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ABSTRACT
We investigate sampling techniques in unbalanced heteroge-
neous bipartite graphs (UHBGs), which have wide applica-
tions in real world web-scale social networks. We propose
random walked-based link sampling and stratified sampling
for UHBGs and show that they have advantages over generic
random walk samplers. In addition, each sampler’s node
degree distribution parameter estimator statistic is analyt-
ically derived to be used as a quality indicator. In the ex-
periments, we apply the two sampling techniques, with a
baseline node sampling method, to both synthetic and real
Facebook data. The experimental results show that random
walk-based stratified sampler has significant advantage over
node sampler and link sampler on UHBGs.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Random walk, Network sampling, Heterogeneous bipartite
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1. INTRODUCTION
A bipartite graph is a graph whose vertices can be divided

into two disjoint sets U and W such that every edge connects
a vertex in U to one in W . More formally, a bipartite graph
G is defined as G = (U ∪W,E) where U = {ui|1 ≤ i ≤ |U |},
W = {wj |1 ≤ j ≤ |W |}, and E ∈ U ×W [9]. G is called a
heterogenous bipartite graph (HBG) when its vertices from
U and W model physically distinct categories [3].

Many popular online activities from social networks can be
naturally modeled as HBGs [3]. In the study of employment
and labor market dynamics, the individual users on LinkedIn
can be considered as U , the user nodes, and the companies
or employers as W , the wall nodes. Another example, from
celebrities’ or public brands’ point of view, would be the fan
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engagement on social channels like Facebook. In this case,
W consists of the public pages such Justin Bieber1, Samsung
Mobile USA2, etc.; and U consists of individual Facebook
users who “like” any such public pages. On websites like
Youtube, the uploaded videos comprise W ; and the users
who view or comment on the videos comprise U .

The overwhelming popularity of online social networks
has enriched web data with evolving interactions and com-
munities both at mega-scale and in real-time. Social me-
dia is producing massive amounts of data with volume, ve-
locity, and variety at an unprecedented scale. A special
class of bipartite graphs, unbalanced heterogeneous bipar-
tite graphs (UHBGs), is emerging from web-scale data. For
example, Facebook may have over 1 billion active users, but
only about 2,500 official public pages are registered on Face-
book3. Now investigating Facebook user’s interest distribu-
tion among public figures and brands would entail building
a huge UHBG, where U contains a few thousand wall nodes
and W contains hundreds of millions of user nodes.

One way to overcome the difficulty in processing ever-
growing UHBGs is to use sampling. But generic sampling
methods can be inefficient for UHBGs because of the large
node degree difference among the nodes on the two sides of
the UHBG. On the other hand, most UHBGs constructed
from social data have known node degree distributions, which
could be used to improve current generic sampling meth-
ods if properly incorporated. Being aware of the large node
degree difference among the nodes in UHBG, the sampler
can better allocate resources by avoiding redundant visits
to nodes with high degrees.

1.1 Our contributions
In this paper, we develop two sampling techniques, link

sampling and stratified sampling for UHBGs, based on ran-
dom walk by incorporating the node degree distribution in-
formation. Instead of simply taking uniformly random links,
our random walk-based link sampling deploys Metropolis-
Hastings algorithm to uniformly sample nodes. The random
walk-based stratified sampling further improves on link sam-
pling by selecting the user nodes more efficiently. In addi-
tion, each sampler’s node degree distribution parameter is
analytically estimated and Maximum Likelihood Estimator
(MLE) is used as a metric of the sampled network. We eval-
uate the performance of the two samplers with a baseline
node sampling method on both synthetic and real datasets.

1http://www.facebook.com/JustinBieber
2http://www.facebook.com/SamsungMobileUSA
3According to http://voxsup.com



Algorithm 1: Random Walk-based Link Sampling

Input: β̂W and β̂U , desired sampling densities
Output: W ′, sampled wall nodes; U ′, sampled user

nodes;E′, sampled edges
1 w ← initial wall node
2 βW ← 0, βU ← 0,W ′ ← {w}, U ′ ← {}, E′ ← {}
3 while βW ≤ β̂W or βU ≤ β̂U do
4 u← a random neighbor of w
5 v ← a random wall node from W ′

6 if βW ≤ β̂W then
7 w ← a random neighbor of u
8 else
9 w ← a random wall node from W ′

10 end

11 if True with probability PMH
w,v then

12 append (u,w) to E′; append u to U ′

13 append w to W ′; increment βU

14 increment βW when βW ≤ β̂W
15 end

16 end
17 return W ′, U ′, E′

2. RELATED WORK
Bipartite graphs, especially heterogeneous bipartite graphs

emerge as a central topic in many social studies [3]. In-
vestigating online user’s interest distribution among public
brands and celebrities from UHBGs is an important topic
and is a prerequisite for many popular applications such as
online recommendation systems [9]. To produce real-time
recommendations is often desired in most online activities
such as video recommendation on Youtube. In order for col-
laborative filtering algorithms to efficiently serve the users,
robust sampling techniques are very useful. But to the best
of our knowledge, little work has been done on the sampling
techniques for heterogeneous bipartite graphs.

[1] and [2] investigate novel samplers in the domain of large
(social) graphs. The techniques described in [1] and [2] are
directly based on random walk and the Metropolis-Hastings
sampler [4] and are applied to general graphs. Powerful
and general as they are, these methods are not the best fit
for UHBGs. Because in UHBGs the degree of a wall node
can be orders of magnitude higher that that of a user node,
a generic random walker will be skewed and “trapped” by
the wall nodes due to their high degrees. Directly apply-
ing Metropolis-Hastings algorithm would give each node an
equal chance to be picked but this is done by controlling the
traditional probability, which can prolong sampling time to
achieve the same sampling density. In this work, we com-
bine random walk and Metropolis-Hastings algorithm and
modify the techniques to better suit the characteristics of
UHBGs.

3. SAMPLING A SOCIAL NETWORK

3.1 Assumptions, evaluations, and notations
A sampled graph should, at least on a statistical level,

preserve certain properties essential to a graph. A graph’s
node degree distribution is one of such properties. Previous
works such as [7] and [6] describe power-law distributions

Algorithm 2: Random Walk-based Stratified Sampling

Input: β̂W and β̂U , desired sampling densities
Output: W ′, sampled wall nodes; U ′, sampled user

nodes;E′, sampled edges
1 wi ← initial wall node
2 βW ← 0, βU ← 0,W ′ ← {wi}, U ′ ← {}, E′ ← {}
3 while βW ≤ β̂W or βU ≤ β̂U do
4 wk ← a random wall node from W ′

5 append wi to W ′

6 βU,i ← 0

7 if βW ≤ β̂W then
8 wi ← a random neighbor of u

9 increment βW with probability PMH
wi,wk

10 else
11 wi ← a random wall node from W ′

12 end

13 if True with probability PMH
wi,wk

then
14 while βU,i · |wi| ≤ βU ·

∑
wj∈W ′ |wj | do

15 u← a random neighbor of wi
16 s← a random user node from U ′

17 if True with probability PMH
u,s then

18 append (u,w) to E′; append u to U ′

19 increment βU , βU,i
20 end

21 end

22 end

23 end
24 return W ′, U ′, E′

that are ubiquitous in social networks. In our analysis, we
assume that the node degrees in an UHBG follow discrete
power-law distribution [7], pow(γ), whose probability mass
function (pmf) is ppow(k|γ) = ζ−1(γ) · k−γ , k = 1, 2, ...,
where γ is the distribution parameter and ζ(γ), the Rie-
mann zeta function, is necessary to normalize ppow(k|γ) to
a proper pmf.

In the following analysis, Xi denotes a pow(γW ) random
variable for a wall node and Yi denotes a pow(γU ) random
variable for a user node. β denotes the sampling fraction,
which is calculated as the ratio of sampled nodes to all nodes
in the original graph.

3.2 Random Walk Sampling
Random walk on graphs is a well studied topic [4]. A

traditional random walker moves from current node w to
the next node v by choosing v uniformly from the neighbors
of w. That is, the random walker moves from w to v with
probability:

PRWw,v =

{
1
|w| , if v is a neighbor of w

0, otherwise
(1)

In addition to the basics, a practical random walker often
has a reset probability, which, at each step, can send the
walker back to the starting node with certain probability.
To prevent the random walker from being stuck within a
component or clique, which could happen if the walker starts
very close to a major sink of the graph, a random walker usu-
ally executes several times on the same graph with different
starting nodes.



A major drawback of random walk sampling is the bias
it introduces into the sampled graph. Nodes with higher
degrees are much more likely to be chosen because PRWw,v
makes the probability of a node to be visited proportional
to its degree [1].

3.3 Random Walk-based Link Sampling
Generally speaking, link sampling (LS) randomly selects

links between the heterogeneous nodes. The selected links
and connecting nodes are kept in the sampled graph. Often
in practice, randomly is technically interpreted as uniformly
random. However, uniform LS is biased towards high-degree
nodes in unbalanced graphs like UHBGs because it is imple-
mented as a random walk algorithm. Such bias in the sam-
pling process can be avoided by introducing proper transi-
tional probabilities. Instead of using PRWw,v from Equation 1,
The Metropolis-Hastings algorithm [5] provides an alterna-
tive PMH

w,v in Equation 2.
Unlike other applications of the Metropolis-Hastings algo-

rithm in random walk sampling [1], w and v in Equation 2
are not neighbors but homogeneous nodes on the same side
in a UHBG. Based on this idea, Algorithm 1 implements a
random walk-based LS, which has a transitional probability
PMH
w,v at each step.

PMH
w,v =


min

(
1
|w| ,

1
|v|

)
, if w, v ∈W ′ and w 6= v

1−
∑
x6=v P

MH
w,x , if w = v

0, otherwise

(2)

Algorithm 1 is unique to UHBGs and brings several advan-
tages over generic random walkers. First, it allows the two
sides to be sampled independently with independent sam-
pling densities. The number of nodes (and the degrees of
the nodes) vary so much on two sides of UHBGs that it
does not make sense to sample them using any homoge-
neous algorithms. Second, Algorithm 1 is still based on the
Metropolis-Hastings algorithm and, within either side of the
UHBG, can sample the nodes with even probability.

In addition to describing the LS sampling algorithm, we
need to derive the Maximum Likelihood Estimator (MLE)
formula for the distribution parameter in the node degree
distribution as it is used to evaluate the sampling perfor-
mance. By the symmetry of UHBGs, it suffices to analyze
the node degree estimation from wall nodes. Suppose, for
1 < i < βW |W |, Xi∼pow(γW ) from the original graph.
Then we are able to implicitly solve for γ̂W (LS), the MLE
for γW from link sampling, as

βW |W |ζ′ (γ̂W (LS)) + ζ (γ̂W (LS))

βW |W |∑
i=1

ln(Xi) = 0, (3)

and γ̂U (LS) is derived in an analogous fashion. Because of
the involvement of the Riemann zeta function, we cannot
find satisfactory closed forms for the MLEs.

3.4 Random Walk-based Stratified Sampling
A practical problem with the random walk-based LS is

that when it is applied to web-scale UHBGs, it actually can-
not efficiently sample the user nodes due to the low accep-
tance rate of PMH

w,v in Equation 2. In UHBGs, wall nodes
tend to have very high degrees, which diminishes the prob-

ability of acceptance, min
(

1
|w| ,

1
|v|

)
.

A workaround of this problem is to use stratified sampling
(SS) and sample the user nodes independently for each sam-
pled wall node. Once a wall node wk is chosen by probabil-
ity PMH

wi,wk
, the SS sampler will again apply the Metropolis-

Hastings algorithm to sample the user nodes linked to wk.
This scheme solves two problems. First, it improves the
overall user node sampling efficiency. Second, it accommo-
dates the degree differences among the wall nodes. That is,
the number of user nodes linked to wk visited by SS is pro-
portional to the degree of wk. Algorithm 2 incorporates the
above ideas and implements random walk-based SS.

In addition to Algorithm 2, SS also has a different MLE
formula from LS method. Select Xi∼pow(γW ) for 1 < i <
βW |W |. Then for each Xi, user nodes linked to wi are se-
lected: Yi,j∼pow(γU,i) ·1{linked with Wi}, for 1 < j < βU |wi|,
where γU is normalized to γU,i due to the indicator function.
We are able to implicitly solve for each MLE γ̂U,i as

βU |wi|ζ′ (γ̂U,i) + ζ (γ̂U,i)

βU |wi|∑
j=1

ln(Yj,i) = 0. (4)

We then propose γ̂U (SS) =
∑βW |W |
i=1 γ̂U,i · |wi|/|W | as the

SS MLE for γU . In our estimator, parameters βW and γi,U
control the stratification and allocation, respectively. The
formula for γ̂W (SS) is the same as γ̂W (LS).

4. EXPERIMENTS

4.1 Baseline and Datasets
Node sampling (NS) is employed as a baseline sampler in

our experiments. NS randomly selects a number of nodes.
And only those links, both of whose end nodes are in the
selection, are kept in the sampled graph.

Three datasets are used in our experiments:
SYN Synthesized data set that contains 2000 wall nodes,

1 million user nodes and 4 million edges. The dataset
is generated using power law distributions with γW
=1.830 and γU =1.295.

FB Public data collected from Facebook’s Graph API from
2011 January to 2012 March. 5831 wall nodes are cho-
sen to be the most popular public walls on Facebook
in terms of page likes. 143 million user nodes, as well
as 520 million edges, are included in this dataset. Part
of this Facebook dataset has been publicly release [8]

LNK Public data collected from LinkedIn. This dataset
contains 34 wall nodes, each of which corresponds to
a public profile of an employer, 1.1 million associated
user nodes, and 4.2 million edges.

Note that the three datasets are chosen to have different
statistical characteristics. Table 1 summarizes important
properties of the three datasets. Table 2 summarizes the
estimations from the three mentioned samplers: Node Sam-
pler (NS), Link Sampler (LS), and Stratified Sampler (SS).
Table 2 also provides the sampling densities, βW and βU , on
each dataset.

4.2 Performance of the samplers
Table 2 presents the three MLE estimates of γW and γU

for the datasets SYN, FB, and LNK. The estimates obtained
by using full data are regarded as ground truth. bold face
cells indicate the best estimates. Overall, SS performs the
best among all three methods. Both LS and SS outperform
the baseline NS.



Table 1: SYN, FB1, and FB2 datasets
Metric SYN FB LNK
Wall nodes 2,000 5,831 34
User nodes 1 million 143 million 1.1 million
Edges 4 million 520 million 4.2 million
Edges per wall 2,000 89,179 123,529
Edges per user 4.00 3.64 3.82
users per wall 500 24,524 32,353

Table 2: Parameter estimations
Parameter SYN FB LNK
βW 0.1000 0.0343 0.1321
βU 0.05000 0.0006981 0.01352
True γW 1.830 1.706 2.383
γ̂W NS 1.533 2.259 1.552
γ̂W LS 1.601 1.394 2.898
γ̂W SS 1.759 1.466 2.409
True γU 1.295 2.289 10.75
γ̂U NS 1.508 3.501 12.08
γ̂U LS 1.579 3.029 7.205
γ̂U SS 1.392 1.894 9.743

Figure 1 visualizes the findings from Table 2. The “Full
Data” curves in the mentioned figures are the actual dis-
crete degree distribution from the entire bipartite graphs.
The other three smooth curves are continuous power-law
distributions generated from the parameters estimated by
the three sampling methods.

5. CONCLUSION AND FUTURE WORK
In this work, we addressed the sampling problem in a

class of unbalanced heterogeneous bipartite graphs (UH-
BGs) from social networks and proposed two random walk-
based sampling techniques for the UHBGs. The experimen-
tal results showed that our techniques outperform the base-
line approaches on both synthetic dataset and real world
datasets. In the future, we plan to investigate the impact of
each sampling technique on other statistical and topological
properties of the graphs.
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