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Abstract

Continuity of stream playback is the crucial con-

straint in designing a continuous media server. From

a distributed memory architectural model developed

earlier, we found that there were many points where

the stream capacity of the server could be improved.

The stream capacity was usually limited by the storage

bottlenecks. Serving streams from memory cache elim-

inates disk accesses and data transfers between nodes

which, in turn, helps relieve those bottlenecks. How-

ever, the capacity of the server ultimately depends on

client access pattern. Client request assignment has

an impact on cache hit ratio as well as workload dis-

tribution. It is also the major factor reecting the

server performance. In some cases where lower play-

back quality at some points in time is acceptable, de-

lays can be added to improve the missed packet rate.

This paper proposes various techniques to enhance the

server performance and shows their reections under

di�erent circumstances. Some techniques work well

together. The best combination improves the capacity

of the server by approximately 30%.

1 Introduction

Continuous media data such as audio, video and
images, are found to be useful in a wide range of appli-
cations in many areas including education, medicine,
sports, entertainment and space research. The key op-
eration in such applications is the playback operation.

In general, a multimedia information system is com-
posed of three components which are clients, commu-
nication network and multimedia server. The main
responsibility of such server is to supply multimedia
data to the clients according to their pace and time
desired.

Continuous media data cardinally di�er from tra-
dition text data in characteristics. As a consequence,
their storage, retrieval and transportation have to be

handled di�erently. Among all the operating con-
straints, continuity is the most important. The con-
cept of interval caching [1] where the temporal local-
ity between streams accessing the same object is taken
into account is the backbone of the proposed caching
mechanism. In addition to the cache, this paper dis-
cusses other techniques to help improve the number
of concurrent streams served while maintaining low
number of missed packets.

The rest of the paper is organized as follows. Sec-
tion 2 concisely describes the architecture of the server
model and its data storage, retrieval and bu�ering
strategies. Techniques to improve server performance
are discussed in section 3. Section 4 outlines the per-
formance metrics and experiment parameters. Section
5 presents and discusses the results. Section 6 con-
cludes the paper.

2 The Server Model

2.1 Server Con�guration

Our server model [3] consists of a group of comput-
ing nodes connected by an interconnection network.
These nodes are independent. Each node is equipped
with a processing unit, main memory and secondary
storage device. These memory and storage device are
considered private. They are not to be shared between
any two nodes. Communication between the nodes is
achieved by passing message through the interconnec-
tion network. This architecture is commonly known
as a shared-nothing architecture.

The server model is independent of the architec-
tural implementation. It can be implemented on a
distributed memory parallel machine or a collection
of personal computers or workstations interconnected
by high speed links.

Base on the functionalities, the server nodes can be
categorized into three logical types: manager node,
dispenser node and storage node. The server nodes



can be con�gured in many ways. Two-level con�gura-
tion (�gure 1) where each physical node serves as one
of the three node types is used in the experiments.
One node performs as a manager node. Each of the
rest is either a dispenser node or a storage node. The
lines between any two nodes represent data transfer.
The arrows indicate the transfer direction. The solid
lines represents periodic activities, whereas the dot-
ted lines represent one-time activities. The numbers
labeled on the lines denote a sequence of activities
during a typical stream playback operation.
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Figure 1: Logical view of the two-level con�guration

Activities during a typical stream playback oper-
ation are briey illustrated as follows. A client re-
quest enters the server at a manager node. If the
available resources are su�cient for a stream playback,
that client request is directed to one of the dispenser
nodes. That dispenser node then periodically releases
sub-requests to storage nodes (or to its cache) to ob-
tain the data. After the arrival of the data, the dis-
penser node delivers them to the client according to
the playback rate requirement of the stream.

2.2 Object Storage

Objects are physically stored in storage devices,
usually magnetic disks, attached to storage nodes.
Striping technique is employed to obtain higher band-
width and better load distribution. Each object is
striped and stored across a group of storage nodes
called striping group. The maximum achievable band-
width for a stream is close to the bandwidth of all the
disks in the group combined. The I/O load for each
stream is evenly distributed over a striping group con-
taining it.

Di�erent objects can be stored in striping groups

of di�erent sizes. For each object, a storage parame-
ter, stripe factor, de�nes number of storage nodes in
a striping group across which the object is striped.
Constraint here is that total bandwidth o�ered by a
striping group has to be at least equal to the playback
bandwidth requirement of the object that it contains.
Objects can have di�erent stripe factors.

An object can be viewed as a sequence of equal
size data units. Each data unit is called striping unit.
One striping unit may represent several physical data
blocks. Our strategy is to store successive data units
of an object in logically consecutive storage nodes in
a round-robin fashion.

2.3 Object Retrieval

The retrieval operation has to be carried out in a
periodic manner according to the real-time deadlines
de�ned by stream playback rate. A retrieval technique
called batch retrieval [4] is implemented in our server
model. In brief, subsets of a striping group take turns
retrieving the data for each playback stream. The
total bandwidth from storage nodes in a subset has to
satisfy the playback bandwidth of the object.

At a dispenser node, there is a �xed size bu�er as-
sociated with each playback stream. One half of the
bu�er holds data received from the storage node(s)
and the other half holds data to be delivered to the
client. A dispenser node manages the bu�er in such
a way that the re�lling and the consuming rates are
equal. Thus, the two halves can be used interchange-
ably.

3 Performance Enhancement
3.1 Client Request Assignment

The performance of the server is sensitive to the
client request pattern. The frequency of request to
each object is not equal; moreover, it changes over
time and cannot be precisely predicted. A manager
node has choices in directing each client request to one
of the dispenser nodes. The assigning goal is to bal-
ance workload among the dispenser nodes while uti-
lizing the resources as e�ectively as possible.

Two assigning schemes, RR and SOSD, are studied.
In the former scheme, RR, client requests are given
to dispenser nodes in a round-robin fashion. The as-
signment is independent of the client request pattern.
In the latter scheme, SOSD, client requests are dis-
tributed in such a way that requests for same object
are directed to same dispenser node.

In RR scheme, each dispenser node serves approx-
imately the same number of streams. On the other
hand, when SOSD scheme is applied, a dispenser node
serving popular objects may handle more number of
streams. This may lead to load imbalance under skew



client request pattern. However, there is an advantage
when dispenser node cache is present. SOSD scheme
bene�ts the cache hits since requests have a tendency
to be satis�ed from the cache.

3.2 Multi-pool Interval Caching

The ideas for the proposed caching scheme arose
from the very nature of stream playbacks. The stream
playback operation needs stripe units in sequence.
Multiple playback streams of the same object require
the same sequence repeatedly. Moreover, successive
stream playbacks always follow one another with �xed
intervals in between. Thus, caching only the portion
representing these intervals could avoid disk accesses
of all streams accessing that object except the �rst one
whose disk accesses are unavoidable anyway.

Figure 2 illustrates the situation. Suppose there
are two stream requests for an object. Let the second
stream request (S2) arrive when the �rst stream re-
quest (S1) is fetching stripe unit number 4. When S1

is fetching stripe unit number 6, S2 needs stripe unit
number 3. Since their playback rates are equal, these
two streams are always three stripe units apart.
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Figure 2: Fixed interval between successive playback
sessions

From the same example, if there is no other requests
for this object following S2, stripe units are no longer
needed after they are used by S2. Hence, keeping just
the last four stripe units in the cache is su�cient for
these two streams. Since the interval between streams
directly depends on object access frequency, the in-
terval caching scheme adapts itself dynamically to the
client request pattern.

Cache Organization

The cache is composed of a set of cache entries, a num-
ber of object pools and a free pool. Each cache entry
has a pointer to one object pool. An object pool is a
circular linked list of stripe units being used by active
streams. One object pool holds stripe units of single
object. This makes cache lookup simple. For each
stream, only one pool needs to be searched. In addi-
tion to a pointer to an object pool, each cache entry
contains information about objects such as object id
and pool status. The free pool contains empty stripe
units which are available for any streams. Adding a
new stripe unit into an object pool is done by obtain-
ing one empty stripe unit from the free pool, �lling it
with the data and attaching it to the pool.

The �rst stream accessing an object is called an
owner of the object pool. During the normal playback
operation, only the owner adds stripe units into the
object pool, other streams will just read from there.
The owner's sub-request causes a cache miss; thus, a
stripe unit will be fetched directly from the disk. This
eliminates unnecessary cache lookups.

The caching window de�nes the length of the object
pool. The object pool is considered to be either open
or closed. Suppose the value for the caching window

is CW. An open object pool is the pool that contains
less than the �rst CW stripe units of an object. The
pool remains open and new stripe units are added to
it until the number of stripe units in the pool reaches
CW. At that point, the pool is examined if some stripe
units can be freed|returned to free pool. Such units
are stripe units with the most number of references.
The reason for this is that these stripe units will no
longer be used after the pool is closed. As in �gure 2,
if the caching window is 6, the pool is closing at time
t6. Stripe units 1 and 2 (which was used twice each)
will be returned to free pool and then the object pool
which is now holding 4 stripe units is marked closed.
The content of a closed object pool is equivalent to
the interval between the owner and the last stream
accessing the pool at the closing time. The closed
pool will not be accessed by the any new streams.

As the playback proceeds, it can be viewed as a
caching window is shifting toward the end of the object
one stripe unit at a time. Considering only streams ac-
cessing the same object, every stream starting within
one caching window interval from the beginning of the
owner stream is guaranteed to have nearly 100% cache
hit at all times.

Large caching window has a tendency to capture
more number of streams, but it requires more space.
Hence, caching window should be set to the value just



long enough that if an object has not been accessed
by any other stream during the �rst caching window

interval, it is justi�ed not to store that object in the
cache.

Adding a new stripe unit into an open object pool
is done by obtaining one empty stripe unit from free
pool, �lling it with the data and attaching it to the
object pool. For the closed pool, adding a new stripe
unit is as simple as replacing the content of the oldest
stripe unit in the pool. No stripe unit is taken from
free pool once an object pool is closed.

When the free pool is empty, it means that the
cache is full. New object requests arriving after that
will have to go directly to the disk. Since the cache is
providing almost 100% cache hit for the current active
streams, it may be better not to replace their contents
with that of the new streams. However, if new object
is more popular, replacement may be considered.

At this stage, cache is implemented at dispenser
nodes because doing so not only eliminates disk ac-
cesses, but also reduces the tra�c in the interconnec-
tion network. Objects will not be removed from the
cache until their playback operations are �nished.

3.3 Delaying the Deadlines

A server has to maintain a sequence of deadlines
during the stream playback operation. A dispenser
node is supposed to send out certain amount of data
to clients periodically. However, there are times when
there are not enough data in the bu�er. The dead-
lines are then missed. As a consequence, the clients
encounter data losses. The reason for this is that the
requested data have not yet arrived from the storage
nodes. From the experiments with �xed deadlines, we
found that once a deadline was missed, the following
deadlines tended to be missed too. This led to an idea
of postponing the deadlines.

Our strategy is to postpone the deadlines whenever
there is a miss. This helps a dispenser node catch up
with the deadlines from that point on. Assuming that
packet number n (Pn) is scheduled to be delivered to
client at time tn, �gure 3 shows how the delivery would
be if the deadline was missed at time t2. Delaying by
x periods means that the following packets are sched-
uled for the delivery x periods behind their original
scheduled time.

Shifting deadlines improves the missed packet rate.
It also degrades the quality of stream playback. We
can see from �gure 3 that, within the same amount of
time, less number of packets are delivered when dead-
lines are delayed. For example, with a half-period de-
lay factor, the playback is delayed by one period every
two misses. A larger delay factor results in poorer dis-
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Figure 3: Deadlines delay

play at the client, but it does give a dispenser node
a longer time to get back on track. However, it ulti-
mately depends on the client quality of service crite-
rion whether the tradeo�s are justi�ed.

4 Experiments

4.1 Experimental Model

The server model was implemented on the Intel
Paragon parallel computer. The experimental model
consisted of 16 computing nodes. They were con�g-
ured as 1 manager node, 4 dispenser nodes and 11
storage nodes. The size of each stream bu�er at dis-
penser nodes was 2MB. Cache can be implemented at
dispenser nodes. Cache size was set to 20MB and the
caching window was �xed at 10 stripe units. Size of a
packet to be sent to clients was 64KB.

The server model stored 100 unique objects. Each
objects was striped across all the storage nodes. All
objects belonged to a single media type, video, with
a constant bandwidth requirement of 1.5 Mbits/s
(MPEG-1 standard) or 4 Mbits/s (MPEG-2 stan-
dard). Experiments were conducted under two client
request patterns shown in �gure 4. Both patterns con-
form to Zip�an distribution with di�erent parameters.
According to [2], the low skew pattern represents the
actual rate at video stores.

4.2 Assumptions

All objects were stored at the storage nodes in com-
pressed digital form. Every object had same storage,
retrieval and caching parameters. Each computing
node was assumed to have enough disk capacity and
main memory for all the playback streams that the
server was serving. The communication network be-
tween the server model and the clients was assumed
to be reliable and fast enough to handle the band-
width required for object playback. Disk accesses were
simulated. Lastly, the decompression of the data was
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carried out at the clients' sites. The communication
and decompression issues were not addressed in our
experiments.

4.3 Parameters and Metrics

Two stripe sizes (512KB and 256KB), three delay
factors (no delay, half-period delay and one-period de-
lay), two client request assigning schemes (RR and
SOSD) and two client request patterns (high skew and
low skew) were experimented in every combination.

Performance metrics are percentage of cache re-
quests, percentage of missed packets and percentage of
delayed deadlines. The percentage of cache requests is
the ratio of the number of sub-requests that is satis�ed
from the cache to the total number of sub-requests.
The percentage of missed packets is the ratio of the
number of packets that is not ready at time of de-
livery to the total number of packets scheduled to be
delivered. The percentage of delayed deadlines is the
ratio of the number of deadlines that is deferred to
the total number of deadlines if no delay is added.
The percentage of missed packets reects how well the
server performs and the percentage of delayed dead-
lines shows how much the playback quality is reduced
because of the additional delays.

5 Results and Discussion

We are presenting only the selected results from
the experiments where all streams had playback rate
of 1.5Mbits/s. The server model could support less
number of concurrent streams (100-400 streams) when
the playback rate was 4 Mbits/s. However, the trends
of the graphs appear the same.

The cache of size 20MB can store almost 2 minutes
of the object. Each object pool can hold object up to
28 seconds and 14 seconds when stripe size is equal
to 512KB and 256KB, respectively. Hence, stream
requests of the same object arriving the dispenser node
with less than those periods apart will be served from
the cache. Since the length of object pools is �xed
in terms of stripe units, the cache holds more objects
when stripe size is small.

Percentages of cache requests for the con�guration
when no delay was added are shown in �gure 5.
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Figure 5: Percentage of cache requests

More sub-requests were captured in the cache when
SOSD assigning scheme was applied. Also, under high
skew request pattern, more sub-requests were found
in the cache. This was because the cache was serv-



ing more number of streams. Percentages of cache
requests decreased as number of concurrent streams
increased. The reason for this was that the very �rst
stream requests had �lled up the cache; and they were
to remain there until the playback �nished. Thus, the
stream requests arriving after that were forced to be
served with the data from storage nodes. In general,
the percentages of cache requests were slightly lower
when stripe units were small.
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Figure 6: Percentage of delayed deadlines

Deadlines were delayed when a deadline was missed.
More delays means less amount of data were delivered.
Thus, the playback quality is poorer. Percentages of
delayed deadlines are shown in �gure 6.

A large delay factor resulted in greater number of
shifted deadlines. This was normal because the the
deadlines were postponed by a larger margin. The
percentages were lower for con�gurations with larger
stripe size (�gure 6a).

The request assigning scheme SOSD performed bet-
ter in all cases. This was because requests for same
object were served by the same dispenser node. The
dispenser nodes were able to deliver streams from the
cache. This reduced the chance of missing deadlines.

High skew request pattern resulted in lower number
of delayed deadlines. However, the trends of percent-
ages of delayed deadlines under both requests pattern
were similar.
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A packet is missed if a stripe unit does not arrive at
the dispenser node before the time when it is sched-
uled to be delivered to the client. Misses occur because
storage nodes take long time fetching the data and/or
the congestion in the interconnection network. Per-
centage of missed packets under high and low skew
access patterns are shown in �gures 7 and 8, respec-
tively.
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Figure 8: Percentage of missed packets (low skew)

More packets were missed as the server served
greater number of concurrent streams. Con�gurations
with smaller stripe size (�gures 7b and 8b) were more
sensitive to the number of streams, especially under
high skew request pattern (�gures 7b).

A larger delay factor gave lower number of missed

packets. SOSD assigning scheme resulted in lower
number of missed packets. Its e�ect was more notice-
able under high skew request pattern. SOSD scheme
was very e�ective when the cache was present.

The model with cache performed better. In most
cases, it could handle up to 500 streams without any
missed packet while the model without cache could
support only up to 400 streams. Moreover, when de-
lays were added, the number of missed packets was
less. This happened because the dispenser nodes had
more time to obtain the data. Request pattern did not
show the e�ect much with the RR assigning scheme.
This was because the way the requests were assigned
was independent of request pattern.

The acceptable operating region should have lower
than 30% of missed packets. Within this range, the
model with no cache could support up to 600-700 con-
current streams while the one with cache and delays
could handle more than 800 streams. Even though
the con�gurations with one-period delay yielded bet-
ter missed packets rate, they produced large number
of delayed deadlines. For better stream quality, with
delayed deadlines less than 10%, it is better to use
half-period delay.

6 Conclusions
The ultimate goal of the multimedia server design

is to maximize the number of streams served while
maintaining acceptable stream quality. We intro-
duced several techniques to improve the performance
of the server. Multi-pool interval caching makes cache
lookup simple. Unnecessary lookups of the fresh ob-
ject references can be avoided. It is also adaptive.
Adding delays is e�ective, but adding too much will
hurt the stream quality. SOSD assigning scheme per-
forms well when cache is present. The combined e�ect
of SOSD scheme, deadline delays and cache improves
the capacity of the server by approximately 30%.
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