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Abstract 
In this work, we first present an application-initiated 
strategy that aims to control the energy consumption, 
while simultaneously enhancing the performance of a 
heterogeneous embedded system. We assess the benefits 
of using this strategy by means of a traditional evaluation 
framework. Even though the overall benefits and im-
provements are apparent, the performance-energy trade-
offs are not prominently noticeable when the traditional 
framework is used during evaluation. Hence, we propose 
a framework based on a new metric called energy-
resource efficiency (ERE). ERE defines a link between the 
performance and energy variations in a system. This met-
ric also serves as a guide to determine the amount of re-
sources needed to attain the desired performance and 
energy behavior. Our experimental results clearly indi-
cate that a heterogeneous system running an application-
aware strategy, when correctly calibrated using ERE, 
leads to great performance and energy gains. 

1. Introduction 

Embedded computing devices are becoming a part of 
everyday lifestyle. Smart cards, vending machines, TV 
set-top boxes, personal data assistants (PDAs), mobile 
phones, and industrial automation equipment are just 
some common embedded devices. Each of these devices 
is a congregation of various emerging technologies. For 
instance, devices like set-top boxes and mobile phones 
are a result of the merger of technologies like broadband 
communications or 3G wireless networks with interactive 
multimedia. Such embedded devices support numerous 
functions like multimedia (MP3, MPEG2 media play-
back), wireless communication (GSM, digital radio, Blue-
tooth) and some mandatory functions including user inter-
faces and file management, to be carried out at the same 

time. Even further, newer standards such as MPEG4, 
WMV and JVT (H.26L) require these devices to have a 
high performance in order to handle the data flow in real 
time. As a result, system designers are opting to embed 
more than one processor or processor core into these de-
vices in order to satisfy both multitasking and perform-
ance needs [4,5,8]. Besides performance, energy con-
sumption has also been a crucial issue in the design of 
such embedded systems. Techniques to curtail the energy 
consumption of embedded systems are already in 
place[2,13,15]. Researchers have also proposed mecha-
nisms to study performance-energy tradeoffs for various 
systems [3,16,17]. In reality, achieving a good tradeoff is 
a tedious task since it requires a thorough analysis of the 
system under consideration, which could be time consum-
ing. 

In this paper, we first design an application-driven 
scheme that aims to improve the performance and concur-
rently reduce the energy consumption of a system. The 
scheme targets a multi-resource heterogeneous embedded 
system consisting of low-power embedded processors 
that serve as computing resources and a general-purpose 
conventional processor that acts as the master controller. 
We experimentally study and characterize the behavior of 
our system when such an application-controlled scheme is 
supported. The system is analyzed first using a traditional 
evaluation framework with power, execution time, en-
ergy, and energy-delay product [6] as the metrics.  

Our experimental results highlight the lack and hence, 
the need for a more detailed and illustrative analysis 
framework for multi-resource heterogeneous environ-
ments. Likewise, resource usage is an additional and im-
portant factor influencing the performance of a multi-
resource heterogeneous system, which is not considered 
by the traditional evaluation framework. On the basis of 
these factors, we present a more relevant framework to 
study such heterogeneous systems. In this modified 
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evaluation framework, the improvement in performance 
is judged by measuring the achieved speedups and the 
efficiency of parallelization (which includes resource 
usage). We propose a new metric named energy-resource 
efficiency (ERE) to ensure the completeness of this 
framework. ERE defines the efficiency of multi-resource 
usage in improving the performance and reducing the 
energy consumption. This measure also relates the im-
provements in performance with the variations in energy 
consumption. Thus, one can analyze and hence, utilize the 
ERE in achieving a trade-off between performance and 
energy consumption. ERE also gives an estimate of the 
number of resources needed to achieve the desired per-
formance and energy consumption.  

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the heterogeneous setup that we used 
for our experiments. Section 3 presents our experimental 
results. In this section, we first present a simple analysis 
of the performance and energy consumption values ob-
tained after implementing certain application-level power 
and performance optimizations on our architecture. Sub-
sequently in Section 4, we define the energy-resource 
efficiency along with the new analysis framework, and 
detail its implications on performance and energy con-
sumption. Section 5 summarizes our results. 

2. Heterogeneous platform 

A heterogeneous communication system with DSPs and 
PowerPC forms the backbone for all our experiments. 
Our setup involves a board with one Motorola MPC7410 
PowerPC chip [10] and a farm of twelve Motorola 
MSC8101 DSPs [12]. The block diagram for our setup is 
shown in Fig. 1. The MPC7410 PowerPC (also referred to 
as PPC) is used only as a master controller. The 
MSC8101 DSPs are the actual computing resources.  

We designed a centralized power-management mod-
ule to handle the idle states of our system. This central-
ized module executing on the PPC, manages the power 
modes of both PPC and DSPs. By existing as an arbiter 
between the hardware and software layers, this module 
enables an application to set the entire system to various 
low-power modes. 

The MPC7410 PPC, offers three programmable power 
modes, namely doze, nap and sleep [10]. These modes are 
enabled by setting certain registers. In full-power mode, 
MPC7410 typically consumes 6.6 watts of power, 
whereas in doze, nap or sleep mode it consumes just 3.6, 
1.35 or 1.3 watts respectively [9]. Our centralized power-
management module puts the master PPC to doze mode 
whenever there is no communication with the DSPs, or if 
the PPC is not controlling any task. Even after assigning a 
task to the DSPs, the PPC remains in a low-power “re-

ceive” state waiting for communication from DSPs. That 
is, our module shifts the PPC to the doze mode and then 
listens for any external event (data from DSP) or interrupt 
to break the idle state, after which the PPC returns to full-

power mode. We chose doze mode as the low-power 
mode for the master controller since this mode enables 

Figure 1. Heterogeneous architecture for our ex-
periments 

the functioning of the core units, while still offering a 
significant reduction in power consumption (and hence 
return to full-power mode is faster than it is from nap,
sleep modes). The MSC8101 DSP chip supports two low-
power standby modes, namely the wait and stop
modes[12]. The typical power consumption of full-power, 
wait and stop modes are 0.5, 0.25 and 0.17 watt respec-
tively [11]. We use wait state as the low-power mode for 
DSPs in our analysis. If the DSPs are idle at any point of 
time, the module running on PPC instantly transfers them 
to the wait state.  

The PowerPC operates at 1.8V and each of the 
MSC8101 DSP processors at 1.5V. A HP34401A mul-
timeter [1] connected across a small resistance (0.972 
Ohms), is used for measuring the voltage, current and 
hence, the power consumption of our board. The 
HP34401A automatically adjusts the range to the charac-
teristic being measured. The default power mode for the 
MPC7410 PPC, is full-power mode and for the MSC8101 
DSP, it is full-power mode (of DSP). Our board boots up 
and stabilizes to consume 15 watts of power, which is 
attributed to 1 PPC, 12 DSPs, system bus and the external 
memory. It should be noted that this is the base power 
consumption of the board when none of the power op-
timizations are turned on. Table 1 describes our develop-
ment environment. 

3. Experimental evaluation 

3.1. Methodology 

We enhance the performance of the system by fully 
utilizing the available computing resources to execute an 
application. For this, we extend some of the existing par-
allelization techniques to our heterogeneous platform. 

  HI: Host Interface

CM: Communications 

        Module

MPC7410

Power PC

SDRAM

Flash

MSC8101

DSPMSC8101

DSPMSC8101

DSPMSC8101

DSPMSC8101

DSP

H

I

CM

Serial Backbone (TDM / ATM / Ethernet)

CM

PPC

Bus

16

DSP

Farm

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03) 
1080-1812/03 $17.00 © 2003 IEEE 



The master splits a given task among the available re-
sources and these resources do the work in parallel. We 
introduce a mechanism to reduce the energy consumption 
by applying low-power optimizations in tandem with the 
parallel techniques. These low-power optimizations are 
implemented at the application level, and utilize the low- 
power modes offered by the underlying processors to 
reduce the overall energy consumption. 

Table 1. Development environment 

PPC DSP 
Chip Name MPC7410 MSC8101 

OS VxWorks 5.4 - 
Development 
Environment 

Tornado 2.0 
(IDE)

GreenHills Multi 
2000 (IDE) 

Compiler 
Cygnus 2.7.2 

(gcc)
Optimizing C 

Compiler 

Table 2 shows the benchmarks used for our experi-
ments. The art and bzip2 benchmarks are from the SPEC 
CPU2000 suite [14], whereas g721, jpeg and pegwit are 
from the MediaBench suite [7]. Each benchmark is parti-
tioned (currently done statically, we present schemes to 
automate it in Section 4) in a way that allows the core 
segments to be run in parallel, to ensure maximum utili-
zation of DSPs. We integrate both high-performance and 
power-aware techniques into the same partitioning algo-
rithm. The following is the partitioning strategy used for 
implementing each benchmark in our system.  
(a) After reading the input data, the master controller 

(PPC) splits the raw data into blocks of static size. 
Each block is assigned a “pending” status. The PPC 
assigns one of the “pending” blocks to each DSP that 
is participating in the execution. 

(b) The DSPs then work on their respective blocks in par-
allel. Once the computation starts, the PPC switches 
itself to doze mode if idle. 

(c) When a DSP finishes working on its block, it replies 
to the PPC with its output. The PPC converts the 
status of the received block from “pending” to “com-
pleted”. If there are any more blocks with “pending” 
status, the returning DSP grabs another block to work 
on.

(d) If there are no more pending jobs to take, the return-
ing DSP switches to wait mode.

(e) The PPC finally assembles the output data when all 
involving DSPs complete their execution. 

In steps (b) and (d) of the above scheme, the low-
power modes (doze for PPC, wait for DSP) are enabled 
by invoking the centralized power-management controller 
of Section 2. To recall, the controller already has schemes 
defined for remotely enabling low-power modes for the 
entire system. 

3.2. Performance-energy analysis 

In this section, we study each benchmark application 
by using a traditional evaluation framework with execu-
tion time (delay), energy and energy-delay product 
(EDP)[6] as the metrics. For each benchmark application, 
there is an initial part of hand-shaking between PPC and 
DSPs, followed by the download of code to the DSPs. 
This step is a prelude to the algorithm presented in Sec-
tion 3.1 and the results presented in this section take these 
phases into account too. Moreover, the presented results 
are an average over many runs (typically 4) since com-
munication is involved. 

Fig. 2 to Fig. 6 shows the performance of our bench-
mark applications. For all applications, the power con-
sumption increases as more DSPs are brought into the 
system.  

For the art, g721 and bzip2 benchmarks, the execution 
time scales down linearly on designating the work to in-
creasing number of DSPs [Fig. 2(ii), Fig. 3(ii), Fig. 4(ii)]. 
Furthermore, it is evident that the improvements in execu-
tion time surpass the moderate increase in power con-
sumption. This implies that the system is very energy 
efficient for these algorithms. The average energy con-
sumption decreases by 87% when 12 DSPs are used as 
against 1 DSP [Fig. 2(iii), Fig. 3(iii), Fig. 4(iii)]. 

In the case of jpeg, the uncompressed data is split into 
blocks based on iMCU rows and the restart marker is 
used for removing data dependencies. Fig. 5(ii) indicates 
that the speedups in execution times do not scale very 
well with the number of DSPs (even though the execution 
times decrease when multiple DSPs are used). This is due 
to a tremendous amount of communication between the 
PPC and DSPs. This, in turn, has a direct impact on the 
energy consumption. Moreover, the overall gains in en-
ergy are much less when compared to the art, g721 and 
bzip2 benchmarks. The execution times have a similar 
effect on the energy-delay product too [Fig. 5(iv)]. 

Table 2. Benchmarks used in our study 

Benchmark Explanation DSP Code Size (KB) Input Size 
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art 
Neural network based  

pattern recognition 
algorithm 

17
10 KB image, 

600 KB weight 

bzip2 Data compression 19 4 MB data 
g721 Voice compression 12 289 KB voice 
jpeg Image compression 10 10 MB image 

pegwit Public key encryption 29 220 KB data 

Figure 2. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for 
art.

Figure 3. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for 
g721.

Figure 4. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for 
bzip2.

Figure 5. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for 
jpeg.
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Figure 6. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for 
pegwit.

pegwit is an algorithm that is very hard to parallelize 
and also not computationally intensive. The performance 
deteriorates when more than 2 DSPs are involved [Fig. 
6(ii)]. This arises due to the increased communication 
overhead that can be avoided if fewer DSPs are used. 
Power consumption also increases. The worsened power 
and execution times consequently increase the energy 
consumption too. In our case, there are no improvements 
in execution times, energy and energy-delay product be-
yond 2 DSPs (Fig. 6). 

Overall Observations & Shortcomings of the tradi-
tional metric: 

To conclude the experimental results presented in this 
section, we realized that art, bzip2 and g721 are scalable 
in terms of both execution time and energy. That is, scal-
able parallel algorithms have the potential to reduce en-
ergy consumption too, besides improving performance. 
Additionally, for an algorithm that is hard to parallelize or 
that which is not scalable (like pegwit, jpeg), it is better to 
do the computation without much communication, i.e., 
with fewer DSPs. This conclusion is in accord with the 
observations presented by researchers in the parallel 
computing field. In other words, if the communication 
time dominates the overall execution time, the paralleliza-
tion techniques prove to be useless. With respect to our 
case, this conclusion is applicable for both performance 
and energy consumption, and not just the performance. 

Typically, one would be interested in studying the ef-
fect of performance improvements on the energy con-
sumption and vice versa. Therefore, a metric that high-
lights performance-energy tradeoffs is essential in an 
analysis framework. An existing metric to study perform-
ance-energy tradeoffs is energy-delay product (EDP), 
which takes into account the delay and the energy con-
sumption of a system. In our graphs, the EDP follows the 
trend of delay (execution time). Decreasing trends in EDP 
indicate good savings in both performance and energy. 
EDP is good at capturing overall trends. It is difficult to 
clearly say from EDP the mutual impact of performance 
and energy variations on one another. Moreover, in a 
multi-resource environment similar to our setup, the 

number of resources that are used to achieve any savings, 
also need to be considered during evaluation. This factor 
is not included in EDP or in any equivalent metric. These 
shortcomings and special requirements motivate us to 
introduce a new framework of analysis in the following 
section. 

4. Resource-aware framework 

4.1. Energy-Resource Efficiency 

The primary entity that drives our framework is a new 
metric called Energy-Resource Efficiency (ERE). This 
metric identifies the relationship between the execution 
time and energy consumption. ERE illustrates the trade-
off that occurs between the energy consumed by an appli-
cation and the amount of resources needed to achieve any 
reduction in energy consumption. Analytically, the En-
ergy-Resource Efficiency is defined as follows: 

where, ∆ is the fraction of the energy saved by using a 
particular configuration, and η is the efficiency of paral-
lelization. 

where, ES is the energy consumed by the non-
parallelized (serial) version of the application and EN is 
the energy consumed by the parallel version running on N 
processing elements.  

where, Sp is the speedup achieved through execution 
on N processing elements, defined as follows: 

η
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N
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where, TS and TN are the execution times of serial and 
parallel versions respectively. 

We calculate the efficiency (η) to determine the scal-
ability of the system for increasing number of DSP proc-
essors. The ERE acts as a guiding factor in identifying the 
amount by which energy consumption can be reduced 
without sacrificing much on the performance. The base 
case for our experiments is the configuration that has the 
master controller and just one DSP to do the task. The 
parallelized version involves more DSPs doing the same 
work in parallel. Table 3 shows how one can interpret the 
values got when using our new framework for evaluation. 

Table 3. Interpretation of Sp, ηηηη, ∆∆∆∆, ERE values 

Good Result Bad Result Impact on 

Sp > 1  0 < Sp < 1 
Application 

speedup 

η • 1 η • 0 
Efficiency of 

resource usage 

∆ > 0 ∆ < 0 
Energy

consumption 

ERE > 0 ERE < 0 
Performance-

energy tradeoff 

Our experimental results were analyzed using the new 
evaluation framework (Fig. 7). The graphs in Fig. 7 pre-
sent all three aspects of what a typical system designer 
would be interested in, that is, efficiency of paralleliza-
tion (η), fraction of savings in energy (∆) and our newly 
defined ERE. A system designer can use one of these 
graphs according to one’s defined needs, as shown in the 
succeeding paragraphs. 

4.2. Trade-off Analysis using the ηηηη, ∆∆∆∆, ERE
framework 

Fig. 7(ii) indicates that art benchmark has the best ef-
ficiency closely followed by g721 and bzip2. The effi-
ciency drops tremendously for jpeg and pegwit. The drop 
in efficiency is attributed to the non-linear nature of 
speedups got when an increasing number of DSPs are 
involved to do the same task. The graphs further assert 
the results discussed in Section 3.2. 

A system designer has various choices to make de-
pending on what is desired. For instance, if the designer is 
looking for improvements in execution time, a quick look 
at the speedup of execution times [Fig. 7(i)] would be 
sufficient. Even further, by calculating the efficiency of 
parallelization (η), one can compare the improvements in 
speedups with the amount of parallelization. In our exam-

ple, for art, g721 and bzip2, involving 4 DSPs leads to a 
good speedup (~ 4) while still maintaining 100% effi-
ciency. If efficiency is not important, we can scale up to 
12 DSPs thus achieving a speedup of 11.  

Now, if the system designer is interested only in im-
provements in energy consumption, the designer can look 
at the fraction of energy saved (∆). The energy-savings 
(∆) graph for all our benchmark applications is shown in 
Fig. 7(iii). Revisiting the discussions in Section 3.2, our 
goal was partly to exploit the parallel techniques to 
achieve reduction in energy. Power increases by a small 
amount when more processors are involved in processing. 
But the faster execution of the job, in turn, produces a 
positive effect on the energy. This explains the trend of 
the energy-savings in Fig. 7(iii). The art, g721 and bzip2
benchmarks demonstrated substantial scalability of paral-
lelization. jpeg exhibits an 18% decrease in the energy 
consumption when parallelized to 2 DSPs, but the savings 
reach a saturation point beyond this level. Beyond the 
saturation point (around 21% energy-savings), the savings 
start to drop as we extend the application to more DSPs. 
Parallelization of pegwit results in a continually decreas-
ing trend in energy-savings, thus proving its futility even 
in terms of energy consumption. A system designer can 
typically study the energy-savings graphs and deploy the 
corresponding number of DSPs (N) for parallelization 
depending on the desired savings (by defining the desired 
∆).

An interesting note is that the “best” points for per-
formance and energy-savings need not be the same. That 
is, a designer aiming to reduce energy savings would de-
ploy a large number of processors (~12 DSPs) for paral-
lelization whereas a designer looking to improve per-
formance would look at efficiency of parallelization and 
would restrict to a lesser number of DSPs. Hence each 
graph leads to a different conclusion based on the desired 
trade-off. In reality, the actual cumbersome task lies in 
judging how much of speedup and savings in energy is 
desired. Ideally, we would prefer both to be high. But 
there usually is a trade-off between performance and en-
ergy consumption, as seen in the previous paragraphs. 
Additionally, using a minimal number of DSPs to achieve 
good performance and less energy would be best alterna-
tive. The energy-resource efficiency guides one to do all 
of this. 

In the ERE graph of Fig. 7(iv), art and g721 have the 
same performance-energy behavior. That is, their trade-
off points are the same. For a designer looking at both 
performance and energy, the 4 processor case proves to 
be the best point with an ERE of 0.70. Beyond 4 proces-
sors, the ERE drops to 0.58 and then increases back (to 
0.80) when 12 DSPs are used. There is only a minimal 
increase in ERE from 4 to 12 processor case, which 
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makes the 4 DSP case a better choice. The reason is be-
cause the efficiency of parallelization dips from 100% in 
the 4 processor case to almost 88% in the 12 processor 
case. Hence it makes more sense to use lesser number of 
DSPs to achieve a comparable ERE. Looking at the ERE
graph carefully, art is slightly better than g721, which is 
actually the case when comparing their energy and per-
formance values independently too.  

In the case of bzip2, the ERE values follow g721 and 
art until the 4 DSP case. Up to this point, the algorithm 
utilizes the increasing number of DSPs very well to 
achieve improvements in both efficiency and energy-
savings. Beyond this point, the ERE value of bzip2 satu-
rates to 0.69. This implies that beyond 4 processors, the 
improvements in performance or energy does not influ-
ence the other. Hence, depending on desired performance 

or energy values, a lesser or larger number of DSPs can 
be chosen.  

In case of pegwit, the negative and zero values of ERE
indicate that the parallel implementation proves to be 
futile towards both energy and performance improve-
ments.  

For jpeg, the tradeoff is clearly visible. There is defi-
nitely an improvement in both the performance and en-
ergy consumption, which is indicated by the positive val-
ues of ERE. The ERE decreases beyond 2 DSPs because 
the improvements in energy get negated by deteriorating 
efficiencies (it should be noted that there still is a speedup 
that is achieved). A system designer would be interested 
in this graph to identify the number of DSPs to deploy,

Figure 7. Speedup (i), efficiency (ii), fraction of savings in energy (iii) and energy-resource efficiency 
(iv) for all benchmark applications. By looking at each of the graphs, a different “best” point can be 

chosen. For improvements in performance, one needs to look at speedup (i) and efficiency (ii) graphs. 
For improvements in energy, energy-savings graph (iii) need to be chosen. For a trade-off between per-

formance and energy, ERE (iv) needs to be considered. 

based on the desired trade-off. For instance, in the case of 
jpeg, if only the savings in energy consumption is impor-
tant, the designer can implement 4 DSPs into the system 
(from the ∆ graph). If performance is crucial, 12 DSPs 
can be deployed (from Sp graph). A lesser number of 
DSPs should be used if efficiency of parallelization is to 
be considered (looking at η graph). If both performance 
and energy-savings are crucial, 2 DSPs would be a good 
number as seen from the ERE graph [Fig. 7(iv)]. Thus, 
the tradeoffs are very evident when the η, ∆ and ERE
framework is used during the analysis phase. 

Overall Observations on ERE:
To summarize, system designers can use the energy-

resource efficiency (ERE) metric and hence, our alterna-
tive framework to 

• identify the advantages and disadvantages of a par-
ticular configuration (by looking at positive and 
negative ERE values), 

• detect the breakeven point where the desired perform-
ance-energy tradeoff is achieved (by looking at the 
trends of ERE graph along with η and ∆), 

• estimate the number of DSPs that are needed to 
achieve the desired performance-energy tradeoff (us-
ing the corresponding ERE values). 

The advantages of using ERE lies in identifying en-
ergy as a design factor besides performance. By stressing 
on resource usage, ERE captures trends that cannot be 
captured by any equivalent metric. For instance, an 
equivalent metric to study performance-energy tradeoff is 
the energy-delay product (EDP). The ERE graph of jpeg
in Fig. 7(iv) is different from its EDP graph [Fig. 7(iv)] 
since it considers efficiency during evaluation, which is 
necessary when evaluating a multi-resource environment. 
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The performance-energy tradeoffs are more clearly visi-
ble when the η, ∆, ERE framework is used during evalua-
tion. 

Our experimental results and observations also dem-
onstrate the need for application-aware scheduling and 
resource allocation strategies. By incorporating some ex-
isting parallelization techniques into a power-aware 
scheduler, we proved that one can achieve up to 80% im-
provement in the performance and energy of such sys-
tems. Currently, the diagnosed results are utilized to 
manually partition the code by taking into consideration 
the desired performance-energy tradeoff. Compilers and 
operating systems can instead use these results in a feed-
back mechanism during scheduling, partitioning and re-
source allocation, to do a better management of the sys-
tem. These techniques should adapt themselves to con-
sider not just the performance, but the performance-
energy tradeoffs, while making scheduling decisions. We 
suggest using a framework having speedup, efficiency, 
energy-savings and ERE instead of any traditional 
framework, while studying and establishing these trade-
offs. 

5. Conclusions 

An application-controlled strategy is very effective in 
reducing energy besides improving performance. We 
verified this by incorporating performance and power 
optimizations on a heterogeneous system with general 
purpose PPC as the master controller and a set of low-
power DSPs as processing elements. There are huge per-
formance and energy gains (up to 80%) when these appli-
cation-aware techniques are applied before the scheduling 
stages.  

From our experimental results, it is clear that energy 
consumption needs to be considered besides performance 
while assessing a system. ERE considers both speedup 
and energy variations to model performance-energy 
tradeoffs in a system. Performance-energy tradeoffs are 
prominent when the η, ∆, ERE framework is used during 
evaluation. By systematically studying a configuration 
using Table 3 and its relevant graphs, one can easily de-
termine the various performance-energy tradeoffs in a 
system. This framework can also be used to establish a 
system to a set performance-energy configuration. Such 
features are not provided by any existing metric. 

The schemes to study performance-energy tradeoffs in 
a system should consider the underlying environment 
during evaluation. For instance, our experimental base is 
a multi-resource heterogeneous system. The ERE metric 
identifies this fact and includes resource usage as a factor 
while studying the system, which is not done by any 
equivalent traditional metric.  

Additionally, the η, ∆, ERE framework and the mod-
eling technique can similarly be extended to a system 
having multiple processors on a single chip, like System-
on-Chip setups. As a concluding note, it is evident that by 
using our energy-resource efficiency and a guided per-
formance-energy tradeoff, an application-aware heteroge-
neous system turns out to be power efficient with substan-
tial performance improvements. 
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