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Learning to predict crystal 
plasticity at the nanoscale: Deep 
Residual Networks and Size Effects 
in Uniaxial compression Discrete 
Dislocation Simulations
Zijiang Yang1, Stefanos papanikolaou2, Andrew c. e. Reid3, Wei-keng Liao1, 
Alok n. choudhary1, carelyn campbell3 & Ankit Agrawal1 ✉

The density and configurational changes of crystal dislocations during plastic deformation influence the 
mechanical properties of materials. These influences have become clearest in nanoscale experiments, 
in terms of strength, hardness and work hardening size effects in small volumes. The mechanical 
characterization of a model crystal may be cast as an inverse problem of deducing the defect population 
characteristics (density, correlations) in small volumes from the mechanical behavior. In this work, we 
demonstrate how a deep residual network can be used to deduce the dislocation characteristics of a 
sample of interest using only its surface strain profiles at small deformations, and then statistically 
predict the mechanical response of size-affected samples at larger deformations. As a testbed of our 
approach, we utilize high-throughput discrete dislocation simulations for systems of widths that range 
from nano- to micro- meters. We show that the proposed deep learning model significantly outperforms 
a traditional machine learning model, as well as accurately produces statistical predictions of the size 
effects in samples of various widths. By visualizing the filters in convolutional layers and saliency maps, 
we find that the proposed model is able to learn the significant features of sample strain profiles.

Prediction of mechanical behavior up to failure is commonly achieved using constitutive laws written as equa-
tions in terms of phenomenological parameters in the cases where physical laws are not clear or for the purpose 
of simplification. The parameters are obtained experimentally (at the manufacturing stage) for individual classes 
of materials, thus classified by composition, prior processing and load history, all of which affect the material’s 
micro-structure and thus its behavior1. Beyond processing routes, materials have been known to also be highly 
sensitive to micro-structure changes, especially when used at extreme conditions such as small volume, high 
temperature, high pressure, and high strain rates2–11. Such extreme conditions are experienced in numerous 
applications at the technological and industrial frontiers. Thus, constitutive laws are difficult to apply when the 
micro-structural changes brought by operating conditions are unknown. In order to assess the yield and failure 
strength values, current practice requires non-destructive characterization methods at the nanoscale that can 
swiftly assess mechanical properties. The case study in this work represents possibly one of the most challenging, 
but benchmarked12, applications of micromechanics. More specifically, we investigate, using synthetic data from 
discrete dislocation plasticity simulations12–15 how such non-destructive characterization can effectively work 
in the realistic scenario of assessing and predicting the strength of small finite volumes by using digital image 
correlation (DIC)16 techniques.

Changes in the dislocation structure of a material caused by prior processing of a crystal may not be evident 
from a visual inspection of a sample surface (especially if polished), but the material properties may be dramat-
ically influenced after heavy prior plastic deformation, without a change of the chemical composition17. A step 
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forward towards non-destructive characterization can be achieved through detailed quantitative surface deforma-
tion data, that have recently become readily accessible through DIC16. In addition, recently developed data-driven 
methods have been utilized to identify initial strain deformation level of synthetic samples of small finite volumes, 
produced through discrete dislocation dynamics (DDD) simulations. Papanikolaou et al.13 emulated DIC using 
DDD, by simulating thin film uniaxial compression of samples under different states of prior deformation, and 
removing the average residual plastic distortion before reloading. It is worth noting that the utilized DDD model 
was benchmarked to minimally model size effects in small finite volumes12. In13, two-point strain correlations at 
different locations were used to capture spatial features of dislocations, through their resulting strain profiles. In 
that work, dislocation classification was performed using Principal Component Analysis (PCA)18 and continuous 
k-nearest neighbors clustering algorithms19. Analogous classifications of dislocation structures have since been 
extended in disordered dislocation environments20 and three dimensional DDD samples21, as well as continuous 
plasticity models22 using a variety of data science approaches. However, the problems in existing works are either 
in simpler models of dislocation dynamics20 or with less challenging limits of the model (i.e. large sample widths)13. 
Thus, it has yet to become clear how to practically, accurately and efficiently assess, using machine learning, dislo-
cation plasticity features in realistic scenarios that can be tested experimentally. Here, we show that deep learning is 
a key component towards practical, accurate and efficient non-destructive characterization of dislocation plasticity.

Deep learning has recently become an immensely popular research area in machine learning, and it has led to 
groundbreaking advances in various fields such as object recognition23–25, image segmentation26–28 and machine 
translation29–31. The success of deep learning has also motivated its application in other scientific fields, such as 
healthcare32–34, chemistry35–37 and materials science38–47. In38, 3D convolutional neural network was developed to 
model homogenization linkages for high-contrast two-phase composite material system. In39, generative adver-
sarial networks and Bayesian optimization were implemented for material microstructural design. Ryczko et al.40 
propose a convolutional neural network for calculating the total energy of atomic systems. In36, recursive neural 
network approaches are applied to solve the problem of predicting molecular properties. Due to the high learning 
capability and model generalization, deep learning could be a promising technique for crystal plasticity research.

For providing accurate predictions in an efficient manner, we propose a deep residual network to pre-
dict the strength and work hardening features of a sample from a given set of strain images that are acquired at 
small-deformation (≤1%) testing. More specifically, the flowchart of this work is presented in Fig. 1. We use synthetic 
datasets that are generated by DDD simulations of uniaxial compression in small finite volumes of a metal with elas-
tic properties reminiscent of single crystal Al and a range of sample widths w that extend from 62.5 nm to 2 μm (see 
Table 2). The effect of the potentially varying loading orientation is emulated by using two models, with activation 
of either one (+30° with respect to loading axis) or two slip systems (±30°) (labeled as one-slip or two-slip)12–15. 
For each width, datasets may also be characterized by low, medium or high initial prior strain deformation levels 
(low:0.1%, medium:1.0% and high:10.0% prior strain respectively), as well as small or large characterization strain 
(labeled as Small-reload for 0.1% or Large-reload for 1% reloading strain). For each case of a w, loading orientation, 
prior strain and reloading strain, the sample strength and plastic flow varies significantly, so we produce 20 simu-
lations of distinct initial conditions13. As found in12, sample strength displays a strong size effect σy ~ w−0.55, while 
plastic flow becomes significantly noisier at smaller w, but also shows strong dependence on all varied parameters.

In the predictive model we propose here, a data preprocessing step is applied to augment the dataset and 
convert the strain profile to the format that is suitable for the proposed model. The preprocessed data is split into 
a training set, a validation set and a testing set. The training set and validation set are used to train the proposed 
model, while the testing set is used to evaluate its performance. The proposed model is compared to a benchmark 
method that computes the two-point correlation of strain profiles, then applies PCA to get the reduced-order rep-
resentations, and finally fits a prediction model. The experimental results show that the deep learning approach 
can significantly improve the classification accuracy by up to 35.17% and thus accurately identify the initial strain 
deformation level of the samples. Moreover, the classification accuracy is further improved by the ensemble of 
differently trained deep residual networks. By using feature maps of the second to last convolutional layer to 
represent the input strain profiles, we can define a distance between two strain profiles, and subsequently identify 
the nearest neighbors for the test samples within the training set. We find that this process can provide us with an 
accurate statistical prediction of the stress-strain curves for the test samples not seen during training. In addition, 
by visualizing the filters in the convolutional layer and saliency maps using the proposed model, we show that the 
proposed model can successfully capture the significant information and salient regions from the strain profiles. 

Figure 1. The flowchart of the proposed method.
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Most importantly, unlike previous work20 using physically motivated features as inputs, our proposed method 
only takes raw strain profiles as inputs without any ad hoc assumptions about the material, and it has been evalu-
ated under multi-slip conditions. Thus the proposed method could provide a more robust predictive model and 
be easily extended to other material systems.

Results
The performance of the proposed model is evaluated in section 2.1, and the proposed model is used to predict the 
stress-strain curve for a sample of interest in section 2.2. Filters in convolutional layers and saliency maps of the 
proposed model are visualized in section 2.3.

Prediction of initial strain deformation level. In this section, the performance of the proposed model 
is compared with a benchmark method, which is the correlation function based method. The correlation func-
tion based method is widely used in materials science research48–50. For the correlation function based method, 
two-point correlation function of the strain profile is first computed, then Principal Component Analysis is 
applied to obtain the reduced-order representations, and finally Random forest51 is implemented to train the 
predictive model.

Table 1 shows the results of the correlation function based method and the proposed model. We can observe 
that correlation function based method can get 68.24% classification accuracy, while the proposed model can 
achieve a significantly better 92.48% classification accuracy. In addition, Fig. 2(a) shows the confusion matrix of 
the proposed model. It shows that low initial strain deformation level (i.e., 0.1% strain class) and high initial strain 
deformation level (i.e., 10.0% strain class) can be accurately predicted, which only have 10 and 12 misclassified 
samples, respectively. Medium initial strain deformation level (i.e., 1.0% strain class) has relatively worse predic-
tions where 42 samples and 3 samples are misclassified as 0.1% and 10.0% strain classes, respectively.

Intuitively, the smaller the sample width is, the harder the prediction should be. Table 2 presents the classifica-
tion accuracy of samples with different sample widths. We can observe that when sample width is large (i.e., 2 μm 
and 1 μm), model’s performance is the best and both accuracies are above 95%. As the sample width decreases, 
the classification accuracy also decreases. The accuracies are around 89% for 0.125 μm and 0.0625 μm, which 
agrees with our intuition. More specifically, the classification accuracy for each subset data is listed in Table 2. 
We also extract the outputs of the global average pooling layer of the proposed model, and project the outputs 
on the first two principal components in Fig. 3. The results show that the proposed model performs better when 
samples have a large width (e.g., 2 μm and 1 μm) with small-reload, and the corresponding clusters of three strain 
classes are clearly separated in Fig. 3. On the other hand, the classification accuracy decreases for samples with a 
small width (e.g., 0.0625 μm) and large-reload where the clusters of 0.1% and 1.0% strain classes are significantly 
overlapped in Fig. 3.

Architecture Accuracy

Correlation function based method 68.24%

input − conv16 − pool − (Res32 × 3) × 2 − pool − (Res64 × 3) × 2 − pool − avgpool − output (The proposed CNN) 92.48%

input − conv16 − pool − Res32 × 4 − pool − Res64 × 4 − pool − avgpool − output with L2 regularization 91.58%

input − conv16 − pool − Res32 × 4 − pool − Res64 × 4 − pool − avgpool − output without L2 regularization 90.01%

Ensemble of above three deep learning models 93.94%

Table 1. Prediction accuracy of different models.

Figure 2. The confusion matrix of the proposed CNN (a) and ensemble of three deep learning models (b).
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Szegedy et al.52 show that an ensemble of different trained deep learning models can be used to further improve 
model’s performance. Thus in this work, we also use an ensemble of three trained deep learning models whose classi-
fication accuracies are above 90%. Table 1 shows the architectures and classification accuracy of the proposed model 
and the other two deep learning models (see section 4.5 for detailed information about deep learning models). The 
second and third models have the same architecture, and the difference is that one uses L2 regularization with pen-
alty factor as 0.0001 for all the convolutional layers, while the other does not use L2 regularization. Note that other 
parameter settings, such as activation functions, optimizer and early stopping, are the same as the proposed model. 
Meanwhile, because the dataset is relatively small to train a deep learning model, data preprocessing approach is 
used to augment the dataset (see section 4.4 for detailed information about data preprocessing). Particularly, image 
cropping is used so that each strain profile ends up with 24 crops. Therefore, the final probabilities of a sample are 
averaged over its crops and over all the three deep learning models, and the final prediction is the class with the 
highest probability. Particularly, the probability is calculated by softmax function, which is a normalized exponential 
function. It takes a vector of K real numbers as input, and normalizes it into a probability distribution consisting of 
K probabilities proportional to the exponentials of the input numbers. Using an ensemble of three deep learning 
models, the classification accuracy is improved to 93.94% as shown in Table 1. The confusion matrix in Fig. 2(b) 
shows that fewer samples are misclassified as low initial strain deformation level (i.e., 0.1% strain class) from medium 
initial strain deformation level (i.e., 1.0% strain class) compared with the single proposed model, while the number 
of misclassified samples for the other two initial strain deformation levels are similar to the single proposed model.

Moreover, Table 2 shows that the classification accuracy is improved by around 1% for all the sample widths, 
and the trend still holds that the accuracy decreases with decreasing sample width. Particularly, the classification 
accuracy for almost all the sample widths with large-reload is significantly improved compared to the single pro-
posed model. In addition, the worst classification accuracy is improved from 78.95% (i.e., accuracy for samples 
with 0.125 μm width, large-reload and two slip in single proposed model) to 82.05% (i.e., accuracy for samples 
with 0.0625 μm width, large-reload and two slip in ensemble model).

Prediction of the stress-strain curve. Another important challenge is to predict the stress-strain curve 
for a sample of interest. More specifically, given the initial deformation strain, it is straightforward to know the 
dislocation density of the crystal, which provides information for predicting the strength of the crystal. In other 
words, if a model can accurately predict the initial deformation strain, it can be used to predict the stress-strain 
curve for a sample of interest. Figure 4 shows an example of true and predicted stress-strain curves of a given 
strain profile. More specifically, given a stress-strain curve up to (only) 0.1% reloading strain of a testing strain 
profile (i.e., the red dash curve), the stress-strain curve up to 1% reloading strain (i.e., red solid curve) could be 
predicted with the proposed model. In Fig. 4, the predicted stress-strain curves up to 0.1% and 1% reloading 
strain are shown as blue dash and solid curves, respectively, which are the averaged stress-strain curves of “neigh-
bors” of the testing strain profile calculated using the proposed model.

To achieve this, we use the outputs of second to last layer of the proposed model as image features to represent 
input images. For each strain profile with small-reload (i.e., 0.1% reloading strain), we compute image features 
for all of its 24 crops and concatenate them into a one-dimensional vector, which is considered as the final image 
feature vector of each strain profile. Thus, the euclidean distance between these strain profiles can be calculated 
to find nearest neighbors. In this way, the stress-strain curve up to large-reload (i.e., 1% reloading strain) can be 
obtained by averaging the stress-strain curves of nearest neighbors.

Figure 5 shows the comparison of true stress-strain curve and averaged stress-strain curves of nearest neigh-
bors for strain profiles with different widths and different prior deformation levels. Similar to the prediction of 
initial strain deformation level, we can observe that the predicted stress-strain curves can accurately capture the 
yield points as well as match true stress-strain curve well when the sample width is large (i.e., 2 μm and 1 μm). 
However, when the sample width decreases, the error becomes significant. In addition, the noise level of predicted 
stress-strain curve decreases (i.e., the curve becomes smoother) by averaging stress-strain curves of more nearest 
neighbors.

Prediction accuracy of the proposed CNN

Width (μm) 2 1 0.5 0.25 0.125 0.0625

Total Accuracy 95.24% 96.00% 93.15% 92.67% 88.51% 89.33%

Small-reload & two slip 100% 100% 94.59% 100% 92.11% 92.31%

Small-reload & one slip 97.22% 100% 97.22% 94.44% 100% 94.44%

Large-reload & two slip 89.19% 89.74% 94.59% 89.74% 78.95% 79.49%

Large-reload & one slip 94.44% 94.44% 86.11% 86.11% 83.33% 91.67%

Prediction accuracy of ensemble of three deep learning models

Width (μm) 2 1 0.5 0.25 0.125 0.0625

Total Accuracy 97.28% 97.33% 95.21% 94.00% 89.19% 90.67%

Small-reload & two slip 100% 100% 91.89% 97.44% 89.47% 94.87%

Small-reload & one slip 100% 100% 94.44% 91.67% 100% 94.44%

Large-reload & two slip 89.19% 92.31% 97.30% 92.31% 84.21% 82.05%

Large-reload & one slip 100% 97.22% 97.22% 94.44% 83.33% 91.67%

Table 2. Prediction accuracy of the proposed CNN and ensemble of three deep learning models.
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Visualization of the deep learning model. Although deep learning has shown its striking learning capa-
bility in many research tasks, it is usually considered as a black box. Thus, it is interesting to see what the deep 
learning model has learned. In this section, we visualize the filters in convolutional layers and plot saliency maps 
using the proposed deep learning model to try to understand what it has learned.

Figure 3. Projection of each subset data on first two principal components of the outputs of the global average 
pooling layer of the proposed model. 0.1%, 1.0% and 10.0% initial strain deformation levels are represented by 
red color, yellow color and blue color, respectively. Each row from top to bottom presents the plots of samples 
with the width of 2 μm, 1 μm and 0.0625 μm, respectively. Each column from left to right shows the plots of 
samples of a combination of slip type and reload strain condition, which are large-reload & one slip, large-reload 
& two slip, small-reload & one slip, and small-reload & two slip, respectively.

Figure 4. An example of true and predicted stress-strain curves of a strain profile. The red dash and solid 
curves show the true stress strain curves of the strain profile, respectively. The blue dash and solid curves show 
the predicted stress strain curves of the strain profile, respectively.
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First, we visualize what the filters in covolutional layers learn. Particularly, the filters of the last convolutional 
layer in the second residual module of the proposed model are visualized. To do this, we start from a gray scale 
image with random noise as values of pixels, then we compute the gradient of this image with respect to the “loss 
function”, which is defined to maximize the activations of the filter in the selected layer. For each filter in the 
selected layer, we run gradient ascent (as opposed to descent, since in this case we are interested in maximizing 
the loss function instead of minimizing) for 100 backpropagation iterations to update its input image. Finally, 
the images from the corresponding filters that have the highest loss are plotted in Fig. 6. We can observe that the 
filters can learn lines with various characteristics, such as widths and orientations. As the main difference between 
the strain profiles is the characteristics of the dislocation lines in the images (e.g., the number, width and orienta-
tion), the higher level layers can utilize these learned features to identity the dislocation lines in the strain profile 
so that the model can accurately classify them.

Next, saliency maps53 are visualized to determine which aspect of the proposed model is the most important 
to obtain accurate predictions. To plot the saliency map, we compute the gradient of the initial strain deforma-
tion level with respect of the input image. This gradient shows how the probability of prediction changes with 
respect to a small change in the input image, which intuitively highlights the salient image regions that dominate 
the prediction. Figure 7 shows saliency maps of four image crops of strain profiles. Particularly, the first column 
shows the original image crop, the second column presents the saliency maps without back propagation modifier, 
and the third column illustrates the saliency maps with ReLU as back propagation modifier, which means only 
the positive gradients can be back propagated through the network. The dislocation lines in the strain profiles 
are crucial to identify the initial strain deformation level, and the saliency maps show that the gradients are large 
around the dislocation lines, which means that the proposed model pays more attention to those regions to cap-
ture salient information and make accurate predictions.

Discussion
In this work, we develop a deep learning network combined with the state-of-the-art techniques, such as resid-
ual module and batch normalization, to predict the initial strain deformation level based on strain profiles. The 
results show that the proposed model can achieve 92.48% classification accuracy, and the classification accuracy 

Figure 5. The comparison of true stress-strain curve and averaged stress-strain curves of nearest neighbors 
for strain profiles with different widths and different prior deformation levels. Each row from top to bottom 
presents the plots of strain profiles with 2 μm width and high initial strain deformation level, 1 μm width 
and medium initial strain deformation level, and 0.125 μm width and low initial strain deformation level, 
respectively. Each column from left to right shows the averaged stress-strain curves of 1, 5 and 10 nearest 
neighbors for the strain profile of interest, respectively. It shows that stochasticity and size effect increases as 
sample width decreases.
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is further improved by an ensemble of three different trained deep learning models. The results for samples of 
different subsets matches domain knowledge that the initial strain deformation level is more difficult to predict 
when sample width is too small. More importantly, the results show that the output of second to last layer of the 
proposed model is a good representation of the strain profiles, which can be used to compute nearest neighbors 
and predict stress-strain curve for the sample of interest. In addition, by visualizing the filters in the convolutional 
layer and plotting the saliency maps, we can observe that the proposed model can identify dislocation lines and 
capture the salient regions of the strain profiles, which results in the accurate predictions.

Traditional research methods in materials science (i.e., experiment and simulation) have obvious drawbacks. 
Experiments are the most reliable method, but are extremely expensive in terms of cost and time. More impor-
tantly, some experiments might change the mechanical property of materials or even destroy them, such as ten-
sile test. On the other hand, although simulations are never able to incorporate all the variables and constraints 
that are associated with an actual experiment, it is a faster way that tries to reproduce the experiment process. 
However, it might take hours or days to finish a complicated computation process, which hinders its use to create 
a large dataset. As large reliable data are available nowadays54,55, deep learning approach shows its superiority 
to traditional computational methods. With striking learning capability and flexible architecture, deep learning 
models can usually provide accurate predictions in an efficient manner, which can be used to augment traditional 
computational methods.

From data mining point of view, the advantages of the proposed model are threefold compared to the bench-
mark machine learning method: (1) Better accuracy: the classification accuracy of the proposed method signifi-
cantly outperforms the benchmark method (2) Good representation: The output of second to last layer could be 
a good representation that accurately characterizes the strain profiles. (3) Interpretation: The saliency maps and 
convolutional layer filters visualization indicate that the proposed model indeed captures the important charac-
teristics of the strain profile, which makes the results more trustable. However, there are also limitations for the 
proposed model: (1) The current model treats the problem as a classification problem. Ideally, a regression model 
should be developed that can predict any initial strain deformation level given a strain profile. However, the lack 
of data for other initial strain deformation levels hinders the development of the regression model. Although the 
data collection takes a significant amount of time and effort, once the dataset is established it would become an 
important resource to accelerate the crystal plasticity research, building upon the current classification model. 
(2) Image cropping is used as a preprocessing step to augment the dataset. However, as shown in Fig. 9, most of 
the dislocation lines are located around the diagonal of the strain profile. Thus, image cropping might produce 
some crops that contain small regions with no dislocation lines, and such crops might significantly confuse the 

Figure 6. Visualization of nine filters of the last convolutional layer in the second residual module of the 
proposed model.
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model in both training and testing time. To solve this problem, a domain knowledge based filter could possibly 
be designed to remove crops without important dislocation information before feeding them into the model.

From the perspective of materials science, the impact and applications of the proposed method are also sig-
nificant. Prior deformation strain is difficult to detect from a visual inspection of the materials. The proposed 
method provides an accurate and efficient way to identify the initial strain deformation level, which is used to 
further predict the stress-strain curve of the sample. Thus, the proposed method could be used in industry, such 
as automotive manufacturing companies. More specifically, the proposed method could be used to do a pre-
screening on the engineering parts, and a thorough examination could be done on the suspected parts, which 
could significantly reduce cost and increase production efficiency. In addition, the proposed methodology could 
be easily extended to other materials systems. On the one hand, because the proposed method only takes strain 
profiles as inputs without any ad hoc assumptions about the materials, the methodology could be easily extended 
to solve similar research tasks on similar inputs. On the other hand, although the results of this work is based on 
strain profile data (i.e. 2D case), it could be easily extended to heterogeneous materials (i.e. 3D cases where strain 
is heterogeneous through the thickness), because CNN has shown its ability to provide accurate predictions on 

Figure 7. Visualization of saliency maps of five image crops of strain profiles. (a) original image crop. (b) 
saliency map without back propagation modifier. (c) saliency map with ReLU as back propagation modifier.
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both 2D and 3D materials data38,42,56. To extend the proposed methodology on heterogeneous materials, the input 
layer of CNN architecture needs to be changed. More specifically, the images of different consequent layers or rep-
resentative layers of heterogeneous materials would be stacked together to form a 3D image, which is considered 
as a 2D image with multiple channels in deep learning. Then, it would be fed into CNN so that CNN can learn 
features across different channels toward accurate predictions57–59. Note that architecture and hyperparameter 
settings might need to be tuned for different research tasks.

There are two interesting topics can be further investigated in the future work. First, this work is focused on 
uniaxial compression studies. We consider extensive applications of compression/decompression on samples in 
order to generate physically sensible dislocation microstructures. The application of sequential compression/
decompression and the consequent effect on sample dislocation densities can be thought as corresponding to a 
strain path effect investigation, in consistency to observed compression/tension anisotropy in crystalline nano-
pillars6. Strain path changes in directions other than the chosen uniaxial loading one can be further investigated 
in the future. Second, since the proposed method could be extended to 3D materials data, the study of crystal 
plasticity on three dimensional heterogeneous materials is an interesting topic of investigation for future works.

Methods
The background about digital image correlation and discrete dislocation dynamics, and deep residual learning is 
introduced in section 4.1 and 4.2, respectively. Then, we describe the dataset and data preprocessing in section 4.3 
and 4.4. Finally, the deep residual learning model is proposed in section 4.5.

Figure 9. Examples of strain profiles. (a) sample of a width of 0.125 μm with large-reload and one slip system. 
(b) sample of a width of 0.25 μm with large-reload and two slip system.

Figure 8. Illustration of Residual module.
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Digital image correlation and discrete dislocation dynamics. Digital image correlation (DIC) 
is an optical method using tracking and image registration techniques to accurately measure the changes in a 
two-dimension or three-dimension image, and it is widely used to map deformation in macroscopic mechanical 
testing60,61. In DIC, the gray scale images of a sample at different deformation stages are compared to calculate 
displacement and strain using a correlation algorithm. In this work, the DIC is emulated using discrete dislocation 
dynamics (DDD) simulation. In DDD, dislocation lines are represented explicitly, where each dislocation line is 
considered as an elastic inclusion embedded in an elastic medium. The interacting dislocations, under an external 
loading condition, are simulated using elastic property of the material. More specifically, as in13, material sample 
is stress free without mobile dislocations at the beginning of the DDD simulation. In this work, we neglect the 
possibility of climb and only consider glide of dislocations. Thus, the motion of dislocations is determined by 
Peach-Koehler force in the slip direction. Once nucleated, dislocations can either exit the sample through the 
traction-free sides or become pinned at the obstacle. If dislocations approach the physical boundary of the mate-
rial sample, a geometric step is created on the surface along the slip direction. After the material sample has been 
strained and relaxed, it is then subjected to a subsequent “testing” deformation so that strain field can be measured.

Deep residual learning. Though the concept of convolutional neural network (CNN) has been well-known for 
a long time, it did not get much recognition until AlexNet62 was introduced, which won the 2012 ImageNet ILSVRC 
challenge63, and significantly outperformed the runner-up. Many new CNN architectures and related techniques, 
such as VGGNet64 and GoogLeNet52, have been developed since then to improve the model performance and solve 
various tasks in computer vision. However, when the architecture becomes deeper and deeper (i.e., more hidden 
layers), a degradation problem has been exposed where the accuracy decreases with increasing the depth of the deep 
learning model. In order to solve this problem, He et al.23 proposed a residual network to take advantage of the high 
learning capability of a deeper model and avoid the degradation problem. Figure 8 is an illustration of residual mod-
ule. In contrast to conventional CNN where convolutional layers are trained to directly learn the desired underlying 
mapping, the convolutional layers in residual module learn a residual mapping. To achieve this, a shortcut connec-
tion65 is introduced to perform identity mapping where the input x is added to the output of stacked convolutional 
layers. Thus, instead of learning underlying mapping H(x), the stacked convolutional layers are used to learn the 
residual mapping F(x) = H(x) − x. In this way, if the identity mapping is already optimal and the stacked convolu-
tional layers cannot learn more salient information, it can push the residual mapping to zero so as to avoid the degra-
dation problem. The residual module is shown to be easier to optimize so that deeper architecture can be developed.

Dataset. The dataset is generated by 2D DDD simulations. In this simulation, a sample is loaded to a high 
strain deformation level and then unloaded. After that, the sample is reloaded to a testing strain, and we can 

Width (μm) 2 1 0.5 0.25 0.125 0.0625

Small-reload & two slip 154 156 154 156 155 156

Small-reload & one slip 147 147 149 150 150 150

large-reload & two slip 151 156 154 156 155 156

large-reload & one slip 150 147 149 150 150 150

Table 3. Number of Data Points for Each Subset in Crystal Plasticity Dataset.

Figure 10. Illustration of image preprocessing. As an example, the image is resized to [256, 768] in step 2 and 
right square is used in step 4 in this figure.
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obtain the strain profile at the testing reloading strain. Figure 9 shows two examples of strain profiles. The dataset 
has 3648 strain profiles and includes three variables, which are sample width, testing reloading strain and slip 
type of material system. More specifically, there are six different sample widths (i.e., 2 μm, 1 μm, 0.5 μm, 0.25 μm, 
0.125 μm and 0.0625 μm), two testing reloading strains (i.e., 0.1% and 1.0%, which are referred as small-reload 
and large-reload in the rest of the paper), and two slip types (i.e., one slip system and two slip system). Thus, there 
are 24 subsets of data in total, and the number of data points in each subset is listed in Table 3. Each strain profile 
can be considered as a two-dimensional one-channel image, and the pixel values are continuous values represent-
ing the local strains. However, the image size of the strain profiles are different for different sample width (increas-
ing as a factor of the sample width). Meanwhile, the image size of strain profiles with the same sample width can 
also be slightly different. For example, the image size of a sample with a width of 0.125 μm is around 60 × 200 
(see Fig. 9(a)), while the image size of a sample with a width of 0.25 μm is around 120 × 500 (see Fig. 9(b)). In 
order to cover the representations from all the subsets, we randomly select around 25% data from each subset as 
testing set. For rest of the data, around 82% is used for training, and the remaining for validation. In other words, 
the dataset is split into three sets where training set has 2253 data points, validation set includes 504 data points 
and testing set contains 891 data points. The response of each sample to be learnt is its initial strain deformation 
level of low medium, or high (i.e., 0.1%, 1.0% and 10.0%), which means this is a three-class classification problem.

Data preprocessing. Because the dataset is relatively small to train a deep learning model and the image size 
is varied, an four-step data preprocessing approach is used to augment the dataset and convert it into a format that 
is suitable for training a deep learning model. Figure 10 illustrates the image preprocessing steps.

•	 Image (i.e., strain profile) is converted to gray scale image, which means the values of pixels in the image are 
rescaled to [0, 255].

•	 Converted image is resized to four scales where the shorter dimensions are 256, 288, 320 and 352, with an 
aspect ratio of 1:3.

•	 The left, middle and right squares are cropped for each resized image.
•	 The center 224 × 224 crop as well as the square resized to 224 × 224 are taken for each square.

Thus, each image can have 24 crops, which means the dataset is enlarged 24 times. Note that during testing, 
the softmax probabilities of all the crops of a test image are summed up, and the class with the highest probability 
is declared as the final prediction.

the proposed deep learning model. A deep residual network with state-of-the-art techniques,  
such as residual module23 and batch normalization66, is developed to train the predictive model.  

Figure 11. The architecture of the proposed CNN. “3 × 3, conv, 16” indicates that the convolutional layer in this 
convolutional block has 16 3 × 3 filters. “3 × 3, max-pool, /2” indicates that the max pooling layer is 3 × 3 with 
stride 2. “Avg-pool” denotes a global average pooling layer.
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Let “conv” denote a convolutional block (i.e. a convolutional layer followed by a batch normalization 
layer and an activation function layer), “pool” a max pooling layer, “Res” a residual module and “avg-
pool” a global average pooling layer67. The architecture of the proposed model can be described as 
input − conv16 − pool − (Res32) × 2 − pool − (Res64) × 2 − pool − avgpool − output and it is illustrated in Fig. 11. 
More specifically, the proposed model takes the preprocessed images as input, followed by a convolutional block 
and its convolutional layer has 16 filters, and then followed by a max pooling layer. Then, there are two residual 
modules, and each residual module includes three convolutional blocks and the convolutional layer of each con-
volutional block has 32 filters. The convolutional layer for the identity mapping in these two residual modules 
has 32 1 × 1 filters. Then they are followed by a max pooling layer. After that, another two residual modules are 
attached, and each one has three convolutional blocks and the convolutional layer of each convolutional block has 
64 filters. The convolutional layer for the identity mapping in the two residual modules has 64 1 × 1 filters. Then 
a max pooling layer is applied. Finally, a global average pooling layer is attached and the output layer is used to 
produce the final prediction. Unless otherwise specified, the size of all the filters in convolutional layer are 3 × 3, 
and all the max pooling layers are 3 × 3 with stride 2. Rectified Linear Unit (ReLU)68 is used as the activation 
function for all the convolutional blocks and a softmax activation function is used for the output layer. In order 
to avoid overfitting, early stopping is applied where the training process is terminated if the value of loss function 
on validation set is not improved for 20 epochs. In addition, Adam69 with learning rate as 0.001, β1 as 0.9 and β2 
as 0.999 is used as optimizer. Each batch includes 72 images for training.

Data availability
The data that support the findings of this study are available from corresponding authors on reasonable request.

Code availability
The trained model and weights are available at https://github.com/zyz293/plasticity-DL.
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