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ver the past two decades, advances in semiconductor and integrated cir- 
cuit technology have fueled the drive toward faster, ever more efficient 
computational machines. Today, the most powerful supercomputers can 

perform computation at billions of floating-point operations per second 
(gigaflops). This represents a growth of two to three orders of magnitude over the 
past decade. 

Much of this computational capacity is being harnessed to undertake large-scale 
mathematical modeling and simulation of various physical, chemical, and biologi- 
cal phenomena in connection with a broad range of theoretical and practical 
endeavors. For example, scientists are attaining unprecedented levels of clarity 
and detail in areas such as climate prediction and control, air and water pollution 
and quality management, lattice gauge theory, quantum chromodynamics, large- 
scale structure and galaxy formation, vision, and cognition. In engineering, com- 
putational techniques are being applied to the design and test of anticancer agents, 
anti-AIDS drugs, aircraft wingfoils, modern combustion engines, oil reservoir 
simulations, and the like. This increase in capability is intensifying the demand for 
even more powerful machines. Computational limits for the largest supercomput- 
ers are expected to exceed the teraflops barrier in the coming years. 

I/O in Grand Challenge applications. Many supercomputer applications, like 
those mentioned above, are among a set of scientific and technical Grand 
Challenges, an annual list initiated about a decade ago by Nobel prize-winning 
physicist Kenneth Wilson.’ Aside from being extremely complex and requiring 
significant amounts of processing time, these applications often deal with enor- 
mous quantities of data. Current near-term high-performance applications involve 
from 1 gigabyte to 4 terabytes of data per run. 

Although the main memory regions of supercomputers are extremely large, 
some applications manipulate more data than these memories can hold. Such 
applications are appearing more frequently and have very high I/O requirements. 
For example, current archival sizes for a Grand Challenge group typically range 
from 500 Mbytes to 500 Gbytes of storage, with a peak of 10 Tbytes. Scientists 
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Table 1. I/O reauirements for Grand Challenge applications. 
Y  __ 

Application 

Environmental and Earth Sciences 

l/O Requirements Storage 

Eulerian air-quality modeling 

4D data assimilation 

Current 1 Gbyteimodel, 100 Gbytesiapplication: 
projected 1 Tbyteiapplication. 

10 Tbytes at 100 model runs/application. 
100 Mbytes-l Gbyte/run. 
3-Tbyte database. Expected to increase by 

orders of magnitude with the Earth Observing 
System - 1 Tbyteiday. 

Secondary 

Archival 
Secondary 
Archival 

Computational Physics 

Particle algorithms in cosmology 
and astrophysics 

Radio synthesis imaging 

Computational Biology 

I-10 Gbytesifile; IO-100 files/run. 
20-200 MBps. 
l-10 Gbytes. 
HiPPl bandwidths minimum. 
1 Tbyte. 

Secondary 
I/O bandwidth 
Secondary 
I/O bandwidth 
Archival 

Computational quantum 
materials 

150 Mbytes (time-dependent code) 
3 Gbytes (Lanczos code). 

40-100 MBps. 

Secondary 

I/O bandwidth 

Computational Fluid and Plasma Dynamics 

High-performance aircraft 
simulation 

Computational fluid and 
combustion dynamics 

4 Gbytes of data/4 hrs. 
40 Mbytes to 2 GBps disk, 50-100 

MBps disk to 3-inch storage 
(comparable to HiPPl/Ultra). 

1 Tbyte. 
0.5 GBps to disk, 45 MBps to disk 

for visualization. 

Secondary 
I/O bandwidth 

Archival 
Ii0 bandwidth 

anticipate that by the time teraflops 
machines with terabytes of memory 
appear, these l/O requirements will 
increase dramatically. in some cases 
more than lOO-fold (as with climate 
modeling), reaching 10 petabytes per 
Grand Challenge group. 

But memory capacity is not the only 
consideration. Supercomputers are 
commonly interfaced with various 
peripheral devices (such as external 
disk storage systems, mass storage 
devices, visualization devices, video 
cameras, networks, and other super- 
computers) for pre- and postprocessing 
of data, or simply for additional work- 
ing storage. 

In many cases, the speed of access to 
data can determine the rate at which 
the supercomputer can complete an 

assigned job. (Such jobs, for which I/O 
- not computation - is the bottle- 
neck, are said to be I/O bound.) The 
need to access data via network- 
connected remote devices introduces 
significant delays over access to the 
internal l/O subsystem. The expansion 
of support for global computing para- 
digms amplifies the severity of this 
problem. Today, most high-perfor- 
mance applications involve l/O rates of 
1 to 40 Mbytes per second for sec- 
ondary storage and 0.5 to 6 MBps for 
archival storage. Application develop- 
ers indicate that probably 1 GBps to 
secondary storage and 100 MBps to 
archival store will be required in the 
near future.2 To better understand the 
need for such high data-transfer rates, 
we provide the examples that follow. 

Imaging of planetary data. The space- 
craft Magellan has been collecting data 
from the surface of Venus since 
September 15, 1990. Using radar to 
penetrate surrounding Venusian cloud 
cover and to scan the surface for struc- 
tural information, Magellan has trans- 
mitted to earth in excess of 3 Tbytes of 
data. Producing a 3D surface rendering 
at 200 Mbytes of data per frame would 
require more than 13 Gbytes per sec- 
ond at 50 frames per second. This far 
exceeds the l/O capacity of today’s 
machines. Rendering a portion of the 
Venusian surface on a 512-node Intel 
Touchstone Delta takes several days.” 

Climate prediction. Research efforts 
in climate and global change, long- 
range weather prediction, and land- 
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surface processes are crucial to under- 
standing geographic. oceanic, and 
atmospheric systems. The most com- 
plex of these are the general circulation 
models of the atmosphere and ocean 
that must be capable of simulating geo- 
physical fluid dynamics on appropriate 
scales. Current atmosphere/ocean mod- 
els have certain requirements on an 
Intel Touchstone Delta. For a 1(X-year 
atmosphere run with Xl&square kilo- 
meters resolution and 0.2 simulated 
year per machine hour. the simulation 
takes three weeks runtime and gen- 
erates 1,144 Gbytes of data at 38 
Mbytes per simulation minute. For a 
1 ,OOO-year coupled atmosphere-ocean 
run with a 150.square kilometer reso- 
lution, the atmospheric simulation 
takes about 30 weeks and the oceanic 
simulation 27 weeks. The process pro- 
duces 40 Mbytes of data per simulation 
minute, or a total of 20 Tbytes of data 
for the entire simulation.” 

Table 1 summarizes the I/O re- 
quirements for several Grand Chal- 
lenge applications. The data is based on 
presentations by scientists at the Grand 
Challenge Applications and Software 
Technology Workshop in Pittsburgh in 
May 199X? 

High-performance distributed com- 
puting. Today, many scientists share 
a vision for the future of high- 

performance distributed computing 
(HPDC): they envision a nationwide 
heterogeneous distributed-computing 
environment in which information and 
data will be shared, processed, and 
stored in a seamless, globally oriented 
manner. 

The term mefacotnputing, originally 
used in the 1980s. refers to the concept 
of having several machines work coop- 
eratively on a single problem. The 
recent popularity of this computing 
paradigm stems from the fact that a 
supercomputer’s execution rate for a 
given application is a function of how 
closely the problem domain maps to 
the computer’s architecture. Meta- 
computing allows the assignment of 
each task in a problem to the machine 
that can execute it optimally. 

Figure 1 shows how a high-per- 
formance computing infrastructure 
might appear, with computational cen- 
ters composed of various combinations 
of vector computers. massively parallel 
computers. multiprocessors. high- 
resolution visualization systems, tens to 
hundreds of workstations, mass storage 
and archival systems, and so forth. con- 
nected by network links of varying dis- 
tances and capacities. The distributed 
nature of this computational paradigm 
would place a high premium on the I/O 
capacities within and between process- 
ing centers. 

The nature of I/O 
in MPPs 

I/O requirement characterization. 
The parallel I/O problem can be 
viewed from several perspectives: lan- 
guages, compilers. file and runtime sys- 
tems. networking systems, operating 
systems services, storage systems, and 
so forth. Crockett” classifies parallel file 
organizations into a number of cate- 
gories based on a global and internal 
view of the access pattern. Existing par- 
allel file systems such as Intel’s CFS 
and Ncube’s file system provide sup- 
port for some subset of these file 
organizations. 

The use of parallel computers is 
becoming more sophisticated. so it is 
important to reexamine what we un- 
derstand about the nature of the 110 
requirements. In particular, the follow- 
ing concerns arise. Our understanding 
of I/O requirements for scientific pur- 
poses stems primarily from past ex- 
perience with supercomputing appli- 
cations or very basic (in terms of I/O) 
parallel applications. Parallel I/O on 
distributed-memory systems will vary 
greatly from supercomputer I/O 
because of the difference in underlying 
hardware. The basic model for current 
parallel I/O systems includes an I/O 
subsystem architecture that is dis- 

Ncube/2 TMC CM-5 Convex C3880 workstation 

Figure 1. High-performance distributed computing network. 
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mpute processor 

(b) 

Figure 4. Tightly coupled secondary storage (a) versus loosely coupled secondary storage (h) compute and I/O systems. 

Parallel files are distributed among 
the set of disks in the I/O subsystem by 
declustering the data across the disk 
array (a technique known as striping), 
as shown in Figure 3. Load-balance 
issues arise from the degree of corre- 
spondence between the application- 
defined data decomposition and the 
data-storage mapping defined by the 
stripe size. We discuss the relationship 
between stripe size and load balance in 
the next section. 

Another major concern in parallel 
I/O architectures involves the data 
transfer bandwidth to and from I/O 
devices. This bandwidth is limited by 
the size and number of communication 
channels between the computational 
array and the I/O devices. In general, 
we can view the interconnection model 
as illustrated in Figure 2. The number 
of I/O channels Cio between the com- 
putational array and the I/O devices is 
given by 

where D is the number of I/O devices, 
and Crp represents the number of con- 
nections from the ith disk to the com- 
putational array. P is the number of 
computational processors, and C,, rep- 
resents the number of connections (1 or 
0) from the ith processor to an I/O 
device. The greater Ci,o is, the greater 
the subsystem’s data transfer capacity. 

In an extension of the tightly coupled 
storage device model to general-pur- 
pose parallel machines, the disk units 
would be integral to the computational 
array. As shown in Figure 4. each disk 
unit is closely coupled to a processing 
unit, resulting in very low transfer times 
between the processor and its local 
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disks and in higher overall I/O band- 
widths. Reddy et al. discuss the prob- 
lem of embedding I/O nodes in parallel 
computers in detail.’ 

Before such models can be com- 
pletely adopted, however, the following 
questions must be addressed: 

(1) What are the effects on compute 
performance of the extra I/O 
processing required of processors 
within the computational array? 

(2) What limits are imposed by addi- 
tional memory requirements for 
I/O buffering? 

(3) What are the effects of additional 
contention in the interconnection 
network arising from increased 
I/O traffic within the computa- 
tional array? 

(4) How will latency-reduction issues 
(arising from reduced possibili- 
ties for overlapping I/O with 
computation) be addressed? and 

(5) How are external devices (for 
instance, tape silos and networks) 
to be connected? 

Operating and file 
systems 

Providing the necessary support for 
parallel I/O at the lower levels of sys- 
tem software requires investigating 
existing algorithms for file management 
in distributed-memory parallel environ- 
ments. Benchmark studies conducted 
on existing file systems let us identify 
deficiencies that must be addressed in 
our attempts to construct better paral- 
lel file systems. 

Communication latency. Communi- 
cation latency to the I/O nodes con- 

tributes greatly to the poor perfor- 
mance of existing systems. High latency 
dominates the overall transfer time of a 
sequence of small- to moderate-size 
requests. Hence, requests for data must 
be made in large chunks if they are to 
be efficiently serviced. This efficiency is 
incurred at the expense of using an 
access mapping with a more natural 
correspondence to the computational 
decomposition. 

Another concern pertains to object- 
oriented operating systems such as the 
Intel Paragon OSFII. Here, the object 
structures impose additional processing 
overhead, thereby increasing communi- 
cation latency. 

A reduction in overall application 
execution time may sometimes be pos- 
sible by overlapping computation with 
I/O, which an asynchronous message- 
passing protocol makes possible. 

Data tlecompo.sition. In constructing 
parallel file systems, we are concerned 
with providing support for user appli- 
cations. A common programming 
paradigm in scientific computing 
involves decomposing the problem 
domain. This decomposition is trans- 
lated into a data-domain mapping over 
the computational array (see the next 
section). In conducting 110, the appli- 
cation must be able to preserve some 
correspondence between this mapping 
and the mapping of data over storage 
devices (for example, disks). The file 
system must accomplish this in an effi- 
cient manner. Current parallel file sys- 
tems have little support for data de- 
composition or control over stripe 
size. Recent benchmark results show 
that existing file systems are extremely 
sensitive to I/O access patterns and 
that performance varies greatly as a 
function of data decomposition.s 
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Figure 5. Read time as a stripe-size function. 

Figure 6. Parallel 
l/O mapping 

functions. 

File stream 

P processing 
elements 

D disks 

Furthermore. the load balance aspect 
of data access becomes critical. If the 
data decomposition selected by the 
application is incompatible with the 
stripe size. it is possible to overload a 
particular I/O node with requests. thus 
creating a severe bottleneck in the file 
system. 

with each curve are also normalized by 
dividing over the largest read time 
taken for that curve. The data was col- 
lected from an Ncubei2.” 

To illustrate load balance effects for 
various data decompositions, Figure 5 
shows the time it takes to complete a 
read operation as a function of stripe 
size. The stripe size, which ranged from 
64 bytes to I Mbyte in the actual exper- 
iment. is shown as a normalized value 
obtained by dividing each stripe si/.e by 
I Mbyte. The read times associated 

Hence. the file system must be able 
to accommodate various data distribu- 
tions and efficiently manage various 
permutations of data decomposition 
versus decluster mappings. 

Data mapping in parallel I/O. In pro- 
gramming a parallel computer, data 
decomposition is often used as a 
method of obtaining some degree of 
parallelism that is usually easy to man- 
age and typically matches the problem 
domain closely. 

Interfow. Cormen and Kotr surveyed 
existing commercial parallel file sys- 
tems. evaluating them on the basis of a 
proposed set of required capabilities.” 
Their results are illustrated in Table 2. 
which also includes support for applica- 
tion-level specification of data decom- 
position (in the last column) as an addi- 
tional criterion (considered “n/a” for 
SIMD or shared-memory machines). 

Their formulation for the set of neces- 
sary capabilities is founded on what 
might be required in order to perform 
a collection of commonly used algo- 
rithms. such as sorting. permutations. 
matrix transpose. fast Fourier transform. 
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When I/O has to be performed. each 
compute node must have some knowl- 
edge of where the data belonging to its 
portion of the distributed data structure 
is located. In other words, a mapping 
function has to be established from the 
data structure clement to the relevant 
disk block. To establish such a mapping 
from the processor array to the dis- 
tributed file. two submappings need to 
be considercd.‘“The first, Ml, involves 
mapping data over the set of processing 
elements. File-data organization over 
the set of disks reprcscnts the second 
mapping. M2. 

For parallel I/O to be efficient. both 
mappings must bc resolved into a data 
transfer strategy. as shown in Figure 6. 
The current parallel file system on the 
Ncube-2 resolves these mappings inter- 
nally into a single data-transfer map- 
ping. which computes proper source 
and destination addresses during file- 
data access. The Intel Touchstone 
Delta file system (the CFS) maintains 
only the M2 mapping. making the user 
responsible for managing the Ml map. 
This is called through direct trcce~s. 
Problems arise from this approach in 
cases where the first and second map- 
pings resolve into a data transfer map- 
ping (representing an access strategy) 
that results in poor I/O performance. 
Such problematic mapping pairs are 
quite common.” 

File system functionality and inter- 
face requirements. The file system 
design is a key ingredient in determin- 
ing the effectiveness of the overall par- 
allel I/O subsystem. Through its func- 
tionality and interface. the file system 
defines the set of l/O operations that 
will be available to runtime systems 
and compilers. 



Table 2. Capabilities of existing commercial parallel file systems. 

Ability to 
Control Recognize 
Over Data Ability to Ability to Ability Ability and Support 
Declustering Query the Access to Turn to Turn (Optimize 

File or Stripe Current Disk Blocks Caching Parity for) Data 
System Factor Configuration Independently On or Off On or Off Distribution 

Intel CFS Limited Limited Yes No nla No 
Paragon PFS Yes Yes Limited Yes Limited No 
Ncube (old) Yes Limited Yes No n/a No 
Ncube (new) Yes Limited Yes No nla Limited 
KSR-1 No ? Limited No Limited n/a 
MasPar No Yes No No No n/a 
TMC No Yes No No No n/a 

DataVault 
TMC SDA No Yes No No No n/a 
IBM Vesta Yes Yes Yes No n/a Yes 

1 

matrix multiplication, and matrix fac- 
torization; further support is taken 
from the results of previous empirical 
studies. Table 2 shows that existing file 
systems still have limited functionality. 
Until now, members of the high-per- 
formance computing community have 
not been able to agree on a standard 
interface for parallel file systems, 
although this is a critical requirement 
from a software engineering stand- 
point. The key questions in interface 
design concern how much information 
and control are made available to the 
user. It could be that explicit control of 
lower level configuration parameters 
(for example, block placement, strip- 
ing, and prefetching) must also be 
made available. These capabilities 
enable the user to explicitly adjust for 
good performance. Furthermore, the 
system’s ability to use additional access 
information enables it to perform opti- 
mizations instead of relying on gen- 
eral-purpose algorithms. 

nature of locality. In the traditional 
view, locality is established by a 
sequential view of data access. 
However, in a parallel subsystem, this 
view may no longer hold. 

lOO-MBps High Performance Parallel 
Interface (HiPPl) channels. 

From the point of view of an l/O 
server node, requests may arrive such 
that prefetching only every other block 
results in improved performance. The 
number of messages required to read 
the entire file and each request’s 
latency cost can be cut in half. 

Runtime system and 
compilers 

Compiler and runtime system sup- 
port for parallel l/O will maximize the 
system’s ability to exploit user-supplied 
or source-level information to optimize 
l/O performance. The additional infor- 
mation will enable the formulation of 
improved l/O access schedules, which 
will result in a more effective communi- 
cation latency hiding strategy. 

Prefetching and caching. Prefetching 
and caching of data within the I/O sub- 
system involves extending the solution 
applied to primary memory. The idea is 
to exploit locality of access by tem- 
porarily saving (caching) blocks that 
contain recently used data, the expecta- 
tion being that nearby data also will 
soon be accessed. Prefetching is a 
predictive extension to caching and is 
based on longer distance distributions 
of locality. The critical issue here is the 

Checkpointing. Users commonly 
share portions of parallel machines for 
production runs. A problem arises 
when the system must be reset due to a 
crash in a program sharing the 
machine. In this case, programmers 
must provide regular state-saving rou- 
tines that will let a run start from a 
point just prior to the interruption. 
Concurrent checkpointing lets long- 
running jobs automatically save state at 
regular intervals so that they may be re- 
started after interruptions without 
unduly retarding their progress. This 
provides for fault tolerance of hard- 
ware and software errors, network mal- 
function, and system interruptions. 

Suppose we have a program that we 
wish to checkpoint in 100 seconds. For 
each Gbyte that needs to be check- 
pointed, we need a lo9 bytes/IO2 = 10’ 
Bps = 10 MBps II0 bandwidth. For 1 
terabyte of data, this translates to a lo- 
GBps I/O bandwidth; to attain such a 
bandwidth would require the use of 100 

Compilers. Various compiler op- 
timizations can enhance l/O per- 
formance in parallel programs. Rec- 
ognizing and parallelizing l/O 
operations are key ingredients here. 
We need to develop compiler tech- 
niques that will allow l/O operations 
to be parallelized for various file types 
and data formats. Mechanisms that 
permit user expression of l/O data 
structures would facilitate program- 
ming and functional interpretation of 
instructions by the compiler. Analysis 
methods similar to those for automatic 
decomposition should be investigated 
to enable the compiler to reschedule 
operations, overlapping l/O with com- 
putation. Moreover. compile time 
information on the access pattern used 
by the application can be supplied to 
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Table 3. Direct access versus two-phase access (64 processors lOK*lOK array, time in msec). 

Best Read Redistribution Total Read Direct Read 
Time Time Time Time Speedup 

Distribution lOK*lOK lOK*lOK lOK*lOK lOK*lOK lOK*lOK 

Column Block 11,395 11,395 11.395 1 .oo 
Column Cyclic 11,395 2,478 13,873 63.400 4.57 
Row Block 11,395 1,028 12.423 78.767 6.34 
Row Cyclic 11,395 3,092 14,487 n/a >248.50 

# 

the runtime system to help generate 
efficient access and checkpointing 
schedules. 

Runtime. Runtime libraries afford a 
level of insulation from operating sys- 
tem and file system software, making 
them attractive as a development envi- 
ronment. Providing parallel l/O sup- 
port at this level increases the chance of 
portability.” Furthermore, by incorpo- 
rating a comprehensive interface to 
compilers, additional compile-time 
information can be harnessed in formu- 
lating a data movement strategy for the 
application. 

Although language extensions help 
us to represent data distribution in- 
formation in a way that closely matches 
the underlying computation, provisions 
for language support that will allow 
similar specifications to be made with 
l/O expressions have not been suffi- 
ciently addressed. As a result, it is diffi- 
cult and sometimes impossible to per- 
form such a parallel l/O mapping in a 
manner that yields optimal perfor- 
mance. Current work on runtime sys- 
tems uses composite mapping tech- 
niques to improve parallel l/O 
performance. 

Composite mapping strategies. 
Experimental results show that file- 
system performance can vary greatly as 
a selected data-distribution function. 
The bandwidth for any given parallel 
l/O configuration is highly dependent 
on the file size; stripe-size-dependent 
factors (for instance, load-balance and 
request size) cause widely divergent 
access times for most distributions.” 

Based on these observations, al- 
ternative schemes for conducting paral- 
lel l/O have been devised. One 
approach, a two-phase access strategy, 
uses combinations of mappings that 
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improve average performance and 
guarantee greater consistency over a 
broader spectrum of data distributions. 
The idea behind this strategy involves 
dividing the parallel l/O task into two 
separate phases. 

In the first phase, the parallel data 
access is performed using a data distri- 
bution that conforms with distribution 
of data over the disks. That is, we intro- 
duce an intermediate mapping M2’ and 
access data with M2’ = Ml. In phase 2, 
we redistribute the data at runtime to 
match the application’s desired data 
distribution (that is, from M2’ to M2). 

By using the two-phase redistri- 
bution strategy, the costs inherent in 
many l/O configurations are avoided. 
Selecting a single. “good” configuration 
effectively reduces the bottleneck activ- 
ity - l/O to the parallel device. 
Furthermore, the redistribution phase 
improves performance because it can 
exploit the higher bandwidths made 
available by the higher degree of con- 
nectivity present within the computa- 
tional array’s interconnection network. 
This strategy effectively decouples the 
user-selected data-distribution mapping 
from the file mapping to the disks (that 
is, the declustering mapping); this 
results in performance that is much less 
dependent on user selected mappings. 

Table 3 compares access rates be- 
tween the direct-access and two-phase- 
access strategies obtained from runs on 
an Intel Touchstone Delta.9 Here, the 
“Best Read Time” is the time it takes 
to read the desired data into the com- 
putational array using a distribution 
that conforms to the distribution of 
data on the disks. This is phase 1. 
“Redistribution Time,” the time it 
takes to redistribute the data, is phase 
2. “Total Read Time,” the sum of the 
first and second columns, represents 
the complete two-phase access. “Direct 

Read Time” is the time it takes to per- 
form direct access. The last column 
shows the “Speedup” gained from 
using two-phase access over the direct: 
access method. 

Another composite mapping strategy 
can be applied to “out-of-core” type 
applications. The idea is to extend the 
two-phase access with an additional 
mapping function that will define the 
relationship between portions of the 
out-of-core file. This is illustrated in 
Figure 7. 

Networking 
technology 

When data has to be transferred out 
of a computing environment to an 
external device or another remotely 
connected supercomputer (for exam- 
ple, for pre- or postprocessing, visual- 
ization, and so forth), the network’s 
capacity becomes a critical considera- 
tion. As with l/O devices, network 
capacity has lagged behind memory 
and processor technology. 

In the past few years, a number of 
technologies have been developed to 
improve network interface and ca- 
pacity. The HiPPl standard, for in- 
stance, includes a mapping to IEEE 
802.2 for supporting common network 
protocols like the Transmission- 
Control Protocol/ Internet Protocol. 
Interfaces to alternative layers are also 
under development. For example. the 
Intelligent Peripheral Interface (IPI-3) 
provides command sets for disk and 
tape, and will allow support for striped 
disks and tape devices directly con- 
nected to HiPPI channels or LANs. 

Another technology that IBM is 
developing in collaboration with 
Lawrence Livermore National Lab- 
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Table 4. Network technology. 

Type Bandwidth Distance Technology 

Fibre Channel 100-l ,000 Mbps 
HiPPI 800 Mbps or 1.6 Gbps 
Serial-HiPPI 800 Mbps or 1.6 Gbps 
SC1 8 Gbps 
SonetlATM 55-4.8 Gbps 
N-ISDN 64 Kbps, 1.5 Mbps 
B-ISDN 1622 Mbps 

LAN-Up to sereral meters 
WAN-Up to several kilometers 

LAN, WAN 
125 m 
510 Km 
LAN 
LAN, WAN 
WAN 
WAN 

Fiber optics 
Copper cables (32 or 64 lines) 
Fiber-optics channel 
Copper cables 
Fiber optics 
Copper cables 
Copper cables 

oratory is called Fibre Channel. Aside 
from the use of an optical (as opposed 
to copper) medium, Fibre Channel 
encapsulates a more extensive set of 
services than does HiPPI. Unlike 
HiPPI, it targets up to 4,096 switch 
connections for distances of up to sev- 
eral kilometers. Furthermore, Fibre 
Channel supports multiple connection 
types (such as datagram and virtual 
circuit) over various physical layers 
(for example, coaxial cables, fiber, 
lasers, and LEDs) al multiple data 
rates. 

The Scalable Coherent Interface 
standard allows development of local 
area networks with speeds of up to 8 
gigabits per second and is about 10 
times as fast as Futurebus+. SC1 pro- 
vides bus services (read, write, lock, 
and so forth) by sending packets over a 
large number of point-to-point links. 
Table 4 summarizes existing tech- 
nologies. 

I E3lock-Cyclk Logical temporary stora e 
a 

D disks 
Out-of-core (Block-Bloc ) 

Figure 7. Composite mapping for parallel I/O. 

Over the years, LANs and WANs 
have developed along independent, 
sometimes divergent, lines. Asyn- 
chronous Transfer Mode technology 
could provide a driving force to inte- 
grate LAN and WAN technologies. 
Implemented as the underlying support 
layer for B-ISBN, ATM provides a 
common framework for public wide- 
area networks as it does for local area 
networks. 

patterns is also expected, and single 
resource-management approaches will 
likely not suffice. Providing the I/O 
infrastructure that will support these 
requirements will necessitate research 
in operating systems (parallel file sys- 
tems, runtime systems, and drivers), 
language interfaces to high-perfor- 
mance storage systems, high-speed net- 
working, graphics and visualization sys- 
tems, and new hardware technology for 
I/O and storage systems. 

puting in general. This article has only 
scratched the surface. Other relevant 
areas that need to be addressed include 
multimedia requirements that place dif- 
ferent demands on the I/O system; 
database systems; parallel data transfer; 
fault-tolerance; distributed file systems 
(over an HPDC network); archival 
storage; and visualization. n 

As a first step in this research, I/O 
access patterns must be quantitatively 
characterized by instrumenting multiple 
platforms and collecting trace data for 
large application codes. The knowledge 
gained from this step must be integrated 
into an evolutionary development cycle 
for I/O systems as a whole. 
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