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Abstract
We investigate a class of emerging online marketing chal-
lenges in social networks; macro behavioral targeting (MBT)
is introduced as non-personalized broadcasting efforts to
massive populations. We propose a new probabilistic graph-
ical model for MBT. Further, a linear-time approximation
method is proposed to circumvent an intractable paramet-
ric representation of user behaviors. We compare the pro-
posed model with the existing state-of-the-art method on
real datasets from social networks. Our model outperforms
in all categories by comfortable margins.

1 Introduction
In the year of 2012, the total expense of US Internet
display advertisement is around $12.7 billion and the
number is expected to increase up to $28 billion by the
end of 2017 [21]. Increased spending on online cam-
paigns has turned the Internet, on both desktop and
mobile devices, to one of the best media to place ads. In
addition to conventional sponsored search [4] and spon-
sored story [23], Behavioral Targeting (BT) [3], which
displays sponsored messages to targeted user segments
by algorithmically learning users’ search and browsing
behaviors and interests, has become increasingly popu-
lar many data mining researchers and practitioners [1]
[2] [20]. Many successful systems [3] and models have
been proposed and are proven to be valuable in practice
in the real world.

The very recent explosion of popular social net-
working websites such as Facebook and Twitter changes
how people communicate on the Internet. Inevitably,
this social change brings some subtle yet critical dis-
tinctions in BT on social networks. For example,
on Facebook, brands make public posts to engage
their fans/customers. Posting on Facebook or tweeting
through Twitter is quite different from the traditional
understanding of BT, but yet they target to a some-
what selected audience because only one’s own Twitter
followers (Facebook fans) have a chance to see one’s
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tweets (Facebook posts). On the other hand, they are
also different from traditional front-page-based adver-
tising (e.g., MSN home page).

Based on the distinctions between traditional BT
and BT in social networks, we introduce the term
Macro Behavioral Targeting (MBT) to refer to BT in
social networks. More formally, we define MBT as non-
personalized broadcasting efforts that appeal to a mas-
sive targeted interactive population under competition
from rivals for limited influence over the same popula-
tion. Although MBT is different from traditional BT
by non-personalized and broad targeting, such differ-
ence alone is not sufficient to motivate a separate study
on MBT. After all, targeting at coarse granularity, like
individual BT, is already well studied [2] [19]. For ex-
ample, [2] looks at Yahoo! Homepage today’s module as
a means of broadcasting and macro targeting. We iden-
tify two other aspects, as discussed below, that make
MBT a different problem from traditional BT and mo-
tivate this study.

First, the competition structure in MBT is different
from traditional BT. MBT campaign starters (e.g.,
Coca-Cola, Pepsi) are competing for popularity on
a particular platform (e.g., Facebook) with a lot of
visibility of the fan’s reaction to each brand’s public
campaigns. This scenario is different from traditional
BT competing models. For example, consider two
brands bidding on Google keywords for a particular
demographic; there is no way for either of them to know
how its opponent’s campaigns are running, although
their audiences overlap. However, if two brands run
MBT campaigns through Facebook, most information
about their campaigns (including how many comments
/ likes are received, what messages the efforts used, etc.)
would just be public information. How to handle open
competition becomes the key for MBT success.

In addition to its open competitiveness, viral effect
is another trademark of MBT. Unlike traditional adver-
tising environment, where interaction is limited to end
user and advertiser without any inter-user interaction,
MBT has a different story. Since in MBT the end users
form an interconnected network, behavioral marketers
could for the first time exploit inter-user interactions.



For example, if on Facebook Mike likes an MBT effort
posted by a particular brand, the update “Mike likes
this brand” would come up in the feed of Mike’s friends.
Even if the friends do not receive the original MBT ef-
fort and are not fans of the posting brand, they are still
reached by this effort through Mike’s influence like how
virus infects.

Our contribution We identify and define a niche
of Behavioral Targeting problems, called MBT, which
differs from the traditional BT mechanism by its open
competitiveness and viral marketing effect. A proba-
bilistic graphical model is designed and implemented
for the MBT problem that accounts for its aforemen-
tioned unique aspects. In the model, we construct an
accurate parametrization for user behaviors, which goes
beyond simple Poisson event modeling. In the experi-
ments section, we compare the proposed model with a
state-of-the-art method and show a significant improve-
ment on real datasets from Facebook.

2 Related work
A close work to this paper is [16], where the authors try
to predict the popularity of each brand post based on
historical data. [16] represents brand posts as feature
vectors. With enough historical posts as training data,
an SVM classifier [13] is used to predict the success of
each brand post. In fact, a similar implementation is
introduced in our experiments for comparison to our
proposed model in feedback prediction. Despite its
simplification of important MBT’s characteristics like
viral effect, which has been well studied in earlier work
like [7], the approach of [16] is simple and effective.

However, a critical problem in [16] is its absence
of any user model [24]. In fact, the approach taken in
[16] is advertiser-centric and is agnostic of the users.
This one-sided simplification not only limits the gener-
alizability, but also deviates from classical approaches
to model BT problems [3] [1]. More generally, deciding
on the detailed level at which the model should repre-
sent the users in MBT is a discretionary problem. Most
BT models, which are built by the behavioral marketers
themselves, with full access to user activity patterns,
can allow complicated structure on user modeling as
long as the computation is feasible. But MBT models
often deal with public or incomplete data as implicit
assumptions. The obvious way to handle this discre-
tionary problem is to ignore the users, which is what
[16] has done, at the cost of throwing away valuable
user information. In response, an idea of “parameterize-
and-approximate” is presented in the later part of this
paper.

A much richer literature is available on traditional
BT analysis and optimization. Several different estimat-

ing approaches are recently proposed with some com-
mon merits including proven real-world performance
and scalability [3] [1] [20]. Linear Poisson regres-
sion is often favored [3] [20] for modeling behavioral
events, given that the Poisson distribution is the in-
tuitive statistical model for counting data: p (y) =

�y

exp(��)/y!, where � = w

T

x. The Poisson param-
eter � is determined by the inner product of a weight
vector and a feature vector. [1] tries to solve the prob-
lem from a different angle by modeling users’ interests
as dynamic topics. The authors propose a time-varying
user model based on Latent Semantic Indexing [14], La-
tent Dirichlet Allocation (LDA) [8] and Dynamic Topic
Model (DTM) [9].

However, the modeling in both [3] [20] are less than
ideal for MBT scenarios. For example, the single para-
metric Poisson model introduced in [3] makes assump-
tion on homogeneous user clicks and therefore becomes
inadequate in the MBT setting where heterogeneity is
essential. The topic model in [1] is designed to be user-
centric. If it were applied in MBT context, it would
end up with an infeasible situation where the number
of topics is orders of magnitude larger than the number
of documents.

3 Methodology
In this section, we discuss the proposed methodology
for solving the MBT problems presented above. We
first motivate and describe a parametrization of user
behaviors and the feature extraction of MBT elements
in Section 3.1 and 3.2. Then a full parametrization of
the MBT flow in terms of random variables is presented
as a graphical model in Section 3.3. In Section 3.4, we
implement the graphical model from Section 3.3 by fully
specifying all necessary prior distributions. Finally, we
present inference and query-answering on the proposed
model in Section 3.5, where we further propose a
linear-order-in-time approximation for user behavior
parametrization to achieve computational feasibility.

3.1 Parametrizing user behavior Each user’s
feedback function is modeled by a parametric distribu-
tion with different parameters. The feedback function
for the ith user X

i

should follow the Gamma distribu-
tion �(�1i,�2i) since the Gamma distribution is often
the default distribution for modeling wait time until
the occurrence of an event [5] [6]. Note that by de-
noting X

i

, each user is assumed to have the same distri-
bution across efforts from different brands of different
categories. In other words, this user parametrization
is two-fold: 1) each X

i

is across all topics and brands,
which the user is a fan of; 2) all X

i

’s are of the same
parametric family. Neither the shape parameter �1i nor



the rate parameter �2i is fixed.
The choice on the prior distributions of the two

parameters is a delicate matter [12]. This user
parametrization only dictates that the wait time before
a user’s feedback follows a particular family of distribu-
tions; no constraint is put on the content of the feedback
itself. This assumption is in many aspects an improve-
ment over single parametric Poisson because it relaxes
the homogeneous assumption [3], which is made implic-
itly by the Poisson model about the BT events.

Table 1: Feature vector for effort variables.
Feature Notes (example)
brand_id Pepsi
hour_of_day 3pm
day_of_week Sunday
time_since_last the number of hours passed

since the last MBT effort of
this brand was launched.

type_of_effort photo, video, url, etc.
ask_to_like true if this effort appeals
ask_to_comment to fans for
ask_to_share like/comment/share
is_a_question true if contains a question in

message
long_text true if text is over 140 char-

acters
[positive_list] [List of Boolean values;
[negative_list] true if word is in this effort
[characteristic_list] message]

3.2 Extracting features and labels Efforts and
feedback are two important elements in MBT. In this
section, we describe how to represent these two elements
as feature vectors.

Efforts: MBT efforts are represented as feature
vectors, whose components are shown in Table 1. Most
entries in Table 1 is explained with the aid of side notes,
but positive_list, negative_list, and characteristic_list
are worth more explanation. The positive/negative_list
each contains a list of positive/negative adjectives. And
each adjective is associated with a numeric score, a score
that represents the word’s sentiment and varies between
between 5 and �5, with 5 being the most positive and
�5 the most negative [10] [18] [17]. Then, for each
word in the MBT effort message, the word is marked
and its score is calculated if it is present in either list.
After checking wall words from the effort message, a
positive_score and a negative_score are generated by
summing over the scores of all marked adjectives in both
lists. The effort feature vector uses these two scores

Table 2: Label vector for effort variables.
Dynamical Label Volume Label
10min_d_percentage 10min_v_percentile
1hr_d_percentage 1hr_v_percentile
8hr_d_percentage 8hr_v_percentile
24hr_d_percentage 24hr_v_percentile
48hr_d_percentage 48hr_v_percentile
7day_d_percentage 7day_v_percentile

Table 3: Feature vector for individual feedback.
user_id each user_id corresponds

to a prior Gamma distribu-
tion according to the user
parametrization.

time_since_last the wait time in minutes since
an effort is launched until user
makes her feedback

feedback_sentiment sentiment label for the feedback
message.

[positive_list / [true if word is
negative_list] used in feedback text]

with other feature elements from Table 1. Similarly, it
is done for characteristic_list, which contains a list of
words or phrases that would help characterize an MBT
effort. For example, words like “sale” and “promotion”
are included because they can be effective indicators
that MBT efforts including such words are related to
brand’s promotional events.

In addition to feature vector, efforts also have a
label vector. We are not only interested in the eventual
steady state of an MBT effort’s feedback, but also in the
dynamics of how rapidly the feedback is accumulated
and converges over time. To address these needs, a
label vector for each effort is used to characterize its
feedback dynamics, whose elements are presented in
Table 2. A Dynamical Label for an MBT effort, say
1hr_d_percentage, is simply the fraction of the amount
of feedback received by this effort in 1 hour over the
total amount of feedback this effort would ever receive
in lifetime. On the other hand, a Volume Label, say
10min_v_percentile, is simply the percentile rank of
this effort among all efforts by a particular brand in
terms of feedback received within 10 minutes after the
release of each effort. 6 Volume Labels characterize how
much feedback an MBT effort garners; and 6 Dynamic
Labels characterize how rapidly it does so.

Feedback: The feature representation for feedback
is shown in Table 3, which also provides explanatory
notes for each of the feature elements.



Figure 1: Graphical model for MBT. Directed arrows
denote variable dependencies. Shadow nodes represent
observable variables.

3.3 Parametrizing MBT flow After parametrizing
the user behavior and extracting features and labels,
we build a graphical model as shown in Figure 1. The
model presented in Figure 1 tries to parametrize the
conceptual flow of a complete MBT instance. When a
brand starts an MBT instance to outreach, it needs to
broadcast an effort to its fans or followers, which could
be interactive messages, promotions, etc. Then the
effort will appear to a certain number of its fans, which
is called “initial impression” of this MBT effort. Having
received the MBT effort, some fans would reply with
his or her feedback as a “like” or a message, etc. When
a user does so, her friends would automatically receive
this fact and therefore see the MBT effort even if they
are not originally fans of the brand. Such impressions
are called “meta-impression” to differentiate from initial
impression.

Effort and effort prior variables: Variable E in
Figure 1 represents an MBT effort, whose representation
is found in Table 1. Brands from different categories
should have different effort priors, so an effort prior
distribution � is used to capture the inter-category
distinction. In implementation, �, given category,
provides a prior distribution for each effort feature
defined in Table 1. As a result, � defines the difference
among categories. For example, brands from retailer
category would be more likely to include promotional
messages in their MBT efforts than news / media
category.

Impression and affinity prior variables: Vari-
able I represents initial impression of each user. In im-
plementation, I (each I

i,e

) is a single probability of user
i seeing an MBT effort e. Since potential impression
from different brands varies a lot (e.g. Coca-cola vs.
a local bakery), each brand’s impression variable has a
different affinity prior �. In implementation, � (each
�
i,m

) provides a single probability of user i seeing any
MBT effort from brand m as initial impression (red in
Figure 1). � is very sparse since each �

i,m

is non-zero
if and only if user i is a fan of Brand m. Both I and �
represent the probability of a user seeing an effort, but
� serves as a prior to I. On the other hand, I mod-
els the likelihood a user likes the contents of an effort,
while � models how likely a user likes a brand’s effort
in general.

User feedback and user prior variables:
Variable F represents feedback from each user, which
is modeled by a feature vector defined in Table 3. In
implementation, F holds the probability distribution
for each feedback feature defined in Table 3. Each
user has different propensity to interact with MBT
effort, depending on: how social she is, how much
time she spends on the Internet, etc. Assigning each
user a prior �, which is obtained from this user’s past
activities, can capture such inter-user differences. And
in implementation, � defines a prior distribution on each
feedback feature in Table 3. Finally, meta-impression

is modeled through fan users’ influence on non-fan
users. The dependencies between fan users and non-fan
users, on networks like Facebook, are essentially friends
relationship links, which are usually not available in
public datasets. As a workaround, uniform meta-
impression is assumed. In other words, every non-fan
user has equal probability of being “meta-impressed”.

With all necessary variables defined, our goal can
be translated into the model’s language. From the view-
point of a human manager of MBT campaigns, E is the
only variable under her control and she can only evalu-
ate the performance of her MBT campaign by looking at
the variables F . �

i,m

encodes the consideration for open
competitiveness, one of the key aspects that identifies
MBT. So considering the competition from rival brands,
the modeler’s goal thus becomes to find the value E0 for
variable E, at which the probability of having maximum
feedback is maximized.

(3.1) E0
= argmax

E

(Pr (F
max

|E, I, �, �,�))

Exploiting the conditional independencies gives the
following equivalent objective:
(3.2)

E0
= argmax

E

(Pr (F
max

|I,�)Pr (I|E, �)Pr (E|�))



3.4 Estimating prior knowledge Acquiring reli-
able prior information on �, �, and � is crucial to the
final results since our model heavily relies on the three
prior nodes in Figure 1.

Estimating �: Let X
i

denotes user i’s reaction
time to give any of her feedback after an effort is made.
Then the user parametrization gives X

i

⇠ �(�1i,�2i);
X

i

and X
j

are also statistically independent for any i 6=
j. Let x1, ..., xNi be user i’s historical data, where N

i

is
the number of total MBT efforts this user has responded
to and x1 is this user’s reaction time to effort 1. Then
the parameters can be estimated by maximum likeli-
hood estimation as below. Note that ˆ�1i is the shape
parameter, and ˆ�2i is the scale parameter. ˆ�1i = k

such that: ln(k) � �

0
(k)/�0

(k) = ln

⇣P
Ni

i=1 xi

/N
i

⌘
�

P
Ni

i=1 ln(xi

)/N
i

, and ˆ�2i =

P
Ni

i=1 xi

/ˆ�1i. The solu-
tion for ˆ�1i is implicit in terms of k, so in prac-
tice the following popular approximation is used
[15]: ˆ�1i ⇡ 3� s+

p
(s� 3)

2
+ 24s/12s, where s =

ln

⇣P
Ni

i=1 xi

/N
i

⌘
�
P

Ni

i=1 ln(xi

)/N
i

Thus, the prior � in
our graphical model (see Figure 1) can be estimated.

Estimating �: Now there is, for each i, ˆX
i

⇠
�(

ˆ�1i, ˆ�2i). For each effort, let ˆX1, ..., ˆXn

denote the
reaction time from n users to whom this effort reaches.
n, the impression of an effort, is unknown and is often
very difficult to estimate (therefore it is formulated as a
latent variable in Figure 1). For example, on Facebook,
n is determined by an algorithm called EdgeRank[11];
Given that, to the best of our knowledge, no previous
studies on simulating EdgeRank algorithm results exist,
n can be simply estimated by n̂ = c|FAN

m

| for brand
m, where c is an unknown nuisance parameter and is
assumed to be constant through all brands, and |FAN

m

|
is the number of fans brand m has. In other words, for
brand m and its fan user i and user j, �

i,m

= �
j,m

/
|FAN

m

|. This accounts for the prior � for each brand
from Figure 1 and allows us to estimate n with n̂.

Estimating �: This process is similar to that of
estimating �, except that, unlike �, � is not assumed to
have a parametric distribution. Therefore, � for each
category is basically represented as a set of discrete
histograms built from aggregated statistics, each of
which corresponds to one of the features defined in Table
1.

So far, all prior nodes in Figure 1 are fully specified.

3.5 Model inference In MBT, one is often inter-
ested in knowing or even predicting how much feed-
back a particular effort can gather, and how quickly
they gather. To answer such questions, we consider
ˆX(1), ..., ˆX(n̂) , the order statistics for ˆX1, ..., ˆXn̂

. Then
for a fixed effort, the probability of having feedback

from, say, at least y users in at most t seconds can be
readily written as

Pr(T  t, Y � y) = Pr(X(Y )  t, Y � y)

=

n̂X

i=y

Pr(X(Y )  t, Y = i) =

n̂X

i=y

Pr(X(i)  t,X(i+1) > t)

=

n̂X

i=y

Pr(X(i)  t)Pr(X(i+1) > t).

(3.3)

And similarly,
(3.4)

Pr(T  t, Y  y) =

yX

i=1

Pr(X(i)  t)Pr(X(i+1) > t).

Using Equation 3.3, we can answer most typical ques-
tions one may ask in MBT, namely, how much feedback
my campaign would gather on the social network in a
certain time frame; while Equation 3.4 provides a way
to estimate the entire joint density function of T and Y ,
which fulfills the effort prior � from Figure 1.

Although from Equation 3.4 the distribution func-
tion of Pr(T, Y ) can be recovered, Pr(T, Y ) may not be
computationally feasible. It is possible to solve Equa-
tions 3.3 and 3.4 but due to the large n̂ and the non-
iid nature of ˆX1, ..., ˆXn̂

, the analytical expression for
Pr(T, Y ) would be intractable in length. So instead,
Pr(T, Y ) must be rapidly approximated. Since each
ˆX(i) is independent and has different parameters, the
density function for ˆX(i) according to the definition of
order statistics can be expressed analytically [12]:

ˆX(i) ⇠

X

�2⌃̂

8
<

:

i�1Y

j=1

⇥
F
�(j)(t)

⇤
⇥ f

�(j)(t)⇥
n̂Y

k=i+1

⇥
1� F

�(k)(t)
⇤
9
=

; ,

(3.5)

where ˆ

⌃ is the set of all permutations of ˆX1, ..., ˆXn̂

, �(j)
denotes the jth random variable in a particular permu-
tation �, F

�(j) is the cumulative distribution function
for the random variable identified by �(j), and simi-
larly f

�(j) is the density function for the random vari-
able identified by �(i). In our case, the density func-
tions and distribution functions are all Gamma func-
tions with different parameters. Equation 3.5 certainly
provides a mechanism to finding the order statistics
and therefore completes our quest. But Equation 3.5
yields intractable calculations due to the size of permu-
tation set, which is irreducible because of the hetero-
geneity in ˆX(1), ..., ˆX(n̂). However, we empirically find



Figure 2: Order statistic densities empirically converge
to normal approximation at large N .

out that for large n̂, ˆX(i) can be conveniently approxi-
mated. Figure 2 illustrates this idea of approximation.
Figure 2 first plots the distribution of X(3), with each
X(i), i = 1, 2, 3, ..., N , being Gamma, at both N = 5 and
N = 10; then we plot X(300) when N = 10, 000, which
is compared with its Normal approximation in dashed
curve. Figure 2 suggests that order statistics of Gamma
distributions at large N values can be approximated by
corresponding Normal densities. In other words, the
estimator ˆX(i) is approximated by ˜X(i), where

(3.6) ˜X(i) ⇠ N
⇣
E

h
ˆX(i)

i
, s2

⌘
, where

s2 =

P
n̂

j=1(E[

ˆX(i)] � E

K

[E[

ˆX(j)]|K = j])/(n̂ � 1) =

P
n̂

j=1(E[

ˆX
i

]�E

K

[E[

ˆX
j

]|K = j])/(n̂� 1). Both E[

ˆX(i)]

and s2 are straightforward to compute. This approx-
imation reduces the computational cost from O(n!) to
O(n).

4 Experiments
In this section, we evaluate our MBT model on two
important applications: predicting the performance
of MBT efforts and discovering effective MBT con-
tents. Facebook datasets are used in our experiments,
and goodness-of-fit tests are performed to validate our
model.

Table 4: Facebook dataset basic statistics.
Category Electr- Food Product Cars

onics beverages service
Brands 34 346 614 91
Efforts 19.4K 169.4K 424.6K 46.2K
Feedback 1.49M 13.8M 21.0M 2.24M
Total
fans

2.45M 5.42M 28.3M 13.3M

Active 353K 410K 1.02M 721K
fans (%) 14.4% 7.51% 3.61% 5.40%
Feedback 4.20 33.7 20.5 3.12
_per_fan (0.605) (2.53) (0.741) (0.168)
avg_wait 176.0 106.1 234.3 222.9
(minutes)
avg_ 0.284 0.309 0.298 0.521
sentiment
feedback_ 41.6 47.0 72.1 71.9
half_life
(minutes)

Figure 3: Effort vs feedback.

4.1 Datasets and model validation. Table 4 sum-
marizes some statistical properties of our datasets. The
datasets include over 1000 Facebook brand walls from
four categories with different volumes of interactions
with fans. In Table 4, “Feedback_per_fan” measures
the average amount of feedback by an active fan while
the number in parentheses is the average amount of feed-
back by a fan, active or inactive; “avg_wait” is the av-
erage number of minutes for a user to respond to an
MBT effort with his/her feedback; “avg_sentiment” is
the percentage number, averaged over all efforts, of feed-
back, whose sentiment is identified as positive, among
all feedback; “feedback_half_life” is the amount of time
needed for an effort, averaged over all efforts, to gar-
ner 50% of all feedback that it would eventually collect.
Figure 3 substantially reveals the dynamics in MBT and
what it reveals corroborate our model. Fan activities are
strongly tied to MBT efforts in a particular, repeatable,
even mechanical kind of dynamics. For example, the



Figure 4: Hourly feedback distribution.

red crosses (Cars MBT efforts) and the responding blue
curve (Cars feedback) between day840 and day845 con-
firm the outreach-and-feedback model. In addition, the
five red crosses around day815 confirms the conjecture
about the linear additivity of the appeal of consecutive
MBT efforts, which is part of our proposed model.

Furthermore, the Day-Of-Week (DOW) pattern in
daily feedback volume change, which is often consid-
ered essential in coarse-granularity targeting, is not
clearly shown in Figure 3. In previous works on coarse-
granularity targeting like [2], the DOW pattern clearly
indicates repeatedly and significantly more active user
feedback on, say, Friday and Sunday, over several weeks;
but a similar pattern is not found in our datasets. Like-
wise, neither the Hour-Of-Day (HOD) pattern is clear
from Figure 4. The argument here is not against the ex-
istence of DOW/HOD pattern. On the contrary, they
are quite important for us (after all, both patterns are
included in the feature vectors for effort in Table 1).
With the goodness-of-fit tests on the feedback distri-
butions presented in Figure 3 and Figure 4, we claim
that the DOW/HOD influence is expressive through the
placements of MBT effort and is not directly onto the
user feedback. In other words, DOW / HOD influence
and user feedback are conditionally independent once
given the MBT efforts, to which all feedback is tied to.
The details of goodness-of-fit tests performed are pre-
sented in the supplementary file. 1

4.2 Predicting MBT effort performance Here,
we compare our model to previously state-of-the-art
results [16] on predicting the performance of MBT
efforts.

Baseline approach: The baseline method chosen
is based on what is presented in [16]. Our implementa-

1
http://cucis.ece.northwestern.edu/publications/pdf/

sdm2013_mbt_supp.pdf

tion basically employs a classifier that considers effort
features defined in Table 1 and classifies on the effort
labels defined in Table 3. Each of the 12 labels from Ta-
ble 3 are trained and classified independently into one of
the 5 categories: “very less” (10% of sample maximum)
/ “less” (30% of sample maximum) / “mediocre” (50% of
sample maximum) / “high” (70% of sample maximum)/
“every high” (90% of sample maximum) amount of at-
tention received. Then the numerical amount of feed-
back, based on which category the effort is classified
into, is taken as the median of the amount of feedback
of the efforts that are classified into this category. In
order to obtain the 12 labels on the training data, MBT
feedback timestamps are taken into consideration. But
the feedback authorship,feedback sentiment information
are ignored in this approach. The baseline classifier, in
addition to lifetime feedback prediction, can also pro-
duce dynamic prediction of feedback popularity: simply
predict on incremental time intervals (e.g., initial hour,
initial 3 hours, initial 8 hours, etc.).

Evaluation methodology: Figure 5 compares
the performance of the proposed model and the base-
line approach. Figure 5 shows that, in all four cate-
gories, our prediction outperforms the previously pro-
posed state-of-the-art approach presented in [16] by var-
ious margins; our prediction curves maintain better ac-
curacies, in terms of feedback volume, over a longer
period of time and can more precisely model the dy-
namics over time as well. The continuous prediction
from our model is quantized into the same granular-
ity as the baseline prediction and their regression per-
formance is compared in Table 5. In most cases, the
predictive R2 of our model is significantly better than
that of the state-of-the-art approach. The advantage
of our method mainly comes from direct specification
of the dependencies in the MBT dynamics (captured in
our graphical model) and a wider consideration of MBT
features, which include high level semantic sentiments.

4.3 Discovering effective MBT contents In ad-
dition to the ability to predict the performance of MBT
efforts, it is equally interesting and more practical if the
model produces more effective MBT efforts by automat-
ically optimizing contents. Textual message is probably
the foremost and the most natural type of contents that
can be optimized. Thanks to our general modeling, solv-
ing the objective proposed in Equation 2.3 can optimize
the contents. Table 6 summarizes some of the most
interesting findings. For each of the four categories, Ta-
ble 6 records the phrases that are most correlated to
the popularity of its mentioning MBT efforts, using the
correlation measure defined below.



Figure 5: Cumulative feedback distribution and model
/ baseline predictions.

Table 5: Model / baseline prediction performance.
Category Period Our Model Baseline

R2 R2

10min 0.7624 0.3542
1hr 0.7614 0.3356

Product/service 8hr 0.7629 0.3440
24hr 0.7583 0.3522
48hr 0.7549 0.3495
7day 0.7632 0.3508
10min 0.8189 0.5416
1hr 0.8133 0.5290

Electronics 8hr 0.8041 0.5088
24hr 0.7867 0.4726
48hr 0.7882 0.4862
7day 0.7643 0.4987
10min 0.7428 0.6168
1hr 0.7363 0.6583

Food/beverage 8hr 0.7355 0.7144
24hr 0.7371 0.7199
48hr 0.7165 0.6861
7day 0.7309 0.6671
10min 0.7537 0.4182
1hr 0.7648 0.4116

Cars 8hr 0.7522 0.4353
24hr 0.7679 0.4544
48hr 0.7911 0.4381
7day 0.8498 0.5161

Correlation Let O be the set of all MBT efforts
in a category. Suppose there are m MBT efforts
mentioning a phrase p and let M be the subset of O that
contains all efforts containing the phrase p. Now Let N
be the subset of O that contains the most popular efforts
in terms of feedback they received. The pre-normalized

correlation is simply |N\M |/|N |. Then the correlations
are renormalized by setting the largest pre-normalized
correlation to 1 and other correlations will be inflated
accordingly. The phrases are not discovered by sorting
them in descending order based on correlation; instead,
they are obtained by solving Equation 2.3. Correlation
is used to quantify the results in a solid and visual way.

A few remarks about our findings:

• N -gram phrases with N = 1, 2, 3, instead of simple
1-gram, are considered in experiment.

• Non-English entries suggest the multilingual capa-
bility of our model.

• Some terms (e.g. favorite, free, share, etc.) appear
at the top across multiple categories while other
terms (e.g. Product/service’s movie, Cars’ sport,
etc.) are more domain-specific.

With an incremental amount of work, similar correla-
tion results can be extracted on, not only text features,
but also other dimensions including HOD, DOW, mul-
timedia features, etc. [22].

5 Conclusion and future work
In this paper, an emerging class of MBT online market-
ing challenges in social networks is introduced. MBT
differs from traditional targeting mechanism by two of
its distinctions: open competitiveness and viral mar-
keting effect. Unlike most previous related works, a
two-parametric Gamma assumption is used to model
user behavior. A linear-time approximation is devised
and applied to the user behavior distributions, whose
order statistics would otherwise be exponentially com-
plex in computing time. A probabilistic model, based
on the parametric assumption of user behaviors, is pro-
posed to incorporate the two aforementioned distinc-
tions of MBT. Experimental results show advantages of
the proposed model over the state-of-the-art approach in
predicting MBT behaviors. An interesting direction to
further explore would be incorporating network-based
model and weaker assumptions for the viral effect of
MBT influence.
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Table 6: Phrases most correlated to effort popularity.
Category Top Phrase Correlation

favorite 1.000
friends 0.878
app, apps 0.798
win 0.704

Product/service movie 0.680
play 0.671
share 0.642
choice 0.579
win 0.501
free 1.000
app, apps 0.827
forever 0.749
win 0.688

Electronics share 0.612
future 0.589
amazing 0.571
facebook 0.550
�åô$Ì⌦ 0.549
(Samsung)
free 1.000
win 0.911
like, likes 0.903
find out 0.797
cerveza 0.784

Food/beverage (beer)
morning 0.774
yum, yummy 0.765
cookies 0.763
sour cream 0.754
favorite 1.000
share 0.891
sport 0.860
dream 0.806

Cars summer 0.762
bring back 0.599
check 0.559
leather 0.548
heute 0.463
(today)
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