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A Machine Learning-Based
Design Representation Method
for Designing Heterogeneous
Microstructures
In designing microstructural materials systems, one of the key research questions is how
to represent the microstructural design space quantitatively using a descriptor set that is
sufficient yet small enough to be tractable. Existing approaches describe complex micro-
structures either using a small set of descriptors that lack sufficient level of details, or
using generic high order microstructure functions of infinite dimensionality without
explicit physical meanings. We propose a new machine learning-based method for identi-
fying the key microstructure descriptors from vast candidates as potential microstructural
design variables. With a large number of candidate microstructure descriptors collected
from literature covering a wide range of microstructural material systems, a four-step
machine learning-based method is developed to eliminate redundant microstructure
descriptors via image analyses, to identify key microstructure descriptors based on struc-
ture–property data, and to determine the microstructure design variables. The training
criteria of the supervised learning process include both microstructure correlation func-
tions and material properties. The proposed methodology effectively reduces the infinite
dimension of the microstructure design space to a small set of descriptors without a
significant information loss. The benefits are demonstrated by an example of polymer
nanocomposites optimization. We compare designs using key microstructure descriptors
versus using empirically chosen microstructure descriptors as a demonstration of the
proposed method. [DOI: 10.1115/1.4029768]
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1 Introduction

Trial-and-error procedures are the traditional way of material
design, which has been mostly guided by experiences and
heuristic rules in materials classification, selection, and property
predictions. Applying heuristic rules to existing materials
databases for searching combinations of processing procedure or
material constituents [1,2] is time-consuming and resource inten-
sive; however, microstructure information is often not considered
in this process. Constituent-based design approach has relied on
heuristic search to choose proper material compositions from
materials databases [3,4], but this approach no longer suffices in
designing complex microstructural materials systems. To fully
explore the potential of computational material design and accel-
erate the development of advanced materials, “microstructural-
mediated design of materials” [5,6] has gained more attention.
With this new paradigm, materials are viewed as a complex
structural system that has design degrees of freedom in choices of
composition, phases, and microstructure morphologies, which
can be optimized for achieving superior material properties. In
particular, the morphology of microstructure (i.e., the spatial
arrangements of local microstructural features) has a strong
impact on the overall properties of a materials system. Taking
polymer nanocomposites as an example, microstructure percola-
tion determines the electrical conductivity, and the quantity of
fillers’ surface area determines the damping properties [7].

Furthermore, heterogeneity in microstructure is the root cause of
material randomness at multiple length scales.

There are two major categories of methods: correlation func-
tions and physical descriptors, for quantifying the morphology
and heterogeneity of microstructures (also known as “statistical
characterization”). The microstructure information of heterogene-
ous materials can be accurately captured via N-point correlation
functions [8–11]. As a balance between computational cost and
accuracy, the two-point correlation function (autocorrelation) [12]
is widely adopted in practice. However, correlation functions lack
clear physical meanings. It is inconvenient to design an optimal
correlation functions as they are infinite dimensional [13,14]. Fur-
thermore, correlation function-based microstructure reconstruc-
tions are either computationally expensive (when using the pixel
moving optimization algorithm [15]), or lacking of stochasticity
(when using the phase recovery algorithm [16]). With the physical
descriptor-based approach, microstructures are represented by
physically meaningful structural parameters (descriptors), such as
volume fraction, particle number, and particle size. In our recent
research [13], we classified microstructure descriptors into three
categories: composition, dispersion, and geometry. The major
strengths of physical descriptors are the clear physical meanings
they offer and meaningful mappings to processing parameters
[17]. We have developed a descriptor-based methodology for
characterization and reconstruction of polymer nanocomposites
[14,18]. However, the descriptors were chosen based on experien-
ces. A systematic approach of identifying key microstructure
descriptors as material design variables is needed.

Material informatics [19,20] is a growing area that leverages
information technology and data science to represent, parse, store,
manage, and analyze the material data. The goal is to share and
mine the data for uncovering the essence of materials, and
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accelerate the new material discovery and design [21]. Data min-
ing and machine learning techniques have been applied to exploit
material databases and discover trends and mathematical relations
for material design. To manage the information complexity of
using large-dimensional representations of microstructures, recent
work has attempted unsupervised microstructure dimensionality
reduction via manifold learning [9] and kernel principal compo-
nents [22]. However, dimension reduction of microstructure
parameters considering the microstructure only does not reflect its
impact on material properties of interest so that the reduced
parameter set does not address the direct need of material design.
Supervised learning [23], a concept in machine learning where
labeled training data are used to infer a relationship, has been
employed in establishing the process–composition–property rela-
tion for metals [1,2] and predicting polymer composites’ proper-
ties based on the composition–property database [24–26].
However, limited efforts have been made on modeling the micro-
structure–property relation using statistical learning and further
reducing the high dimensionality of microstructure representa-
tions obtained from analyzing microscopic images.

High dimensionality is handled in machine learning by feature
selection and extraction, to reduce the number of variables in a
system by either selecting a subset of relevant features, or trans-
forming the original high-dimensional feature space into a space
of fewer dimensions. Both selection and extraction can be either
supervised or unsupervised. The transformation incurred by
extraction methods usually refers to a linear or nonlinear combi-
nation of the original variables, in order to construct new features
for improved description of data. In this regard, extraction meth-
ods are not suitable for our needs. We rather want to retain the
clear physical meanings of features (descriptors) so as to use them
as design variables. Feature selection, on the other hand, chooses
a subset of more informative features from the original set and
well fits our scenario. Only looking at the microstructure descrip-
tors forms an unsupervised learning process. If the corresponding
responses (behavior) of microstructures, in our case, the morphol-
ogy and properties, are also available, supervised learning
provides more insights in the selection process.

Existing supervised feature selection methods typically involve
developing heuristics or measures to evaluate the worth of
features. Examples of heuristics developed in literature include
information gain [27], Gini index [28], Chi-square, and other
distance measures. The limitation is that they can only handle
discrete variables as the supervisory signal, as when the desired
output is within a set of a small number of known labels. How-
ever, both microstructure correlation functions and properties in
our case are provided as continuous values, and therefore pose
challenges for the feature selection procedure. What’s more, dis-
tance measure based heuristics do not take into account the feature
interactions and dependencies, for example, the surface area of fil-
ler phase and that of matrix phase in our descriptor group have a
high dependency, which cannot be appropriately addressed by
common distance measures. The family of Relief algorithms,

beginning with the basic form of Relief [29] and being later
adapted into RelifF [30] and RReliefF, are efficient and effective
heuristic measures that correctly estimate the quality of features
considering their capability of differentiating opposite-class train-
ing examples. The first two in the family are developed for dis-
crete problems. RReliefF [31], the algorithm employed in this
research, accounts particularly for continuous problems. For
simplicity, we refer it as Relief.

In this paper, we propose a four-step machine learning method-
ology for identifying the key microstructure descriptors as poten-
tial material design variables. In step 1, image analysis is applied
to gather an initial set of potential microstructure descriptors
(Sec. 2), to understand the dependencies among the descriptors
and the topological constraints of the microstructure morphology
(Sec. 3.1). In step 2, an image analysis-based supervised learning
further reduces the descriptor set by analyzing each descriptor’s
influence on the microstructure morphologies represented by the
correlation functions (Sec. 3.2). In step 3, material property-based
supervised learning is employed using data obtained from
physics-based simulations or from literature for further dimension
reduction to identify the key set of descriptors (design variables)
that have the largest impact on properties of interest (Sec. 3.3). In
step 4, microstructure design variables are selected from key
descriptors (Sec. 3.4) by maximizing the impact score and
minimizing the dependency. We demonstrate the strength of the
proposed method with the design of polymer nanocomposites
(Sec. 4).

2 Technical Background of Statistical

Microstructure Representations

In this section, we provide the technical background of micro-
structure characterization with the example of biphase
nanoparticle-reinforced polymer composite. Statistical micro-
structure characterization enables a quantitative understanding of
the microstructure–property relationship. Two types of micro-
structure characterization techniques are introduced: correlation
function-based method (Sec. 2.1) and descriptor-based method
(Sec. 2.2). We also summarize a list of commonly used descrip-
tors covering composition, dispersion status, and geometry infor-
mation of the inclusions.

2.1 Correlation Function-Based Microstructure Charac-
terization. A wide range of microscopic imaging techniques such
as scanning electron microscopy (SEM) [7,32] and transmission
electron microscopy [33] are applicable to obtain the digital
microstructure images for statistical characterization. In the step
of image preprocessing, the biphase microstructure images are
denoised and binarized with the volume fraction of each phase
maintained. In the binary image, pixels in the matrix phase are
marked by “0” and pixels in the filler phase are marked by “1.”
Figure 1 illustrates the transformation of the gray scale SEM

Fig. 1 SEM images of polymer nanocomposites, binary image, and correlation function-
based characterization
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image (left) to a binary image (middle), where black pixels repre-
sent nanoparticle filler and white pixels represent polymer matrix.
The binary pixelated images are used in both correlation function-
and descriptor-based characterization.

In this work, we collect four types of correlation functions
[34,35]: two-point correlation function (nondirectional two-point
autocorrelation functions), (two-point) surface correlation func-
tion, lineal path function, and radial distribution function (Fig. 1),
which are widely used for an accurate representation of
microstructure with affordable computational costs. Correlation
functions are functions of distance r. These four correlation func-
tions are complementary to each other, emphasizing on different
aspects of microstructure features. Characterization using
multiple correlation functions together has been reported in
Refs. [15,34,36]. For biphase heterogeneous polymer nanocompo-
sites’ microstructure studied in this work, it is assumed that the
aforementioned four correlation functions can adequately describe
the filler morphology.

2.2 Descriptor-Based Microstructure Characterization. A
descriptor-based approach is proposed in our prior work to repre-
sent microstructure morphologies using three levels of microstruc-
ture features [14]: composition, dispersion, and geometry (Fig. 2).
Composition descriptors distinguish different phases and describe
their volume/weight percentage in the material, such as volume
fraction of filler in polymer composites. Dispersion status
descriptors depict the inclusions’ spatial relation and their neigh-
bor status, such as the nearest neighbor distance, number of filler
clusters [11,32,37,38], etc. Geometry descriptors are on the lowest
length scale, which describe the inclusions’ shapes. Geometry
descriptors include the inclusions’ size distribution, surface area,
surface-to-volume fraction, roundness, eccentricity, elongation,
rectangularity, tortuosity, aspect ratio, etc. [8–10,32,38–42]. The
descriptor-based methodology is featured by four strengths: the
well-defined physical meaning of microstructure characteristics,
the high correlation with material properties, the low computa-
tional cost in characterization/reconstruction, and the low dimen-
sionality of parameterized microstructure characteristics that
enables parameter-based optimal microstructure design. With a
sufficient descriptor set, high orders of microstructure information
can be captured [14].

In this paper, we collect a large set of descriptors from literature
as candidates of microstructure design variables. This section cov-
ers descriptors used in polymer nanocomposites, alloy, fiber com-
posites, ceramic composites, etc. In previous works, different
descriptors are chosen for different materials based on expertise.
Often times, the descriptors used in a single work only capture the
microstructure features that are highly related to the interested
properties, while all the other microstructure features are
neglected. Therefore, to avoid bias in the key descriptor learning,
it is necessary to include a wide range of descriptors from differ-
ent types of materials. The full candidate descriptor set is referred
to as the “full descriptor set” in this paper. The collection of
descriptor titles and their definitions are provided in Table 1.
There are 17 descriptors in the list, in which each statistical
descriptor is represented by four parameters (first to fourth

order moments). In total, the 17 microstructure descriptors are
represented using 56 descriptor parameters.

3 Machine Learning-Based Identification

of Key Descriptors

In the presence of a large number of microstructure descriptors,
the key research questions is how to represent the microstructural
design space quantitatively using a descriptor set that is sufficient
yet small enough to be tractable. A four-step machine learning-
based method is proposed to exploit the microstructure–property
database (Fig. 3). The four steps include: (1) elimination of redun-
dant descriptors using descriptor–descriptor correlation analysis;
(2) microstructure correlation function-based supervised learning
for further dimension reduction; (3) property-based supervised
learning to identify key descriptors; (4) determination of micro-
structure design variables based on the optimization criteria of
maximizing the impact score and minimizing the within-group
correlations of the selected descriptor set. Steps 1 and 2 are
image analysis-based procedures, which do not require expensive
finite element analysis (FEA) simulations. These two steps will
provide a fast reduction of the size of a candidate descriptor set.
Both steps 2 and 3 involve supervised learning. Step 3 needs
structure–property data from either high-fidelity simulations or
from literature. Step 4 is an optimization-based descriptor subset
selection process.

To build a rich set of data, multiple microstructure images are
collected for the type of materials of interest. For each material
sample, one representative volume element (RVE) size image or
multiple statistical volume element size images should be
collected [47]. RVE has spatially invariant properties and micro-
structural statistics. For each image, a full set of microstructure
representations (correlation functions and descriptors) are eval-
uated using the characterization techniques introduced in Sec. 2.

3.1 Descriptor–Descriptor Correlation Analysis for
Identifying Redundant Descriptors. In step 1 of the proposed
framework, redundant descriptors are identified by the pair-wise
descriptor–descriptor correlation analysis. Some descriptors may
be strongly correlated due to the pre-existing relations. For exam-
ple, geometry descriptor cluster area A and major radius r of the
fillers in microstructure I (Fig. 4) follow a strict mathematical
relation of A ¼ pr2, so these two descriptors A and r are

Fig. 2 Illustration of three levels of microstructure descriptors:
composition, dispersion, and geometry

Table 1 Collected microstructure descriptors. Statistical infor-
mation includes first to fourth orders of moments: mean, var-
iance, skewness, and kurtosis.

Descriptor Definition Type

Composition
VF Volume fraction Deterministic

Dispersion
rnsd Cluster’s nearest surface distance Statistical
rncd Cluster’s nearest center distance Statistical
h Principle axis orientation angle [43] Statistical
Ifiller Surface area of filler phase Deterministic
Imatrix Surface area of matrix phase Deterministic
N Cluster number Deterministic
VVF Local VF of Voronoi cells [39] Statistical

Geometry
rp Pore sizes (inscribed circle’s radius) [44] Statistical
A Area Statistical
rc Equivalent radius, rc ¼

ffiffiffiffiffiffiffiffiffi
A=p

p
Statistical

dcmp Compactness [45] Statistical
drnd Roundness [46] Statistical
decc Eccentricity [46] Statistical
dasp Aspect ratio [33,41] Statistical
drec Rectangularity [46] Statistical
dtor Tortuosity [46] Statistical
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interchangeable to each other; therefore, one of them becomes
redundant. However, in microstructure II (Fig. 4), there is no clear
mathematical relation between A and r, so both descriptors are to
be kept for designing microstructure II.

Since the mathematical relation may not necessarily be linear,
rank correlation is preferred as the measure of descriptor–
descriptor correlation to the widely used correlation coefficient,
which only measures the linear dependence between variables. In
statistics, rank correlation (Kendall’s s) measures the degree of
similarity between two rankings, and is used to assess the signifi-
cance of the two variables’ relation. The formula computing
Kendall’s s is

s ¼ a� b
1

2
nðn� 1Þ

(1)

where a is the number of concordant pairs, and b is the number of
discordant pairs. Rank correlation detects the nonlinear relation
between variables. For example, a data set {x, y} following
yi ¼ x2

i ; xi 2 0; 1½ � has a rank correlation of 1 (which indicate a
perfect relation), but has a correlation coefficient smaller than 1.

3.2 Correlation Function-Based Supervised Learning.
Step 1 of the proposed framework eliminates a few redundant
microstructure descriptors based on the descriptor–descriptor cor-
relations, but it does not provide any information on the signifi-
cance of each descriptor to the properties of interest. Supervised
learning is needed to search the key descriptors. It is not realistic
to directly conduct property-based supervised learning on the
large set of microstructure descriptors. The high dimensionality of
descriptor set requires a great amount of microstructure samples
(e.g., 10 times of the dimensionality) in structure–property
simulations for supervised learning. This process may not be
affordable due to the high computational costs of simulations.
For example, a high fidelity damping property simulation that
explicitly models the microstructures of an 80� 80� 80 voxel
size 3D microstructure takes over 80 h [48,49]. Therefore, a
simulation-free, image analysis-based supervised learning step
(step 2) is proposed to further reduce the number of candidate
descriptors before property-based supervised learning in step 3.

In step 2, each descriptor’s influence on microstructure mor-
phology is evaluated based on their influences on the four correla-
tion functions introduced in Sec. 2.1. For each descriptor, four
impact scores (on four correlation functions) are evaluated using
supervised learning algorithm. Their average is taken as the
descriptor’s final score. Relief [31] is employed as the supervised
learning algorithm, which takes descriptors as input features and
the sum of correlation function values as the supervisory signal.
We take the sum of first 50 points of correlation functions, which
represents the homogenized high-strength correlation within a
distance of 50 pixels, 295 nm.

Relief uses a statistical method and avoids heuristic search.
Only statistically relevant features are selected. The key idea of
the Relief algorithm is to estimate the quality of attributes accord-
ing to how well their values distinguish between instances that are
near to each other within a local context. The pseudo code of the

Fig. 3 Framework of machine learning-based microstructure descriptor identification

Fig. 4 Illustration of redundant microstructure descriptors. In
microstructure I, area A, and major radius r can replace each
other; in microstructure II, both are needed for a full microstruc-
ture representation.
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basic Relief that handles the discrete class case is listed as
follows:

Algorithm Relief
Input: for each training instance a vector of attribute values

and class value
Output: the vector W of estimations of the quantities of

attributes
1. set all weights W[A]:¼ 0.0;
2. for i:¼ 1 to m do begin
3. randomly select an instance R;
4. find nearest hit H and nearest miss M;
5. for A:¼ 1 to #all_attributes do
6. W[A]:¼W[A] – diff(A,R,H)/mþ diff(A,R,M)/m;
7 end;

Class is defined as a group of instances of high similarities.
Given a randomly selected case R (line 3), two nearest neighbors
are searched. They can either be from the same class, called hit H,
or from the different classes, called miss M (line 4). A quality esti-
mation vector W is updated for all attributes A (lines 5 and 6).
The process is repeated for m times, where m is a user-defined
parameter.

For categorical attributes, the outcome of the function diff
(Attribute, Instance1, Instance2) is a binary value, 0 being the val-
ues of Attribute agree between Instance1 and Instance2 and
1 otherwise. For continuous attributes, the function diff(Attribute,
Instance1, Instance2) is defined as

diff A; I1; I2ð Þ ¼ valueðA; I1Þ � valueðA; I2Þj j
maxðAÞ �minðAÞ (2)

The above function calculates the difference between the values
of Attribute for two instances, where Instance1 is a random
instance, and Instance2 can be either hit H or miss M.

To handle regressional cases, instead of the above difference
functions, a kind of probability is introduced to address how
much the predicted values of two instances are different. This
probability can be modeled with the relative distance between the
predicted (class) values of two instances. The output of this algo-
rithm, after going through all instances, is the quality estimation
vector (impact factors) W that represents the estimations of the
qualities of each feature.

Finally, according to the obtained quality estimation vector W,
features are ranked, and how many are to be selected from the
ranked list is a decision subject to the user. Relief requires linear
time in the number of given features and the number of instances
regardless of the target concept to be learned.

Under the scenario of correlation function-based microstructure
analysis, one microstructure image corresponds to one instance in
the learning algorithm. Microstructure descriptors are defined as
attributes of this instance. Correlation function values of all
microstructure images are used as supervisory signal, which is
employed to quantify how much two instances (microstructure
images) are different. The output of the algorithm is a quality esti-
mation vector. Each value in this vector corresponds to the impact
factor of one attribute (microstructure descriptor). A larger impact
factor value indicates that the descriptor has a stronger impact on
the correlation functions.

3.3 Property-Based Supervised Learning. The end goal of
the machine learning framework is to identify key microstructure
descriptors as design variables to optimize for achieving target
material properties. In the third step of the framework, supervised
learning is employed to study descriptors’ influences on properties
of interest. One microstructure image is one “instance” in the
learning algorithm. The reduced descriptor set obtained from the
first two steps is used as inputs (attributes), and material proper-
ties are taken as the supervisory signal. The properties of micro-
structure samples are either obtained from advanced FEA or

collected from literature. The Relief algorithm is employed again
to calculate the score of each descriptor on each property of inter-
est. The learning result is normalized such that the scores of all
microstructure descriptors are in the range of [0, 1] and add up to
1. If multiple properties are considered in material design, the
supervised learning is applied on each property for all descriptors,
and then the scores are added together to determine the final
ranking of the microstructure descriptors.

3.4 Determination of Microstructure Design Variables. A
small set of microstructure descriptors are chosen from the key
descriptors as microstructure design variables. It is not realistic to
include all key descriptors as design variables because the
strong descriptor–descriptor correlations may lead to unrealistic
(infeasible) designs. Step 1 of the learning process only eliminates
“repetitive” descriptors (descriptors of very strong correlations),
so it does not necessarily mean that the descriptors kept after step
1 are independent or weakly correlated. The microstructure design
variables should have high contribution to material properties
(high ranking from machine learning) and high independency
(low descriptor–descriptor correlation). A combinatorial search is
conducted to determine the most proper subset of descriptors by
formulating the problem as a two-objective heuristic search

Given the number of design variables n, find descriptors
d1, d2, …, dn, s.t.:

Min:
PC

ij , where i ¼ 1; 2;…n; j ¼ 1; 2;…; n; i 6¼ j;

Max:
Pn

k¼1 Sk

Cij is the correlation between any two descriptors. Sk is the kth
descriptor’s contribution to the properties (impact score).

4 Design of Polymer Composites Using Reduced

Descriptor Set

The addition of reinforcing particles to polymer nanocompo-
sites’ matrix can lead to significant improvements in homogenized
mechanical properties even at a very low filler concentration [50].
High impact of the quantity and morphologies of nanoparticle fill-
ers on damping property makes it an interesting design problem
for microstructure optimization. This section demonstrates how to
use the proposed method to determine the key microstructure
descriptors as design variables for carbon black nanoparticle filled
polymer elastomers. All material samples collected have the same
type of fillers, but are produced under different processing
conditions, which directly impact the morphology of nanoparticle
clusters in the polymer matrix. Fifty-six microstructure images are
collected on materials produced under 11 different processing
conditions. The pixel size of the SEM images is 1000� 1000. The
physical size is 5.9� 5.9 lm, which can be considered as RVE.
Sample images are shown in Figs. 1 and 3, respectively. The
microstructure information includes four types of correlation
functions and 17 types of microstructure descriptors discussed in
Sec. 2.2 (also see the Appendix). In this paper, we analyze the
damping property, which is defined as

tan d xð Þ ¼ G00ðxÞ
G0ðxÞ (3)

where G00 is the shear loss modulus (GPa), G0 is the shear storage
modulus (GPa). tan d, G0, and G00 are all functions of x, the
frequency of excitation (Hz).

To achieve a long wear life, low rolling resistance, and high
wet traction of tire materials, it is desired that the nanocomposites
have a tan d curve with low value in the low frequency domain
(smaller than 1� 10�1 Hz), high value in the normal (from
1� 10�1 to 1� 103 Hz), and high frequency domains (larger than
1� 103 Hz) [14]. Typically, tan d is a smooth bell-shaped curve
in the frequency domain. It has low values at the two ends and a
peak in the middle (Fig. 3). Therefore, we choose three property
characteristics as the design criteria: value of the first point on
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tan d (L, representing damping property in low frequency
domain), value of the peak on tan d (P, representing normal fre-
quency domain), and value of the last point on tan d (H, represent-
ing high frequency domain). L, P, and H represent three different
desired properties of tire material, respectively: low L leads to low
rolling resistance; high P leads to high wet traction; high H leads
to low wear. The goal is to achieve good performances on all three
properties simultaneously. Thus, the design problem is formulated
as a multi-objective optimization problem

Find a set of microstructure descriptors, s.t.: Min L; Max P
(Min �P); Max H (Min �H);

4.1 Results of Correlation-Based Feature Selection. In
step 1 of the proposed framework (descriptor–descriptor correlation
analysis), the rank correlation (Kendall’s tau) is calculated for each
pair of descriptor parameters and written into a 56� 56 symmetric
matrix. The correlation matrix is reordered using Cuthill–Mckee
algorithm [51], which permutes the symmetric correlation matrix
to obtain a band matrix form with a small bandwidth. The per-
muted correlation matrix is shown in Fig. 5. The correlation values
are represented by colors. Darker color means a higher correlation,
and lighter color means a lower correlation. Numbers on the X and
Y axis represent different microstructure descriptor parameters
(refer to the Appendix). Figure 5 indicates several highly intracor-
related descriptor groups. Group 1 includes the composition
descriptor (VF) and five dispersion descriptors (rnsd and rncd).
Group 2 incorporates five dispersion descriptors related to the
quantity of surface area (Imatrix, N, and VVF). Group 1 and 2 are
intercorrelated. Group 3 incorporates three geometry descriptors
(dasp and decc). Group 3 is independent from the other two groups.
The intracorrelations exist between descriptor groups for two rea-
sons. (1) Microstructure features are correlated inherently. For
example, given the same volume of fillers, increasing the number
of filler cluster N will lead to larger surface area of the filler phase
Imatrix (correlation 0.8360). (2) Some descriptors describe the same
microstructure feature in different ways. For example, three highly
correlated descriptors, cluster number N, local volume fraction of
each Voronoi cell VVF, and surface area Imatrix, all describe the
quantity of fillers’ surface area from different perspectives.

To determine the redundant microstructure descriptors, a thresh-
old is set on the correlation matrix to distinguish “strongly
correlated” descriptor pairs and “weakly correlated” descriptor
pairs. Two different threshold values (0.9 and 0.8) are tried to study
the threshold’s influence on dimension reduction. In the binarized
correlation matrix as shown in Figs. 5(b) and 5(c), the bright pixel

represents correlation values passing the threshold, and the dark
pixel represents those failing the threshold. The highly correlated
descriptors (Table 2) are considered as interchangeable, as the
result, one of each pair can be eliminated to reduce the dimension.
With a higher threshold (larger than 0.9 or smaller than �0.9), the
dimension is reduced from 56 to 54. Redundancy exists in one pair
of dispersion descriptors (Imatrix and Ifiller are the measurements of
surface area) and one pair of geometry descriptors (A_1 and rc_1
describe the size of each filler cluster). When using a lower thresh-
old (larger than 0.8 or smaller than �0.8), the size of the candidate
descriptor set can be reduced by 15 (redundancy exists in six pairs
of dispersion descriptors and nine pairs of geometry descriptors).

Another important conclusion can be made from correlation anal-
ysis. Geometry descriptors tend to be independent with composition
and dispersion descriptors. High correlations exist between descrip-
tors of the same category. This observation validates our method of
classifying all microstructure descriptors into three categories [14]
according to the different levels of details (global versus local).

4.2 Correlation Function-Based Supervised Learning. In
step 2, correlation function-based supervised learning identifies
the microstructure descriptors that have a high impact on the
microstructure morphology. For materials systems of different
microstructure features, correlation function-based learning is

Fig. 5 (a) The permuted rank correlation matrix shows intracorrelated descriptor groups. Larger correlations are marked
by darker colors. White color means the correlation is 0 (no correlation). The sequential numbers on X, Y axis represent
different descriptors. Refer to the Appendix for the meanings of sequential numbers. (b) and (c): the binarized correlation
matrix. The bright pixel means a correlation larger than or equal to the threshold; the dark pixel means a correlation smaller
than the threshold. Two thresholds are tested: 0.9 and 0.8.

Table 2 The highly correlated descriptors identified with
different thresholds

Threshold¼ 0.9
Imatrix $ Ifiller Dispersion
A_1$ rc_1 Geometry

Threshold¼ 0.8
VF$ VVF_1 Composition, dispersion
Imatrix $ Ifiller $ N Dispersion
h_2$ h_4 Dispersion
rnsd_3$ rnsd_4 Dispersion
VVF_3$ VVF_4 Dispersion
A_1$ rc_1 Geometry
A_4$ A_3$ rc_4 Geometry
drec_3$ drec_4 Geometry
drnd_1$ rp_1 Geometry
A_2$ rc_2 Geometry
dasp_1$ decc_1 Geometry
drec_3$ drec_4 Geometry
decc_3$ decc_4 Geometry
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able to find different sets of significant descriptors. As verifica-
tion, we compare the ranking and impact scores of significant
descriptors that are identified from two different microstructural
materials systems: a damping system and a dielectric system. The
damping system has high volume fraction (9–30%) and evenly
dispersed fillers; the dielectric system are featured by low volume
fraction (<4%) and sparsely distributed fillers clusters (Fig. 6).
From the learning results listed in Table 3, we can conclude that
(1) the geometry descriptors have higher significance in the
dielectric system that has fewer fillers; (2) the descriptors have
closer impact scores in the evenly dispersed damping system.
Meanwhile, volume fraction and surface areas are identified as
important descriptors in both systems.

4.3 Property-Based Supervised Learning of Key Descriptors.
For the damping system, the results of step 2 correlation function-
based learning and step 3 property-based learning are listed in
Table 4. In step 2, we calculate the scores of all 56 microstructure
descriptors based on their influences on correlation functions. The
scores add up to 1. The size of candidate descriptor set is reduced
to 20, when a threshold of 0.5 is set on the sum of scores of a
reduced descriptor set. The top 20 descriptors are identified as sig-
nificant descriptors. Next in step 3, property-based learning, is
conducted to further evaluate the significant descriptors’ impacts
on material properties. The final ranking and scores of the 20 sig-
nificant descriptors are listed in the right half of Table 4. In addi-
tion, this study leads to another two important observations:

(1) For the type of materials studied in this paper, the composi-
tion and dispersion descriptors have strong influences on
both correlation function and properties. Composition and
dispersion descriptors are on higher (global) levels than the
geometry (local) descriptors. The material property of inter-
est (damping property) is the averaged response of the bulk

material, so it is expected to be highly correlated with the
high level descriptors.

(2) For this particular type of materials, we observed a high
similarity between the correlation function-based descriptor
ranking and the property-based descriptor ranking. The two
rankings have the same top 5 descriptors, and share 9
descriptors out of top 10.

The benefits in computational efficiency are concluded from
the perspective of problem dimensionality (number of design vari-
ables). The size of candidate descriptor set is reduced from 56 to
41 after step 1 (when threshold is 0.8). According to our recom-
mendation that the sample number should be at least 10 times of
the number of design variables, it requires 410 microstructure
samples (410 high fidelity simulations) when property-based
machine learning is directly applied on the 41 descriptors. On con-
trary, the correlation function-based learning (step 2) eliminate
low-impact descriptors. The dimension is further reduced to 20. It
means that 210 less samples (210 high fidelity simulations) are
required for step 3 property-based supervised learning.

4.4 Design Validation: Optimization of Polymer Nano-
composites’ Microstructure. A comparative study of microstruc-
ture design is conducted to demonstrate the effectiveness of using
the machine learning-identified descriptors as microstructure
design variables. In step 4, three microstructure design variables
are determined (N¼ 3) by maximizing the descriptor set’s impact
score and minimizing the within-group correlation. The design
variable set includes one composition descriptor (volume fraction,
VF), one key dispersion descriptor (number of particle clusters,
N), and one key geometry descriptor (mean of roundness, drnd_1).
These three descriptors have a strong impact on the damping
properties and are weakly correlated with each other. For the pur-
pose of comparative study, we choose another design variable set
based on expert knowledge (referred as “empirical descriptor
set”), with three descriptors (VF, rncd_1, and drec_1). VF controls
the quantity of each constituent; rncd_1 and drec_1 control the
quantity of interphase. These three descriptors are at different
length scales, so they have low correlations (to guarantee design

Fig. 6 Sample images of damping system (evenly dispersed
fillers) and dielectric system (clustering of fillers). In damping
system, the bright part represents fillers; in dielectric system,
the dark spots represent fillers.

Table 3 Results of correlation function-based learning for
two different types of microstructures: damping system and
dielectric system

Damping system Dielectric system

Rank Descriptor Category Score Descriptor Category Score

1 Ifiller Dispersion 0.0362 VF Composition 0.1098
2 Imatrix Dispersion 0.0358 Ifiller Dispersion 0.0698
3 VF Composition 0.0348 Imatrix Dispersion 0.0652
4 VVF_1 Dispersion 0.0340 h_2 Dispersion 0.0494
5 N Dispersion 0.0335 dtor_1 Geometry 0.0445
6 VVF_2 Dispersion 0.0286 dtor_3 Geometry 0.0294
7 drnd_1 Geometry 0.0263 dtor_4 Geometry 0.0211
8 A_1 Geometry 0.0246 dasp_4 Geometry 0.0189
9 rp_1 Geometry 0.0243 VVF_3 Dispersion 0.0187
10 VVF_3 Dispersion 0.0243 rc_1 Geometry 0.0082

Table 4 Results of step 2 correlation function-based super-
vised learning, and step 3 property-based supervised learning.
The meanings of the symbols are listed in Table 1. The number
after each symbol indicates the statistical moment of the
descriptor (first: mean; second: variance; third: skewness;
fourth: kurtosis).

Step 2: correlation function-based Step 3: property-based

Rank Descriptor Category Score Descriptor Category Score

1 Ifiller Dispersion 0.0362 Imatrix Dispersion 0.0623
2 Imatrix Dispersion 0.0358 Ifiller Dispersion 0.0623
3 VF Composition 0.0348 N Dispersion 0.0618
4 VVF_1 Dispersion 0.0340 VF Composition 0.0587
5 N Dispersion 0.0335 VVF_1 Dispersion 0.0584
6 VVF_2 Dispersion 0.0286 A_1 Geometry 0.0491
7 drnd_1 Geometry 0.0263 VVF_2 Dispersion 0.0491
8 A_1 Geometry 0.0246 drnd_1 Geometry 0.0485
9 rp_1 Geometry 0.0243 rp_1 Geometry 0.0484
10 VVF_3 Dispersion 0.0243 h_2 Dispersion 0.0483
11 rc_1 Geometry 0.0242 VVF_3 Dispersion 0.0479
12 rnsd_1 Dispersion 0.0232 rc_1 Geometry 0.0476
13 rp_2 Geometry 0.0223 rc_2 Geometry 0.0474
14 rnsd_2 Dispersion 0.0222 rnsd_1 Dispersion 0.0461
15 rncd_1 Dispersion 0.0222 rnsd_2 Dispersion 0.0457
16 h_2 Dispersion 0.0219 h_4 Dispersion 0.0456
17 dcmp_1 Geometry 0.0215 rncd_1 Dispersion 0.0438
18 rc_2 Geometry 0.0213 VVF_4 Dispersion 0.0435
19 VVF_4 Dispersion 0.0212 rp_2 Geometry 0.0433
20 h_4 Dispersion 0.0206 dcmp_1 Geometry 0.0422
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feasibility). However, they are not necessarily the best choice for
controlling the properties of interest. One similar example of
empirical choice of three descriptors is reported in Ref. [52],
where the assumption of spherical fillers is made. It is a challeng-
ing task to check all possible descriptor combinations in micro-
structure optimization and illustrate that our proposed descriptor
set is the best choice. Our objective is to demonstrate that the key
descriptors identified by the machine learning techniques can
achieve better material properties than the designs obtained from
the descriptors identified using experts’ knowledge. The value
ranges of the descriptors are listed as follows. VF and N are deter-
ministic; other descriptors’ means are considered.

Design variable set 1 (statistical learning):

VF 2 ½0:1; 0:3�; N 2 ½100; 300�; drnd 2 ½1; 4�

Design variable set 2 (empirical):

VF 2 ½0:1; 0:3�; rncd 2 ½10; 40�; drec 2 ½p=4; 1�

We show that the statistically learned microstructure
descriptors can capture microstructure information of the studied
materials accurately. The descriptor-based microstructure recon-
structions are compared with the original image (Fig. 7). Both
reconstructions using statistically learned descriptor set and em-
pirical descriptor sets, respectively, match well with the original
image in visual comparison and correlation functions. The statisti-
cally learned descriptor set is more accurate, as it has a smaller
sum of squared error in two-point correlation function compared
with the reconstruction from empirical descriptor set (1:83� 104

versus 6:26� 104).
Microstructure optimization is conducted using a DOE/

metamodeling-based optimization strategy. For both descriptor
sets 1 and 2, design of experiment (DOE) is applied to explore
the design space formed by microstructure descriptors. Each
DOE point represents one microstructure design, for which we
reconstruct one or multiple statistically equivalent microstruc-
tures using a sequential descriptor-based microstructure recon-
struction algorithm [14]. The properties of reconstructions are
simulated using FEA. Metamodels, also known as surrogate
models [53], are created to replace the computationally expen-
sive FEA models in optimization. The optimal designs are veri-
fied by running simulations on the reconstructed microstructures.

We make two sets of comparisons to demonstrate that the
performances of microstructure designs are improved by using
key descriptors as microstructure design variables. (1) single-
objective optimizations. Microstructure descriptors are used as
design variables in single-objective optimizations to minimize L,
maximize P, and maximize H, respectively. We compare the
single-objective optimal designs using the key descriptor set and
the optimal designs using the empirical descriptor set in Fig. 8(a).
Significant improvements in properties are achieved by using

Fig. 7 Microstructure reconstructions using statistically
learned descriptor set and empirical descriptor set

Fig. 8 Comparison of optimal designs (Min: L, Max: P, Max: H) using key descriptors and
empirical descriptors. (a) Single objective optimization for each objective; (b) multi-objective
optimization with equal weights on objectives. Two examples of optimal microstructures,
Max H by key descriptors and Max H by empirical descriptors, are also plotted.
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statistically learned descriptors as design variables. Figure 8
also shows two examples of optimal microstructure designs,
which are obtained using different design variable sets. The
optimal microstructure design by the key descriptor set is more
dispersed (have larger surface area) compared with the design
by the empirical descriptor set. Larger surface area leads to a
higher value of property H. (2) Multi-objective optimization.
Microstructure descriptors are used as design variables in multi-
objective optimizations, which minimize L, maximize P, and
maximize H simultaneously. Equal weights are assigned to the
three normalized objectives. Better designs can be obtained by
using key descriptors in multi-objective optimization as well, as
shown in Fig. 8(b). It is observed that the optimal design using
the key descriptor set has lower L, roughly the same P, and
higher H compared with the optimal design using empirical
descriptor set as design variables.

5 Conclusion

This paper presents a machine learning-based method for
identifying key microstructure descriptors as microstructure
design variables. It facilitates low dimensional descriptor-based
microstructure representations. Starting from a complete set of
microstructure descriptors collected from literature, we reduce
the redundant descriptors via descriptor–descriptor correlation
analysis and correlation function-based supervised learning.
These two steps are computationally efficient as only image
analyses are involved. Furthermore, a property-based super-
vised learning is conducted to identify the key descriptors.
Microstructure design variables are chosen from the key
descriptors based on their contributions to material properties
as well as the need for minimizing descriptor–descriptor de-
pendency. This four-step method enables parametric optimiza-
tion of heterogeneous microstructures using a small set of
physically meaningful descriptors to achieve target properties.
We demonstrate this method using a case study of designing
polymer nanocomposites’ microstructures. This proposed
method leads to better designs compared with designs using
descriptors chosen randomly or empirically.

Our research contributes to the computational design of
microstructural materials system in the following three aspects.
First, this method provides a rigorous way for material scien-
tists to choose microstructure descriptors in analyzing and
designing new materials. It is demonstrated that optimization
using key descriptors obtained by machine learning improves
the performance of microstructure designs for the interested
type of polymer nanocomposites. The proposed method identi-
fies descriptors that are important to both microstructure mor-
phology and properties. Second, this method effectively cuts
down the computation costs by introducing image analysis-
based prescreening. The prescreening steps reduce the dimen-
sion of the candidate descriptor set before applying the
property-based supervised learning. Conducting property-based
supervised learning on the reduced descriptor set requires less
number of samples (simulations) than on the full descriptor
set. Third, this method enables parametric optimization of the
microstructure with a small set of design variables. State-of-art
computational design methods (e.g., DOE, metamodeling) are
applied to explore the microstructural design space to achieve
optimal material properties.

In future works, the proposed method will be further validated
with different types of microstructural material systems. Another
possible future work is to include the process–microstructure rela-
tion into the material design process to cover the whole spectrum
of material design and to ensure that material engineers can fabri-
cate the optimal microstructure. The machine learning approach
will be applied to the process–microstructure database to establish
mathematical relations between processing parameters and the
resultant microstructures.
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Appendix: Descriptor Parameters’ Sequence Numbers

in Fig. 5

The table below lists the number and name of the descriptors in
Fig. 5. The three intracorrelated descriptor groups are highlighted
using gray background color.

The number after each symbol represents the order of the
moment (first: mean; second: variance; third: skewness; fourth:
kurtosis).

Number
Descriptor

name Number
Descriptor

name Number
Descriptor

name

1 A_1 20 rc_1 39 decc_3
2 rncd_3 21 rp_4 40 decc_2
3 rncd_1 22 rp_2 41 dcmp_4
4 rnsd_4 23 rp_1 42 dcmp_2
5 rnsd_2 24 h_4 43 dcmp_1
6 rnsd_1 25 h_3 44 A_4
7 VF 26 h_2 45 A_2
8 dtor_4 27 h_1 46 rncd_4
9 dtor_2 28 N 47 rnsd_3
10 dtor_1 29 VVF_4 48 dtor_3
11 drnd_4 30 VVF_3 49 drnd_3
12 drnd_2 31 VVF_2 50 drec_4
13 drnd_1 32 VVF_1 51 rp_3
14 drec_3 33 Imatrix 52 Ifiller

15 drec_2 34 dasp_4 53 decc_1
16 drec_1 35 dasp_3 54 dcmp_3
17 rc_4 36 dasp_2 55 A_3
18 rc_3 37 dasp_1 56 rncd_2
19 rc_2 38 decc_4
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