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Abstract—Deep learning has shown its superiority to tradi-
tional machine learning methods in various fields, and in general,
its success depends on the availability of large amounts of reliable
data. However, in some scientific fields such as materials science,
such big data is often expensive or even impossible to collect.
Thus given relatively small datasets, most of data-driven methods
are based on traditional machine learning methods, and it is
challenging to apply deep learning for many tasks in these fields.
In order to take the advantage of deep learning even for small
datasets, a domain knowledge integration approach is proposed
in this work. The efficacy of the proposed approach is tested
on two materials science datasets with different types of inputs
and outputs, for which domain knowledge-aware convolutional
neural networks (CNNs) are developed and evaluated against
traditional machine learning methods and standard CNN-based
approaches. Experiment results demonstrate that integrating
domain knowledge into deep learning can not only improve
the model’s performance for small datasets, but also make the
prediction results more explainable based on domain knowledge.

I. INTRODUCTION

Deep learning has led to a series of breakthroughs in
various fields, such as computer vision [1], [2] and natural
language processing [3], [4]. One of the most important factors
that is believed to be responsible for the success of deep
learning is the availability of large amounts of reliable data.
With flexible architecture and striking learning capability, deep
learning models have the ability to extract crucial information
from such huge amounts of data effectively and automatically.
Thus, deep learning has gained significant attention in other
scientific research fields, such as biology [5], [6], chemistry
[7] and materials science [8]–[10]. However, for some research
problems in these fields, it is difficult or even impossible
to collect a large amounts of data for the application of
deep learning, because data comes from some expensive and
time-consuming experiments or simulations. Meanwhile, deep
learning has obvious drawbacks working on small datasets,
such as overfitting. In addition, it is also difficult to further
improve the performance of deep learning models due to

limited data. In order to still take advantage of deep learning
and achieve good performance training on small datasets, two
commonly used solutions are applied in this situation.

The first solution is transfer learning, which is widely used
in the research of convolutional neural network (CNN) [11].
Transfer learning is a technique that uses the knowledge
learned from a huge dataset to help the training process
of deep learning models on the other small datasets. The
earlier layers of a CNN can learn low-level simple features
such as lines or curves, while subsequent layers combine
them into high-level problem-specific features to solve certain
problems. The simple features learned in earlier layers are
usually shared among different datasets. Thus, transfer learn-
ing can achieve relatively good performance even if the two
datasets are dissimilar. Transfer learning has been successfully
employed in abdominal ultrasound images classification [12],
pavement crack damage detection [9], and large-scale protein
subcellular localization [13]. However, in some fields, such as
materials science, transfer learning might not always be the
best solution. This is because the microstructures of materials
systems are significantly different from natural objects that
pre-trained models of transfer learning are usually trained on.
It can therefore be tricky to transfer the knowledge learned
by pre-trained models. Moreover, the lack of data hinders the
development of pre-trained models specifically for such fields.

The other solution is to integrate domain knowledge into
deep learning to guide the training process so that it can
achieve good performance even with relatively small datasets.
In [14], Tang et al. design a deep convolutional network
combining domain knowledge and the representation ability of
deep learning for fingerprint minutiae extraction. In [6], deep
learning is combined with domain knowledge to detect gland
in H&E histology tissue images and it improves the state-of-
the-art results. In [15], the use of biologically plausible rules in
neural network architectures is explored to learn view-invariant
features of human faces. Thus, there is emerging evidence that
by appropriately integrating domain knowledge, deep learning
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can be adjusted to solve specific problems and improve the
performance for certain problems.

In this work, we propose a deep learning based domain
knowledge integration approach on small datasets and apply
it to solve two prediction problems in materials science. More
specifically, two-point correlation function, which is used to
capture the spatial information from data, is used as the
domain knowledge to be integrated in the training of the
deep learning model. In order to evaluate the performance
of the proposed method, two different datasets are used, one
is homogenization dataset and the other is crystal plasticity
dataset. The proposed hybrid CNN with domain knowledge
integration is compared against traditional machine learning
methods, CNNs without domain knowledge integration as well
as against CNN with naive domain knowledge integration. The
performance improvement in the experimental results demon-
strates that domain knowledge can be properly integrated into
deep learning models. Moreover, the prediction results are
more physically explainable by integrating domain knowledge.
Though the experimental results are for two materials science
datasets, this approach can be easily extended to other scien-
tific fields.

II. BACKGROUND AND RELATED WORK

In section II-A, two-point correlation function (i.e., domain
knowledge) is introduced. Then, we define the problems
for the two applications used in this work in sections II-B
and II-C, respectively.

A. Two-point Correlation Function

N-point correlation function can fully capture the spatial
information from the data [16]. However, considering the
trade off between the computational cost and accuracy, two-
point correlation function is usually used in practice. Two-
point correlation function (also known as two-point statistics)
presents the probability of a vector with a given length and
orientation falling in two specific local states presented in the
image. In other words, two-point correlation function gives the
information about how local states are spatially distributed in
the image. Figure 1 shows a discretized microstructure (i.e.
a binary image) illustrating the concepts of pixel location u,
vector r and local state s in equations 1 and 2, which are
equations for computing two-point correlation function,

f(r|s, s′) = 1

U

∑
u

I(u, s)I(u+ r, s′) (1)

I(u, s) =

{
1 if local state at u is s
0 else

(2)

In these equations, s and s′ denote two specific local states
in the image. u is the pixel location in the image, and U is
the total number of pixel locations in the image. I(u, s) is the
indicator function. Thus, f(r|s, s′) calculates the conditional
probability of finding the local state s and s′ at a distance
and orientation away from each other defined by the vector
r. When the two local states are the same (i.e. s = s′), it

is referred to as a two-point auto-correlation. Otherwise, it is
referred to as a two-point cross-correlation.

Fig. 1. Illustration of the discretized microstructure. It can be considered as
a binary image representing two local states of the microstructure. The value
of pixel is either 0 or 1 representing the black or white local state. The origin
pixel is the left-bottom pixel indexed from 0. For example, the local state of
pixel location (1, 0) (i.e. u = (1, 0)) is 1 (i.e. s = 1).

Two-point correlation function are widely used as features to
train traditional machine learning models in materials science
[17], [18], astronomy and cosmology [19], [20]. In this work,
two-point auto-correlation is integrated in the deep learning
model so that domain knowledge can help the training process
of the deep learning given a small dataset resulting in a
performance improvement.

B. Macroscale (effective) Stiffness Prediction for Homoge-
nization Linkages

Processing-structure-property (PSP) linkages of materials
systems are crucial in order to understand the role of the
materials internal structure in controlling its properties, and
discover new innovative materials. In other words, there is
a complex inherent relationship between material structure
and property of materials. Only when we fully understand
such relationship can we accurately calculate materials’ prop-
erties according to their structures and effectively design
new materials given desired properties. Homogenization is
to understand materials’ inherent relationship from lower
length scale to higher length scale (e.g., given microscale
structural information, what is the overall macroscale property
of the material). Some related work has already been done to
model homogenization linkages. In [17], [18], two-point auto-
correlation is computed for the microstructures, and principal
component analysis (PCA) is applied to obtain the reduced-
order representations, and finally standard regression method
is implemented to predict the property of materials. In [21],
Yang et al. develop a stand-alone convolutional neural network
to model the homogenization of high-contrast composite ma-
terials.

C. Crystal Plasticity Prediction Using Digital Image Corre-
lation

Detection of prior deformation history (i.e. plasticity his-
tory) of a material is important in industrial applications. This
is because the mechanical properties of materials could be
dramatically deteriorated if they have been heavily deformed
in the past, even though the chemical composition of the
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materials remains the same. Digital Image Correlation (DIC)
[22] is an inexpensive and flexible method for this problem.
More specifically, the calculation of the DIC includes sev-
eral steps. First, a series of gray scale images representing
different deformation stages of the materials are compared.
Then the movement of pixels in a representative volume is
tracked. Finally, a correlation algorithm is used to calculate the
corresponding displacement and strain. In [23], Papanikolaou
et al. use the reduced-order representations of two-point auto-
correlation of dislocation microstructures as features to train a
machine learning model, and find a clear cluster formation of
samples based on their responses to the DIC reloading strain.

III. DATASETS

A. Homogenization Dataset

The homogenization dataset1 is generated by microme-
chanical finite element models. The dataset includes three-
dimensional microstructures of high-contrast two-phase com-
posite materials, and each microstructure is referred to as a
microscale volume element (MVE) (as shown in Figure 2
(a)). More specifically, each MVE can be considered as a
51× 51× 51 binary image and there are 8550 MVEs totally
to ensure a rich morphological diversity of microstructures.
Meanwhile, there are 50 categories of volume fractions (i.e.,
the fraction of one of the two phases in a MVE) ranging
from 25% to 75%, and each volume fraction category contains
171 MVEs. For each volume fraction category, 114 MVEs
are selected for training and the rest for testing. A validation
set is created by randomly selecting 33% of the MVEs for
the training process to tune the hyperparameters for the deep
learning model. In other words, 8550 MVEs are split into 3
sets where training set includes 3819 MVEs, validation set has
1881 MVEs and testing set contains 2850 MVEs. The response
of each MVE is its macroscale (effective) stiffness, which is
a continuous real value representing the material property of
interest. Thus, a regression model is developed for this dataset.

B. Crystal Plasticity Dataset

Crystal plasticity dataset1is generated by 2D discrete dislo-
cation dynamics (DDD) simulation, which is a simulation used
to emulate DIC. Each data point in this dataset is a strain
profile in 2D-DDD simulations (as shown in Figure 2 (b))
and there are three variables in the dataset, which are sample
width, reload-strain and slip type of materials systems. There
are six different sample widths, two reload-strains and two
slip types resulting in 24 subsets of data, which are shown in
Table I. More specifically, each data point can be considered
as a two-dimensional one-channel image and the values of
pixels are real values representing the local strain. However,
the dimensions of images are varied for different subsets,
which increases as a factor of the sample width, while the
dimensions of images in the same subset can also be slightly
different. As an example, for a data point with a width of
0.0625 µm the dimension of the image is around 30 × 125,

1dataset is available on request

Fig. 2. Data example for homogenization dataset and crystal plasticity dataset.
(a) a MVE from the homogenization dataset, and it can be considered as a 3D
binary image (i.e. 0 and 1 represent hard phase and soft phase, respectively.)
(b) a strain profile from the crystal plasticity dataset. It can be considered as a
2D one-channel image and the value of each pixel is a continuous real value
representing the local strain.

while for another data point with a width of 0.125 µm the
image is around 60 × 250 pixels. In order to ensure that
the testing set contains representations from all the subsets,
approximately 25% of the data are selected as testing set for
each response category in each subset (stratified sampling). For
the rest of the data, approximately 20% are randomly selected
as the validation set. In other words, the training set contains
1262 data points, the validation set has 316 data points, and
the testing set includes 504 data points. The response of each
data point is its initial loading strain, which are categorical (i.e.
0.1%, 1% or 10%). Thus, a classification model is established
to solve this problem.

TABLE I
NUMBER OF DATA POINTS FOR EACH SUBSET IN CRYSTAL PLASTICITY

DATASET

Width (µm) 2 1 0.5 0.25 0.125 0.0625
Small-reload &
two slips

146 147 145 147 147 147

Small-reload &
one slip

27 27 27 27 27 27

Large-reload &
two slips

146 147 145 147 147 147

Large-reload &
one slip

27 27 27 27 27 27

IV. METHODS

Data preprocessing is introduced in section IV-A, and the
standard CNN without domain knowledge integration is pre-
sented in section IV-B. Then the hybrid CNN with domain
knowledge is proposed in section IV-C.

Deep learning based domain knowledge integration for small datasets: Illustrative applications in ma...
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A. Preprocessing

1) Homogenization dataset: Each MVE can be considered
as a 51 × 51 × 51 binary image, which means the values of
elements in MVE are either zeros (i.e. hard phase) or ones
(i.e. soft phase). Since, large amounts of zeros in the input
might significantly deteriorate the functionality of convolution
operations of the CNN, the values of the input are rescaled
from [0, 1] to [-0.5, 0.5].

2) Crystal plasticity dataset: This dataset is relatively small
for training the deep learning model, so an aggressive cropping
approach is applied to augment the dataset.
• We resize the image to 4 scales where the dimensions

are [256, 768], [288, 864], [320, 960] and [352, 1056],
respectively.

• For each resized image, we take the left, center and right
squares.

• For each square, we take the center 224 × 224 crop as
well as the square resized to 224× 224.

• Because the input data in different subsets have different
scales, we normalize the input data, which means the
input data is first zero-centered, then divided by its
standard deviation.

Figure 3 illustrates the first three preprocessing steps. This
cropping approach leads to 24 (i.e. 4×3×2) crops per image,
which enlarges the dataset 24 times. Note that in the testing
time, the softmax probability of the final prediction for each
image is averaged over the probabilities of all of its crops.

Fig. 3. Illustration of the first three preprocessing steps of crystal plasticity
dataset. As an example, original image is resized to [256, 768] in step 1 and
center square is used in step 3 in this figure.

B. Standard CNN Architecture

Different architectures of varying depths and different num-
ber of filters in each convolution layer are explored to examine
which architecture produces the best standard CNN for each
application. Then, a greedy approach is used to search for the
best combination of hyperparameters of selected architecture.

1) Homogenization dataset: In [21], a classic CNN is
developed to model homogenization linkage, and its configu-
ration is shown in Figure 4 (a). In this work, we use the same
CNN as “standard CNN”, for comparing with the proposed
hybrid approach. More specifically, the above-mentioned deep
learning model is a 3D CNN, which takes a 51×51×51 binary
image as input and produces a continuous real value to predict
the effective stiffness of the input material microstructure.

There are five convolutional layers with 3× 3× 3 filters, and
the number of filters in each convolutional layer is 16, 32, 64,
128 and 256, respectively. 2 × 2 × 2 average pooling layers
are used to reduce dimensionality. Finally, the CNN has two
fully connected layers with 2048 and 1024 neurons, respec-
tively. Rectified Linear Unit (ReLU) [24] is used as activation
function for each convolutional layer and fully connected
layer, except for the output layer a linear activation function
is used to produce continuous real values. The normalized
initialization method [25] is used to initialize the weights of
the CNN. In order to avoid overfitting, L2 regularization with
penalty factor as 0.001 is applied in each convolutional layer
and fully connected layers. Moreover, early stopping is used
to further avoid overfitting. The training process is terminated
if the value of the loss function on the validation set does not
improve for 10 epochs. As for the optimizer, Adam [26] with
learning rate as 0.001, β1 as 0.9 and β2 as 0.999 is used. The
batch size is 32 MVEs for training.

Fig. 4. Configuration of CNNs for homogenization dataset (a) standard CNN
from [21]; (b) proposed hybrid CNN.

2) Crystal plasticity dataset: A CNN with state-of-the-art
techniques such as residual module [1] and batch normal-
ization [27] are implemented to predict initial loading strain
of the material, and its configuration is shown in Figure 5
(a). This deep learning model is a 2D CNN, which takes
224 × 224 one-channel image as input and classifies it into
one of three initial loading strains. The first convolutional
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layer has 16 3 × 3 filters, followed by a 3 × 3 max pooling
layer with strides 2. Then there are two residual modules,
and each has four convolutional layers. Each convolutional
layer in the two residual modules has 32 and 64 3× 3 filters,
respectively. The convolutional layer for identity mapping
in the two residual module has 32 and 64 1 × 1 filters,
respectively. A 3 × 3 max pooling layer with strides 2 is
followed by each residual module to reduce dimensionality.
Finally, global average pooling layer [28] is used. Note that
batch normalization is used for each convolutional layer, and
it is applied before the activation functions. ReLU is used
as the activation function for each convolutional layer, while
softmax activation function is used in the output layer to make
the classification. Early stopping is applied to avoid overfitting
where the training process is stopped if loss on validation set
does not improve for 20 epochs. Weights initialization method,
optimizer and batch size are the same as the homogenization
dataset.

C. Hybrid CNN Architecture to Integrate Domain Knowledge

In this section, we describe the development of the proposed
hybrid CNN, building on the standard CNN, to integrate the
domain knowledge for each dataset. In general, the hybrid
CNN has two identical sub-branches containing the convolu-
tional and pooling part of its standard CNN, and the outputs
of two sub-branches are concatenated together to be fed into
the fully connected layers to produce final predictions. Particu-
larly, the input for each sub-branch can be either original data
or its two-point auto-correlation. The configuration of each
hybrid CNN is introduced in the following sections.

1) Homogenization dataset: The hybrid CNN is presented
in Figure 4 (b). This CNN includes two identical sub-branches
that contain the convolutional and pooling layers of the
corresponding standard CNN. After the fifth average pooling
layer, the feature maps of two sub-branches are flattened and
concatenated together to form a one-dimensional vector. Then,
this vector is fed into two fully connected layers with 2048
and 1024 neurons, one after the other. Note that the other
hyperparameter settings of this hybrid CNN are the same as
its standard CNN.

2) Crystal plasticity dataset: Figure 5 (b) presents the
hybrid CNN for crystal plasticity dataset. This hybrid CNN
also has two sub-branches that contain all the layers before
the output layer. The outputs of two sub-branches after global
average pooling layer are concatenated together, followed by
two fully connected layers with 256 and 128 neurons, one
after the other. In addition, batch normalization is applied
before the ReLU activation function for both fully connected
layers. Dropout layer is used after each fully connected layer
with dropout rate as 0.3 and 0.2, respectively. Moreover, other
hyperparameter settings of this hybrid CNN are the same as
its standard CNN.

V. RESULTS AND DISCUSSION

In order to integrate domain knowledge, two-point auto-
correlation is first computed for each image data in the two

Fig. 5. Configuration of CNNs for crystal plasticity dataset. (a) standard
CNN; (b) proposed hybrid CNN.

datasets. Note that the image data has the same dimensionality
as its two-point auto-correlation. Thus, the proposed method is
implemented by a hybrid CNN, which takes the original image
data as well as its corresponding two-point auto-correlation
as input for the two sub-branches, respectively (referred to
as hybrid CNN No.3). For each of the two applications
in this work, the proposed method is compared with seven
benchmarks. The seven benchmarks are categorized into three
groups.

1) Traditional machine learning methods: The first two
benchmarks are two traditional machine learning mod-
els. In traditional machine learning methods, PCA is
applied on the two-point auto-correlation of original im-
age data to obtain reduced-order representations, which
are subsequently fit to property values using Random
Forest and Gradient Boosting methods, respectively.
More specifically, the Random Forest is defined as a
classifier consisting of 100 decision tree classifiers, and
Gradient boosting uses regression trees as base learners
with 100 training iterations.

2) Standard CNN: Another three benchmarks are imple-
mented by standard CNN. Standard CNN No.1 takes
the original image data as input, and standard CNN

Deep learning based domain knowledge integration for small datasets: Illustrative applications in ma...
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No.2 takes the two-point auto-correlation of the original
image data as the input. In addition, the two-point
auto-correlation is used as an additional channel of the
original image data, and standard CNN No.3 takes it as
the input.

3) Hybrid CNN: Another two experiments are carried out
using the hybrid CNN as two benchmarks. Hybrid CNN
No.1 takes the original image data as input for both sub-
branches, while Hybrid CNN No.2 takes the two-point
auto-correlation of the original image data as input for
both sub-branches.

A. Results: Homogenization Dataset

In [21], CNN is trained to model the homogenization
linkages and the performance is evaluated in terms of mean
absolute stiffness error (MASE). The calculation of the MASE
consists of two steps. Firstly, the mean absolute error between
predicted values and ground truth values are computed. Then
this mean absolute error is divided by the mean of effective
stiffness of the entire testing set to get the MASE. In order
to make a fair comparison, we use the same dataset, the same
training/testing split, and the same error metric to compare the
model’s performance.

Table II lists the performance for each method. We can ob-
serve that traditional machine learning models achieve 17.26%
and 16.88% MASE, while the standard CNN No.1, No.2 and
No.3 obtain 3.10%, 7.67% and 4.28% MASE, respectively.
On the other hand, hybrid CNN No.3 improves the MASE
to 2.76%, while the MASE of hybrid CNN No.1 and No.2
decreases to 3.47% and 5.44%, respectively. In other words,
by integrating domain knowledge, model’s performance is
improved by 11.0% (i.e. 1 - 2.76/3.10) compared to the
best benchmark method. The results of standard CNN No.2
and hybrid CNN No.2 show that purely using two-point
auto-correlation as input does not improve the performance
compared with CNNs taking original image as input, because
two-point auto-correlation can not fully capture the spatial
information from the data [16]. On the other hand, two-
point auto-correlation can indeed highlight some significant
spatial information, and when it is integrated into the deep
learning model in a proper way it can guide the training
of the deep learning model for performance improvement.
Thus, the result of the proposed hybrid CNN No.3 shows the
best model’s performance, while naively integrating two-point
auto-correlation into the deep learning model in standard CNN
No.3 does not improve the performance. In addition, since
hybrid CNN No.1 and No.2 use the same configuration as
hybrid CNN No.3 but deteriorate the model’s performance, it
shows that the superior performance of hybrid CNN No.3 is
due to proper domain knowledge integration that can guide the
training process of the deep learning model instead of simply
increasing model’s complexity.

B. Results: Crystal Plasticity Dataset

In [23], two-point auto-correlation is used as features to
implement clustering for each subset of crystal plasticity

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR

HOMOGENIZATION DATASET

Methods MASE
Random Forest 17.26%

Gradient Boosting 16.88%
Standard CNN No.1 [21] 3.10%

Standard CNN No.2 7.67%
Standard CNN No.3 4.28%
Hybrid CNN No.1 3.47%
Hybrid CNN No.2 5.44%
Hybrid CNN No.3 2.76%

dataset. However, the machine learning model is individually
developed on each subset of data instead of the entire dataset,
which can deteriorate model’s generalization. In this work, we
move forward for this problem by developing classification
models directly on the entire dataset.

Table III presents the performance of the proposed method
and benchmarks. Specifically, traditional machine learning
models achieve 64.09% and 68.45% classification accuracy,
while standard CNN No.1, No.2 and No.3 obtain 93.25%,
33.33% and 84.13% classification accuracy, respectively. On
the other hand, classification accuracy is improved to 95.04%
by hybrid CNN No.3, while performance of hybrid CNN No.1
and No.2 decrease to 93.06% and 33.33%, respectively. In
other words, the model’s performance is improved by 28.5%
(i.e. 1 - 4.96/6.94) by integrating domain knowledge compared
to the best benchmark method. The results support the conclu-
sion that the performance improvement of the deep learning
model is due to the proper integration of domain knowledge
instead of simply increasing the model’s complexity, and
purely using two-point auto-correlation or naively integrating
two-point auto-correlation into the deep learning model does
not improve the model’s performance.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CRYSTAL

PLASTICITY DATASET

Methods Accuracy
Random Forest 68.45%

Gradient Boosting 64.09%
Standard CNN No.1 93.25%
Standard CNN No.2 33.33%
Standard CNN No.3 84.13%
Hybrid CNN No.1 93.06%
Hybrid CNN No.2 33.33%
Hybrid CNN No.3 95.04%

Moreover, the prediction results are more physically ex-
plainable by integrating domain knowledge. Table IV and
Table V show the classification accuracy of each subset data
for crystal plasticity dataset based on standard CNN No.1 and
hybrid CNN No.3, respectively. Empirically, data with large
sample width and small-reload should be easier to predict [23].
Thus, the classification accuracy in two tables should have a
general trend that accuracy goes down from top to bottom
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and from left to right, which means bottom right corners in
the two tables should have the worst classification accuracy.
We can observe that Table V generally follows this trend and
all the worst classification accuracies appear in the bottom
right corner. However, Table IV does not have a clear trend,
and some results do not match our experience. For instance,
data with a width of 2 µm, large-reload & one slip achieves a
relatively bad classification accuracy, while data with a width
of 0.0625 µm, large-reload & one slip achieves a relatively
good classification accuracy.

To visually demonstrate the benefit of integrating domain
knowledge into the deep learning model, we extract the outputs
of the second fully connected layer of hybrid CNN No.3 and
plot the projection of data on first two principal components
of these outputs in Figure 6. For large width samples (e.g. 2
µm and 1 µm, which are first two rows in Figure 6), samples
are clearly separated except that there are small overlaps in the
large-reload & two slips plots (i.e. second column of first two
rows in Figure 6). When the sample width becomes smaller,
the distance between clusters becomes smaller. For the samples
of large-reload & one slip and large-reload & two slips with
a width of 0.0625 µm (i.e. first two columns of the last row
in Figure 6), red and yellow samples (i.e. samples with 0.1 %
and 1 % strain prior loaded state) are significantly overlapped,
which matches our intuition that samples with small width and
large-reload are harder to predict. Thus, the results show that
integrating domain knowledge not only improves the model’s
performance, but also makes the prediction results of the deep
learning model amenable to better physical explanation.

VI. CONCLUSIONS

In this work, we developed a deep learning based domain
knowledge integration approach on small datasets and apply
it to solve two research problems in the materials science
field. More specifically, two different small datasets are used in
this work. Homogenization dataset contains three-dimensional
binary MVEs as inputs and continuous real values as outputs,
while crystal plasticity dataset includes two-dimensional one-
channel images with different sizes as inputs and categorical
values as outputs. To integrate domain knowledge, the pro-
posed hybrid CNN is trained by taking the original image
data as well as its two-point auto-correlation as inputs for its
two sub-branches in both applications. By comparing against
the traditional machine learning methods solely based on
domain knowledge, standard CNN and hybrid CNNs that
are solely based on either the original data or two-point
auto-correlation as well as standard CNN that are based on
naive domain knowledge integration, we conclude that given
a small dataset, the proposed domain knowledge integration
method can guide the training process of the deep learning
model, which can improve the model’s performance as well
as make the prediction results more explainable with domain
knowledge. Though we only evaluate the proposed method on
two materials science related datasets, the proposed method
can be easily extended to other scientific fields. Thus the
proposed method could help the applications of deep learning

in scientific research fields where large amounts of reliable
data is not available.
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