
A System-level Synthesis Algorithm with Guaranteed Solution Quality�

U.Nagaraj Shenoy, Prith Banerjee, Alok Choudhary

Northwestern University, Evanston, IL, USA.

Abstract

Recently a number of heuristic based system-level syn-
thesis algorithms have been proposed. Though these al-
gorithms quickly generate good solutions, how close these
solutions are to optimal is a question that is difficult to an-
swer. While current exact techniques produce optimal re-
sults, they fail to produce them in reasonable time. This pa-
per presents a synthesis algorithm that produces solutions
of guaranteed quality (optimal in most cases or within a
known bound) with practical synthesis times (few seconds
to minutes). It takes a unified look (the lack of which is
one of the main sources of sub-optimality in the heuris-
tic techniques) at different aspects of system synthesis such
as pipelining, selection, allocation, scheduling and FPGA
reconfiguration. Our technique can handle both time con-
strained as well as resource constrained synthesis problems.
We present results of our algorithm implemented as part of
theMatch project[1] at Northwestern University.

1. Introduction

The current trend in designing large time-critical systems
is to employ a combination of general purpose processors,
digital signal processors (DSPs) and field-programmable
gate arrays (FPGAs). The core part of the system design of-
ten starts with some compact representation of the processes
involved. One of the most common and convenient internal
representation of a realtime computation has been in terms
of what are known ascontrol data flow graphs (CDFGs)
where thenodesindicate the computation tasks and the di-
rected edges represent either the flow ofexecution control
or thedataacross the tasks (see [2] for an example).

TheseCDFGscan be further augmented with additional
timingedges to indicate the realtime constraints. In systems
involving repeated processing of some input data which ar-
rives at a predefined rate, we could have an additional con-
straint that the processing has to be completed within the
inter arrival time (IAT).

�This work was supported by DARPA under contract F30602-98-2-
0144

End

A

B C

D

E

F

Start

IAT = 90

Timing edge
Delay = 270

Data edges

Figure 1. Dataflow graph of the example pro-
gram loop

1.1. The Synthesis Problem Considered

We illustrate the synthesis problem addressed by our al-
gorithm with the help of an example program (refer Fig-
ure 1). There are six (labeled as A to F) tasks performed as
part of the body of a loop. The task A reads the incoming
data which arrives every 90 ms. imposing athroughput con-
straint of 90 on this loop body. Further, the last task in the
loop body, namely the task F, needs to take an action on the
processed data in no more than 270 ms. (deadline) after the
data is read. This timing constraint is indicated as a timing
edge with a weight of 270.

Given a set of resource types, we have a large set ofde-
sign alternativesfrom which we need to narrow down to a
particular design which meets the requirements of a specific
application. Each of these alternatives are associated with
a delay(the time taken by the task if implemented using a
set of resources) and acost(could be the Dollar cost of the
resource or the real estate needed to implement the task on
an FPGA and so on). Often, these design alternatives are
encapsulated in what are known asDelay/cost tables.

Resource pool

A1

C2

D2

E1

F1

0

90
 0

70

90

2 2 3 1

1 2

1 2

1 2 3

1

1 2

1 2

Pentium DSP FPGA
1 1 2

B1

FPGA reconfiguration

0

T
im

e

Stage2

Stage3

Stage1

Figure 2. The example CDFG after selection,
pipelining and scheduling

The computation load of a large realtime system may
dictate that each of the tasks in theCDFG is implemented
(possibly, in a data parallel manner) by employing more
than one resource (same or of different types). We need
to decide not only the resource type to be used for a given
task, but also the number of resources needed by each of the
tasks. To achieve high throughputs at lower resource costs,
often these tasks arepipelined. Further, to ensure maximum
utilization of these resources we may wish toreusethese re-
sources across the tasks whenever possible.

Programmable devices such as FPGAs need to beconfig-
uredbefore they can perform the computation. Better uti-
lization of these devices can be achieved if we could ‘hide’
the reconfiguration times.

In Figure 2 we illustrate how theCDFG in Figure 1
can be synthesized. We have selected a general purpose
processor, DSP and FPGA as the resource types; chosen
specific implementations of the tasks using these resource
types from among the several alternatives available in the
delay/cost table; pipelined theCDFG into three pipeline
stages; allocated altogether 2 Pentiums, 3 DSPs and 2 FP-
GAs to implement the entireCDFG; we have scheduled
these devices across the tasks to ensure maximum utiliza-
tion and finally we have scheduled the reconfiguration of
the FPGAs in such a way that the same two FPGAs are used
by both the tasks A and F.

In this paper, we describe our synthesis algorithm that
addresses all these issues in a unified manner. Our al-
gorithm is based on Mixed Integer Linear Programming
(MILP). The rest of the paper is organized as follows. We
start with a brief overview of related work in Section 2. In
Section 3 we describe our synthesis algorithm. We evalu-
ate our algorithm using a large number of benchmarks in
Section 4.

2. Related Work

Many of the system level synthesis subproblems have
a corresponding counter-part in high level synthesis. Due
to space restrictions we mainly concentrate on some of the
works in system synthesis domain that are more closely re-
lated to ours in terms of synthesis issues, target architectures
and solution techniques.

[3, 4, 5, 6] address problems similar to that discussed in
this paper. While [3, 6] focus on inter-task communication
related issues, [4, 5] emphasize on achieving high through-
puts. Our current work takes into account both communica-
tion and throughput related issues.

Unlike the problem we have addressed in this paper,
these algorithms assume single processor implementation
of each task and also do not address issues related to recon-
figurable devices. An algorithm which is targeted to multi-
processor implementation of the tasks is proposed by [7]
which emphasizes mainly on program transformations and
parallelization strategy for each task. [8] proposes an al-
gorithm for design of systems using FPGAs and focuses
mainly on reuse of the FPGAs across tasks.

In terms of the techniques used, [5, 6, 7] employ clever
heuristics (based on iterative refinement) and [8] is based
on Evolutionary programming. While the use of such non
exact techniques has the advantage of arriving at a quick so-
lution, in most cases there is no guarantee on the optimality
of the result nor any clue as to how close the solution is to
the optimal.

[3, 4] use MILP techniques to solve the synthesis prob-
lem. However, their models are more restrictive than the
one we are addressing. For example, the cost model in [4]
does not seem to take into account resource sharing across
tasks. Resource sharing is very important to reduce the cost
of the synthesized system. Further, it is not clear whether
these models are time efficient. While [3] deals with small
task graphs (less than 10 nodes) and reports solution times
of hours, [4] reports solution times (restricting to only al-
gorithm selection) of the order of minutes. Neither of these
algorithms address issues related to FPGAs.

[8] which focuses primarily on FPGAs, tries to minimize
the reconfiguration times by optimally sequencing the tasks
onto the FPGAs, whereas our algorithm tries to achieve that
by configuration in anticipation of future use (latency hid-
ing). An interesting extension to our model can be to incor-
porate sequencing in addition to latency hiding.

To the best of our knowledge ours is the first MILP
model which combines all the subproblems discussed in
Section 1.1 into a single model and synthesizes relatively
large (hundreds of nodes) graphs in reasonably short times
(few minutes) with a guarantee on the solution quality.

3. The Synthesis Algorithm

Our synthesis algorithm combines pipelining, selection,
allocation, scheduling and reconfiguration into a single
MILP model to ensure optimality. Further, by suitably
defining the objective function, we can either perform time
constrained or resource constrained synthesis. In the fol-
lowing subsections we discuss the constraints which model
each of the subproblems and the objective functions. We
use the notation listed in Table 1.

Table 1. Notation Used in the MILP Formula-
tion

Predefined (target specific) constants:
lt Dollar cost of resource of typet.
rt Config delay of a device of typet.

Constants for a problem instance:
Nv # of nodes in the CDFG
T Allowed total execution time (constraint).
tci j Wt. of timing edge between nodesi and j .
δ Inter-arrival time (IAT).
Nai # of design alternatives for nodei
dik Execution time ofith node

if kth alternative is selected.
uikt # of resources of typet needed by

thekth alternative forith node.
Model variables:

Di Execution time ofith node after selection.
si Start time ofith node.
Nt # of resources of typet.
Rit Total # of resources of typet used byi.
Pi # of pre-configured FPGAs used by nodei.
Ci # of FPGAs used by nodei needing reconfig.
aik Indicates selection ofkth alternative for node i.
zi j ;z0

i j Indicate overlap between nodesi and j .
pi Pipeline stage of nodei.
ci Indicates whether the FPGA used by nodei

needs reconfig.

3.1. Resource Selection

Selecting the resources to implement a specific node in
the CDFG involves choosing one of the many possible im-
plementations for the node. This selection implies thetype
of the processing element,numberof processing elements
used (could be more than one if the implementation ex-
ploits data parallelism) as well as theinterconnectused to
link these processing elements. Depending on this selec-
tion, the cost of implementing the node (in terms of dollar
costs, memory requirements, power consumption etc.) and
the contribution of the node to the total execution time of
the program get decided.

Selection of Processing Elements.We use boolean vari-
ablesaik to denote whether an implementationk is chosen

for nodevi . One and only one of the alternatives need to
be selected for a given node. This implies the following
uniqueness constraint.

Nai

∑
k=1

aik = 1 (1)

Well known techniques[9, 10] exist that can exploit themu-
tually exclusive propertyof aik to speed up the solution.

Choice of a specific implementation for a node decides
the execution time of the node. The actual execution time
Di of a nodevi can be expressed in terms of the execution
timesdik of individual alternatives (stored in thedelay/cost
table) as

Di =

Nai

∑
k=1

aikdik (2)

Selection of Communication Links. The PEs used to im-
plement a given node need to be interconnected to aide the
inter-subtask (in a data parallel implementation of a macro
task) communication. In addition to this inter-subtask com-
munication, the macro tasks in a CDFG may need to com-
municate due to data dependencies across them. This com-
munication time depends not only on the type of communi-
cation link used to connect the PEs in the two macro tasks,
but also on the number of PEs used for each of these nodes.

A data edgeel connecting two nodesvi andvj can be
implemented using any one of theL link types. The com-
munication timed0

xyk depends on the alternativesaix andajy

used to implement the nodesvi andvj and the link typek
used for implementing the edgeel . Letblk denote that a link
of typek is used to implementel . These boolean variables
are constrained by (similar to Constraint 1 above)

L

∑
k=1

blk = 1 (3)

In the presence of multiple alternatives for the implementa-
tion of a data edgeel , the effective communication costD0

l
is given by

D0

l = ∑
8xyk

fxykd
0

xyk (4)

Where fxyk are implicit boolean variables (these variables
are derived withoutadditional cost) that have a value 1 if
and only ifaix,ajy andblk are all 1.

3.2. Scheduling the Nodes

The order in which the nodes in a CDFG start execution
is largely decided by the data dependencies between them

and the availability of resources to execute the tasks. Tim-
ing constraints can also influence this order. The start time
si of nodevi cannot be earlier than the end time of any of
its predecessors (source nodes of the associated data edges).
If inter node communication times are taken into account,
thensi should be at least greater than the end time of each
predecessor plus the time needed for communication. This
is implied by the following constraint.

si � sj +Dj +D0

l ;8vj �data edgeel
vi (5)

Similarly, each timing edgeel with a weight t between
nodesvi and vj (vj � vi) implies that the nodevi has to
start at mostt units of time after the end time of nodevj

imposing the following constraint.

si � sj +Dj + t;8vj �time edgeel
vi (6)

3.3. Pipelining

Often, the nodes in a CDFG form part of a loop in which
a stream of incoming data is read by one of the tasks and
processed by subsequent tasks. The inter-arrival timeδ be-
tween two successive packets of data can be much smaller
compared to the total processing timeT allowed. One way
to meet this high throughput requirement is to pipeline the
tasks intoT=δ stages.

Pipelining of the tasks involves assigning the tasks to one
of theT=δ stages. For this, each task has to fit in exactly one
of the stages (saypi) imposing the following constraints.

Di � δ;8vi

piδ� si � piδ+δ�Di
(7)

The first constraint ensures that the execution time of the
node does not exceed the pipeline stage delay (same asδ).
The second constraint imposes the restriction that the node
starts execution anytime after the beginning of stagepi and
the execution completes no later than the end of the same
stage.

3.4. Resource Sharing

Often, the resources used to implement the nodes are not
utilized beyond the start and end time of each node. These
resources can be reused to execute some other nodes and
hence bringing down the resource costs. Any two nodes
with non overlapping execution intervals (start time to end
time) can potentially share the same resource. From the
resource’s point of view, this means that the same resource
would execute the two nodes one after another in the order
specified by their respective start and end times.

The classical approach to model this resource schedul-
ing problem [11] using boolean variablesti j , that stand for

usage of a resource of typet by the nodevi at time j, re-
sult in large number of integer variables (O(T)) for CDFGs
with large total execution timeT. Even the optimizations
based onexecution time intervalsdoes not bring down this
number substantially.

In our model we use a different strategy. We use boolean
variableszi j andz0i j to capture the situation where a pair of
nodesvi andvj may overlap. A value ofzi j = z0i j = 0 in-
dicates that the two nodes overlap (other combinations in-
dicate non overlap). These variables can be set to the right
value by imposing the following constraints.

si �Ej > �N(1�zi j)
sj �Ei > �N(1�z0i j)
Ej �si � �Nzi j

Ei �sj � �Nz0i j
where

Ei = si +Di�1 (end time ofvi)
Ej = sj +Dj �1 (end time ofvj)

N is a large constant�Dk

(8)

The idea here is to force the variableszi j andz0i j to zero
whenever the execution intervals[si ;Ei] and[sj ;Ej] of nodes
vi and vj intersect. That means whenever bothsi � Ej

andsj � Ei are true. It is easy to see that the number of
such variables needed are independent of the total execution
time and much fewer thanO(N2

v) (worst case) variables are
needed in practice (refer [12]). Using these boolean vari-
ables, we proceed to compute the number of resources of a
given type needed to synthesize the CDFG as follows.

Conventional Processors. Assuming that an alternative
aik for a nodevi needsuikt resources of typet (known a-
priori), we can compute the actual number of resources of
that type needed by the nodevi by setting the following re-
lation.

Ri =

Nai

∑
k=1

aikuikt (9)

Now, if two nodesvi andvj both have implementations
which use a resource of a given type and assuming that the
execution times of these nodes overlap, the number of re-
sources of that type needed to implement these two nodes is
Ri +Rj (since they cannot share resources).

One way to ensure that two nodes with overlapping exe-
cution intervals do not share a resource is by using boolean
variablesσik to denote that nodevi uses thekth resource
of a given type. These variables should obey the following
constraint

σik +σ jk � 1 (at most one can be true)
whenever zi j = z0i j = 0 (10)

A similar formulation is used in [3]. However, this formu-
lation has the following problems.

Firstly, this formulation needs additional boolean vari-
ablesσik and the number of such variables can be of the
order of total number of resources needed to implement the
complete CDFG. Either such an estimate on the number of
resources should be known a-priori or else a tight upper
bound on them is needed (may not be always possible).

Secondly, in a given solution to the final synthesis prob-
lem, any renaming of the resources of a given type (effec-
tively all permutations) is also a solution with exactly the
same cost. That means the MILP solver can potentially
spend lot more time in weeding out a large number of solu-
tions which are all ‘equivalent’, before arriving at the opti-
mal solution.

In our model, we use an alternate strategy that does not
need any additional boolean variables nor an estimate on the
upper bound on the number of resources. If two nodesvi

andvj can potentially overlap, then we setup the following
constraint to compute the total number of resourcesR of a
given type needed by them.

R � Ri

R � Rj

R � Ri +Rj �N(zi j +z0i j)
where N is a constant�Rk;8k

(11)

It is easy to see thatR takes the valueRi +Rj whenever
zi j = z0i j = 0(i.e. the nodes overlap), or else it takes a value
of max(Ri ;Rj). Note that this formulation uses no addi-
tional variables. These relations can be generalized to a set
fvi1;vi2; :::ving of n nodes that can potentially overlap as fol-
lows.

R � max(Ri1;Ri2; :::;Rin)
R � ∑n

k=1Rik�N∑8(i j)(zi j +z0i j)
(12)

Reconfigurable Devices. Sharing a reconfigurable re-
source such as FPGA by two or more nodes poses the fol-
lowing problems. The execution of such nodes can start
only after the corresponding FPGAs are configured. In gen-
eral, this process can take from several tens to several hun-
dreds of milliseconds. A good scheduling algorithm should
try to reuse these expensive resources as far as possible
(without increasing the total execution time) to bring down
the overall system cost.

In our formulation, we try to achieve this reuse to a large
extent. We look at the usage of a reconfigurable device as
two distinct consecutive tasks. Obviously, the first one in-
volves configuring the FPGA and the second (not neces-
sarily immediately following in time) task which actually
performs the computation. Now, by scheduling the first one
appropriately, it is possible to ‘hide’ the configuration delay
and make it appear as if the FPGA waspre-configured. Ef-
fectively, no additional delay is added to the total execution
time due to this re-usage of the FPGA.

In practice, however, it may or may not be possible to
hide the configuration delays of all the FPGAs used in a de-
sign. In such cases some of the FPGAs may need to be pre-
configured and others dynamically reconfigured. We need
to compute the numberCf p of the FPGAs that can be reused
(dynamically reconfigured) as well as the total numberNf p

of the FPGAs (including the pre-configured ones) needed
in the final design. We use boolean variablesci to indicate
whether the FPGAs used (if at all) by nodevi can be reused
by some other node. This variable can have a value 1only if
the implementation selected (by the formulation described
in Section 3.1) indeed uses FPGA as a resource. That means
the following condition should hold.

ci �∑
k

aik;8 implementation k that uses FPGA (13)

For a given nodevi , the number of preconfigured FPGAs
Pf pi

, the number of reconfigured FPGAsCf pi
and the total

number of FPGAs usedRf pi
are related by the following

relations.

Rf pi
= Pf pi

+Cf pi

Pf pi
= Rf pi

�Nci

where N is a constant� Rf pi

(14)

The first constraint is obvious. The second one implies that
when the FPGA allocated to nodevi needs to be recon-
figured (ci = 1), the node needs no preconfigured FPGAs
(Pf pi

= 0).
We now need to impose further restrictions on the

scheduling of the nodes so that the FPGA reconfiguration
tasks get ‘hidden’ when possible. The implication of recon-
figuring an FPGAs used by a node is that even though the
nodevi starts execution at timesi (as computed by the con-
straints described in Section 3.2), the FPGAs allocated to
that node get ‘locked up’ even before the execution starts.
That is to say that no other node can really use these FPGAs
during the time period between the start of reconfiguration
till the end of execution of the node. Lets0i denote the time
when the reconfiguration starts andrt (a constant) be the re-
configuration time. The start timessi ands0i are related by
the following constraints.

si � s0i +cirt (15)

What this constraint implies is that if the FPGA is not re-
configured (ci = 0) then it can be used anytime (si � s0i ;s

0
i is

0 by default) since it is pre-configured. In case a reconfig-
uration is needed (ci = 1), then it can be used only after a
delay ofrt from the times0i during which it is reconfigured.
It is this s0i (in the place ofsi) that is used in Constraint 8
to check the overlap if the nodes have an implementation
that uses FPGAs. We need to impose further constraints if
the CDFG is pipelined. We skip those details here and refer
to [12].

Communication Interfaces. The number of communica-
tion interfaces needed is computed in a manner similar to
that described in Section 3.4. We treat each communica-
tion interface as a resource and count not only those needed
for intra node communication but also inter-node commu-
nication. Further, the number of communication interfaces
needed for a given type of node is computed separately.

Mutually Exclusive Control Paths. Allocation of re-
sources to mutually exclusive control paths is simple in our
formulation assuming that a pre-processing step has identi-
fied all such paths. Two nodesvi andvj can share the same
resources if they happen to be on two mutually exclusive
paths. For such nodes we don’t need the variableszi j ;z0i j
described in Section 3.4 and we can assume that their exe-
cution times don’t overlap.

3.5. Objective Functions

Depending on the goals of an application, our MILP for-
mulation can have a different objective function. The most
common goals are to minimize the resource costs given a
set of timing constraints to be met by the system. Alterna-
tively, the goal could be to minimize the total execution time
of the application given a set of resources. Other goals such
as power minimization, area minimization are also possi-
ble [12].

Minimizing the Resource Cost. In a heterogeneous sys-
tem one commonly used cost measure is the dollar cost of
the resources used in the synthesized system. This cost has
to be minimized without violating the timing constraints
such as deadlines and throughput requirements. Obviously
the objective function in this case is the sum of the costs of
the compute and communication resources.

OBJ = ∑i Ni li +∑ j Nj l j

8 comp. resource of typei
8 comm. resource of typej

(16)

whereli andl j are dollar cost per resource.
When this objective function is minimized subject to all

the constraints described in previous sections, the variables
Ni andNj evaluate to the number of resources of a given
type needed to realize the least cost system that meets all
the timing and throughput constraints.

Minimizing the Execution Time. In this case, the main
objective is to choose the resources from a predefined pool
of resources and schedule the nodes in such a way that the
completion time of the program is minimum. The number
of resourcesNk in this case are predefined (they serve as
upper bounds) and hence are constants. The total execution

time of the CDFG is nothing but the start timesend of the
exit node vend in the CDFG. We need to minimize this. So,
the objective function in this case is simply the following.

OBJ= send (17)

4. Experimental Evaluation

We have used a general purpose MILP solver [10] that
usesbranch and bound searchtechnique combined withLP
relaxation[9] to solve our model. A large set of real as well
as synthetic benchmarks with upto 250 macro tasks (nodes
in the CDFG) and more than 1000 subtasks is used to eval-
uate the algorithm. We have compared the quality of the
results produced by our algorithm with that of a generic
heuristic algorithm. This heuristic algorithm follows the
same strategy as that followed by current heuristic algo-
rithms [5, 6] where the main idea is to start with a low cost
solution, iteratively refine it by improving thecritical paths
and schedule the resources until all the timing constraints
are met.

As a specific example, we take one of the benchmarks
namely the Space-time Adaptive Processing (STAP) [13]
(refer to [12] for more details on benchmark specific re-
sults). STAP is a class of algorithms used in the area of
airborne surveillance radars, used to detect weak target re-
turns embedded in strong ground clutter. As can be seen

Table 2. Synthesis of STAP application for var-
ious timing constraints

T δ Pipeline Dollar cost % Cost
ms ms stages Heuristic Our Algo reduction

500 500 1 3480 2280 34
1400 700 2 3600 2160 40
500 250 2 5520 4320 22
750 250 3 5280 2880 45
400 100 4 9840 9360 5

in Table 2, for different combinations of total timeT and
inter-arrival timeδ, the cost of the synthesized system us-
ing our algorithm is lower than that produced by the heuris-
tic. The major part of this cost reduction comes from better
resource selection and scheduling and in some cases from
better pipelining.

We have done an exhaustive evaluation of our algorithm
with more than 1000 test cases for CDFGs with upto 250
nodes and for different timing constraints. The evaluation is
in terms of the cost reduction it can achieve as compared to
heuristic, its ability to efficiently use the FPGAs, the close-
ness of the solutions to an estimated bound when the MILP
search does not result in optimal solution and finally the
time taken for the synthesis. We summarize these results in
the following sections.

4.1. Improvement Over Heuristic

As can be seen in Figure 3, on an average, our algorithm
produces results that are substantially better (20 to 50%)
than the heuristic though for smaller graphs (upto 10 nodes)
there are many cases where the heuristic also succeeds in
producing the same quality result as our algorithm. Simi-
lar observation is made by others [6] where they assert that
their heuristic algorithm produces the same results as that

0
10
20
30
40
50
60
70
80

6 10 20 30 40 50 15
0

25
0

No. of Nodes

%
 Im

pr
ov

em
en

t

max
avg
min

Figure 3. Improvement in the cost of the solu-
tion as compared to that produced by heuris-
tic algorithm, for different test cases.

produced by exact techniques for small graphs. This is be-
cause, for small graphs, the design space is relatively small
and so there is higher likelihood of a good heuristic finding
an optimal solution. However, for larger CDFGs this does
not seem to be the case.

4.2. Reuse of FPGAs

We tried three different types of FPGAs with reconfig-
uration times of 10ms,100ms and 1000ms and ran a large
number of cases to see how efficiently the algorithm uti-
lizes the FPGAs. Figure 4 summarizes these results. For

0
10
20
30
40
50
60
70
80
90

100 75 60 35 25 15

% Utilization

%
 o

f c
as

es 10
100
1000

Figure 4. % Reuse of the FPGAs in different
cases.

smaller reconfiguration times (10ms), the algorithm suc-
ceeds in reusing all the FPGAs in as many as 80% of the
cases. For larger reconfiguration times (1000ms) though,
less than 10% of the FPGAs are reused in half the cases.
This indicates that for some applications we need to use
FPGAs with faster reconfiguration times since there is no
way of reusing the FPGAs without violating the timing con-
straints.

4.3. Closeness to the Bounds

Since the synthesis problem at hand is known to have
several NP-complete subproblems, it is unlikely that any al-
gorithm would produce optimal result in reasonable time for
all cases. Fortunately, many of the MILP solvers allow us

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40 45 50 55 60

% more than the bound

%
 o

f c
as

es

Figure 5. Deviation from an estimated bound
when the search was terminated.

to terminate the branch and bound search after a specified
time out. The solution obtained may not be optimal, but
these solvers estimate how close these solutions are to opti-
mal by computing a bound. Though these bounds in general
may not be very tight, they do provide an idea of how close
we are to the optimal when the search was terminated. In
our test runs we imposed a stringent timeout of 10 minutes
to see the quality of results that can be expected in such a
short time. As can be seen from Figure 5, in 60% of the
cases, the solver succeeded in finding the optimal solution
much before the timeout.

However, there were cases when the suboptimal solution
was more expensive than the bound though it was generally
much better than that found by heuristic. It is quite pos-
sible that these ‘suboptimal’ solutions would indeed turn
out to be ‘optimal’ solutions given sufficient time and if the
bound computed were sufficiently tight. In fact, when we
increased the timeout to 30 minutes, 72% of the cases ter-
minated with optimal results though the average decrease in
the cost was marginal. A timeout of 10 minutes seems to be
a good choice.

0
100
200
300
400
500
600
700

6 10 20 30 40 50 15
0

25
0

No. of nodes

T
im

e
in

 s
ec

s.

max
avg
min

(a) Our Algorithm.

0

5

10

15

20

25

30

6 10 20 30 40 50 15
0

25
0

No. of nodes

S
ol

ut
io

n
tim

e
in

 s
ec

s.

max
avg
min

(b) Heuristic Algorithm.

Figure 6. Synthesis times for different sizes
of test cases

4.4. Synthesis Time

One of the major concerns in automatic synthesis is
the synthesis time and how it varies with the size of the
problem. In Figure 6(a), we show the maximum/ average/
minimum time taken for synthesizing CDFGs of various
sizes for different timing constraints. The average synthesis
time for our algorithm is reasonably small (a few minutes),
though there were cases that did not succeed in finding opti-
mal solution within the preset timeout (10 mins). However,
it is interesting to note that unlike the heuristic algorithm
(refer Figure 6(b)), where it seems that the synthesis time is
predominantly decided by the size of the CDFGs, there does
not seem to be any strong relation between the number of
nodes and the solution time of the MILP solver. The solver
seems to be more sensitive to the structure of the CDFG
(and hence the shape of the search space) rather than just
the number of nodes.

5. Conclusion
In this paper we presented a system-level synthesis

algorithm based on Mixed Integer Linear Programming
technique that captures pipelining, selection, allocation,

scheduling and reconfiguration of FPGAs in a single formu-
lation. Our model solves both time constrained and resource
constrained synthesis problems. Our experimental results
indicate that in most cases our algorithm produces better re-
sults as compared to heuristic techniques (and never worse),
succeeds in reusing the FPGAs across the tasks by hiding
reconfiguration times, gives a clear idea about how close
the solution is to the optimal in cases where optimal solu-
tion could not be found in limited time. It achieves all this
in reasonable time making our technique useful for practical
applications.

References

[1] Centre for Parallel and Distributed Computing, Northwestern
University, “MATCH: A MATLAB Compilation Environment
for Distributed Heterogeneous Adaptive Computing Systems”,
http://www.ece.nwu.edu/cpdc/Match/Match.html,

[2] Jos T.J. and Leon Stok, “A Data Flow Graph Exchange Standard”,
Proc. of the Eur. Conf. on Design Automation (EDAC), Brussles,
Belgium, March 1992, pp. 193-199.

[3] S. Prakash and A. Parker, “SOS: Synthesis of application-specific
heterogeneous multiprocessor systems”, Jl. of Parallel and Dist
Processing, pp. 338-351, Dec 1992.

[4] Y.G.Decastelo,M.Potkonjak and Alice Parker,“Optimal ILP-based
Approach for Throughtput Optimization Using Simultaneous Al-
gorithm/Architecture Matching and Retiming”,Proc. of Design
Automation Conf. (DAC-95), San Francisco, CA, 1995, pp. 113-
118.

[5] Smita Bakshi and Daniel Gajski, “Hardware/Software Partition-
ing and Pipelining”,Proc. of Design Automation Conf. (DAC-97),
Anaheim, CA, 1997, pp. 713-716.

[6] Bharat Dave and Niraj Jha, “COHRA: Hardware-Software C-
Synthesis of Hierarchical Distributed Embedded System Architec-
tures”,Proc. of VLSI Design’98, pp.347-354.

[7] Ireneusz Karkowski and Henk Corporaal, “Design Space Explo-
ration Algorithm for Heterogeneous Multi-processor Embedded
System Desgin”,Proc. of Design Automation Conf. (DAC-98), San
Francisco,California, 1998, pp.82-87.

[8] Robert Dick and Niraj Jha, “CORDS: Hardware-Software Co-
Synthesis of Reconfigurable Real-time Distributed Embedded
Systems”,Proc. of ICCAD98,pp. 62-68, San Jose, CA, 1998.

[9] George Nemhauser and Laurence Wolsey, “Integer and Combina-
torial Optimization”,Wiley-Interscience Publication.

[10] XPRESS-MP Linear and Integer Programming Modeling and Op-
timization system, Dash Associates, UK. http://www.dash.co.uk

[11] Daniel Gajski et.al., “High-level Synthesis”,Kluwer Academic
Publications.

[12] U.Nagaraj Shenoy, Prith Banerjee and Alok Choudhary,“An
MILP Based Algorithm for Automatic System Level Synthe-
sis”,Technical Report CPDC-TR-9903-003, Northwestern Univer-
sity, March 1999.

[13] R. Brown and R. Linderman, “Algorithm Development for an Air-
borne Real-Time STAP Demonstration”,Proc. of IEEE National
Radar Conference,1997.

