and

dimensionality reduction techniques, we could use a 1-D

semantic image vector with 25 entries to represent input

images.

• Finally, gradient boosting regressor takes the semantic

image vectors as input to train the prediction model for

each magnet property.

3) Combination model: The combination model takes both

numerical data and image data as input, and two combination

models are proposed in this work. The difference of the two

combination models is the number of input SEM images. One

combination model (referred as 3NM model) takes three SEM

images of a magnet sample (i.e. images of position C00 with

3 magnifications and COMPO SEM mode) and numerical

data as input, while the other combination model (referred as

6NM model) takes six SEM images of a magnet sample (i.e.

images of position C00 and C10 with three magnifications

and COMPO SEM mode, respectively) and numerical data as

input. The flowchart of combination model is shown in Figure

5. More specifically, the method to compute the semantic

image vector from input images is the same as the image

model. Then the semantic image vector is concatenated with

numerical data, and they are fit to each magnet property using

gradient boosting regressor.

V. RESULTS AND DISCUSSION

A. Experimental setting and error metric

We use two error metrics to evaluate the performance of the

proposed models, which are mean absolute error rate (MAE%)

Fig. 5. The flowchart of the proposed combination models.

and pearson correlation coefficient (R). The equations for

computing three metrics are shown as below,

MAE% =
1

N

N∑
i=1

|yi − ŷi|
yi

× 100 (1)

R =

∑N
i=1(yi −my)(ŷi −mŷ)√∑N
i=1(yi −my)2(ŷi −mŷ)2

(2)

where N is the total number of data points in the dataset of

corresponding magnet property. yi and ŷi represent the ground

truth and predicted values, respectively. my and mŷ denote the

mean of the ground truth and predicted values, respectively. In

addition, because the dataset is relatively small, 5-fold cross

validation is implemented to evaluate performance of all the

proposed models.

B. Results analysis and data-driven insights

In this section, the performance of the proposed models

are evaluated and data-driven insights are discussed based on

the experimental results. The proposed models are trained for

each magnet property, and the results of 5-fold cross validation

in terms of MAE% and R are shown in Table II and Table

III. From the results, we can observe that numerical model

can already achieve a very high accuracy although it only

uses numerical data as input. More specifically, the numerical

model can get 3.56% and 2.20% MAE% for Property No.1

Hcj and Br, respectively. For Property No.2 Hcj and Br,

the numerical model can achieve 4.23% and 2.98% MAE%.

Meanwhile, the results of Table III follows the same trend.

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED MODELS IN TERMS OF

MAE%

Property Num
model

3M
model

6M
model

3NM
model

6NM
model

P1 Hcj 3.56% 9.56% 7.71% 4.07% 3.97%
P1 Br 2.20% 2.36% 2.35% 2.12% 2.07%
P2 Hcj 4.23% 13.00% 12.46% 6.00% 5.69%
P2 Br 2.98% 3.35% 3.32% 2.53% 2.48%

Figure 6 shows the parity plot of all the four magnet

properties based on numerical model. The plots show that most

of data points are distributed along the diagonal, which shows
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TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED MODELS IN TERMS OF R

Property Num
model

3M
model

6M
model

3NM
model

6NM
model

P1 Hcj 0.93 0.65 0.78 0.93 0.93
P1 Br 0.60 0.56 0.57 0.63 0.64
P2 Hcj 0.98 0.78 0.81 0.96 0.96
P2 Br 0.45 0.35 0.39 0.55 0.57

that the proposed model can make accurate predictions. How-

ever, the variance of parity plot of Property Br is larger than

that of Property Hcj. In addition, it is relatively straightforward

to retrieve importance scores for each feature after gradient

boosting regressor is trained. In particular, feature importance

is calculated for a weak learner by the amount that each feature

split point improves the performance measure. The feature

importance is then averaged across all of the weak learners

within the model. Figure 7 shows the feature importance for

each magnet property based on the numerical model.

• Insights (1): The four processing steps have different

purposes. Rapid cooling is to make crystallization and

control the size of crystallization. Molding is to increase

sample’s density. Hot deform aligns the orientation of the

crystal to get high property. Heat treatment smooths the

unevenness of grain boundaries of sample’s structure to

get high property. Thus the hot deform and heat treatment

processing steps are the crucial processing to enhance the

mechanical property of the magnet samples. In Figure 7,

the features of hot deform and heat treatment processing

steps are found to be more important than other features,

which matches the domain knowledge.

Fig. 6. The parity plots of each magnet property based on numerical model.
(a) Property No.1 Hcj. (b) Property No.1 Br. (c) Property No.2 Hcj. (d)
Property No.2 Br

However, the performance of both image models is worse

than the corresponding numerical models, and the performance

of 6M model for all the magnet properties is slightly better

than that of 3M model. The reasons might be twofold: 1)

The SEM technique would destroy the sample after taking

the image. So although the SEM image and magnet property

could be collected from the samples with same composition

and processing parameters, there is no one-to-one mapping

between SEM image and magnet property. In other words,

the SEM images and corresponding magnet property are

not measured from exactly the same sample, which could

introduce noise in the dataset. 2) There are six images (i.e.

positions C00, C10 with three magnifications and COMPO

SEM mode) available for each magnet sample. By taking more

SEM images as input, the model can learn more knowledge

about structural information. Thus, the performance of 6M

models are better than that of 3M models. Another three

insights could be found be analyzing and reasoning the results

of the proposed image models:

• Insights (2): From data mining point of view, it is im-

portant to retain a one-to-one mapping between model’s

input and output. Since SEM techniques could destroy

the samples, it is important to change the experimant

operations order that the properties of samples should be

measured before SEM images are analyzed.

• Insights (3): As shown in Figure 3 (a), the position C00
is the center position of the magnet sample, while position

C10 is the position shifted along Z axis compared with

position C00. Since both positions are at the center area

of the magnet sample, the SEM images of the two posi-

tions might contain similar structural information. Thus,

only slight performance improvement can be observed

when we include more SEM images from position C10.

The performance might be improved if more SEM images

from other different sample areas are available.

• Insights (4): In addition, we can observe that the perfor-

mance of the image models for Property Hcj are worse

than that of image models for Property Br. Interestingly,

this might indicate that the structural information in the

SEM images is more related to the property Br, but we are

not aware of any existing domain knowledge supporting

or refuting this data-driven insight.

The performance of 6NM model for all the magnet prop-

erties is slightly better that that of 3NM model, and the

reasons for the improvement are the same as mentioned above.

In addition, the performance of the combination model has

different trends for Property Hcj and Br when compared with

that of the numerical model. As mentioned in insights (4), it

appears that the structural information in the SEM images is

more informative for Property Br, so including SEM images in

the combination model leads to a performance improvement

compared to the numerical models for Property Br. On the

other hand, since the performance of the image model is much

worse than that of numerical model for Property Hcj, adding

SEM images in the combination model does not improve

the performance, but rather deteriorates the performance as

it might confound the model.
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Fig. 7. The features importance for each magnet property based on numerical
model. (a) Property No.1 Hcj. (b) Property No.1 Br. (c) Property No.2 Hcj.
(d) Property No.2 Br.

Figures 8 and 9 show the feature importance for each

magnet property based on 3NM and 6NM model, respectively.

By comparing with Figure 7, we can observe that several

image features turn out to be important to predict the magnetic

properties. However, the importance of image features is

different for Property Hcj and Br.

• Insights (5): We can observe that features of numerical

data are more important than features of image data when

predicting Property Hcj, while image features are much

more important than numerical features for Property Br.

Thus, different types of data and models should be used

depending on the property of interest.

This finding also supports our earlier mentioned data-driven

insight (4) that the SEM image contains more information

related to Property Br than Property Hcj, and that might also

be the reason why the image and combination models performs

better for Property Br than Property Hcj.

VI. APPLICATIONS FOR DIFFERENT MATERIALS SYSTEMS

AND PREDICTIVE EXPERIMENTAL DESIGN

Experiments data, especially industrial experiments data,

is significantly different from simulation data, because it is

usually a noisy heterogeneous wide-shallow dataset. Thus, a

strategic way to process such dataset is important in order

to develop an accurate machine learning model. The proposed

framework in this work is general enough to be extend to other

industrial experiments dataset. More specifically, different

data resources should be processed in different ways in data

cleaning and data preprocessing. Numerical data is extremely

noisy, since it records all the information during the manufac-

turing process. Thus, domain knowledge is required to process

numerical data, such as feature removal and outlier detection.

On the other hand, the goal of data preprocessing for image

data is to avoid the curse of dimensionality due to the limited

Fig. 8. The features importance for each magnet property based on 3NM
model. (a) Property No.1 Hcj. (b) Property No.1 Br. (c) Property No.2 Hcj.
(d) Property No.2 Br

Fig. 9. The features importance for each magnet property based on 6NM
model. (a) Property No.1 Hcj. (b) Property No.1 Br. (c) Property No.2 Hcj.
(d) Property No.2 Br

experiments data, and it is mainly based on machine learning

methods. Due to the different characteristics of materials

systems, different pre-trained models and dimension reduction

techniques can be replaced in the framework to extract salient

features from image data. The choice of machine learning

models in model development is highly dependent on the

goal of problem. Traditional machine learning method, such

as gradient boosting, is easier to interpret so that more insights

might be discovered, while deep learning models usually

has higher learning capability if a relatively large dataset is

available for training.

The proposed methods are already deployed in Toyota

812



Motor Corporation, and the benefits are twofold. As mentioned

above, data-driven insights have been obtained from analyzing

the results. In general, a successful data mining project should

result in several data-driven insights, most of which should

be in agreement with domain knowledge and intuition (things

we already know), but it should also include some surprises

(things that we do not know). The reconfirmation of known

knowledge gives us overall confidence in the correctness of

the data mining model, whereas surprises provide valuable

hints towards new not-yet-known knowledge, which can open

up new avenues for further investigation and actually lead to

knowledge discovery. We believe insights obtained from the

results include a healthy mix of known and not-yet-known

knowledge.

In the long term, such materials informatics approaches have

the potential to significantly reduce costs by guiding future ex-

periments, as well as accelerate the discovery of new magnets.

Experiments are extremely expensive in terms of time, man-

power, and money. In addition, experiment is a trial-and-error

process that is usually conducted mainly based on operator’s

experience so that it could be inefficient. Machine learning

guided experimentation can help avoid both unnecessary ex-

periments as well as high-end processing/characterization of

not-so-promising magnet samples/locations, subsequently also

reducing the man-hours required to perform experimentation

and operation of SEM imaging equipment. Moreover, it can

also help in narrowing down the infinite search space of

possible magnets by prescreening and subsequent exploration

of the most promising regions. On the other hand, the new

data obtained from experiments guided by machine learning

can be used to refine the predictive model to improve pre-

diction accuracy. Thus, such materials informatics approaches

provides unprecedented opportunities for significantly accel-

erating the discovery and design of new magnets (or more

broadly materials) with superior properties.

VII. CONCLUSION

In this work, we present a data-driven methodology to

develop prediction models for magnet properties on experi-

mental dataset. The results show that the numerical model can

provide accurate predictions, and adding SEM image in the

model could improve the model’s performance when important

structural information is contained in the image. There are

several future directions for each type of prediction model.

1) Numerical model: By designing advanced features based

on the raw features, the performance might be improved.

2) Image model: By applying aggressive data augmentation

method, deep learning method might provide better prediction.

3) Combination model: Fine-tuning on the pre-trained model

might be a promising method to extract problem-specific

semantic image vector for microstructure, which could be

combined in different ways with the numeric data in order

to build a more accurate prediction model.
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