
Evaluation of Application-aware Heterogeneous Embedded Systems for
Performance and Energy Consumption

Jayaprakash Pisharath Nan Jiang Alok Choudhary
Department of Electrical & Computer Engineering

Northwestern University
Evanston IL - 60208 USA

{ jay, jiangjf, choudhar } @ece.northwestern.edu

Abstract
In this work, we first present an application-initiated
strategy that aims to control the energy consumption,
while simultaneously enhancing the performance of a
heterogeneous embedded system. We assess the benefits
of using this strategy by means of a traditional evaluation
framework. Even though the overall benefits and im-
provements are apparent, the performance-energy trade-
offs are not prominently noticeable when the traditional
framework is used during evaluation. Hence, we propose
a framework based on a new metric called energy-
resource efficiency (ERE). ERE defines a link between the
performance and energy variations in a system. This met-
ric also serves as a guide to determine the amount of re-
sources needed to attain the desired performance and
energy behavior. Our experimental results clearly indi-
cate that a heterogeneous system running an application-
aware strategy, when correctly calibrated using ERE,
leads to great performance and energy gains.

1. Introduction

Embedded computing devices are becoming a part of
everyday lifestyle. Smart cards, vending machines, TV
set-top boxes, personal data assistants (PDAs), mobile
phones, and industrial automation equipment are just
some common embedded devices. Each of these devices
is a congregation of various emerging technologies. For
instance, devices like set-top boxes and mobile phones
are a result of the merger of technologies like broadband
communications or 3G wireless networks with interactive
multimedia. Such embedded devices support numerous
functions like multimedia (MP3, MPEG2 media play-
back), wireless communication (GSM, digital radio, Blue-
tooth) and some mandatory functions including user inter-
faces and file management, to be carried out at the same

time. Even further, newer standards such as MPEG4,
WMV and JVT (H.26L) require these devices to have a
high performance in order to handle the data flow in real
time. As a result, system designers are opting to embed
more than one processor or processor core into these de-
vices in order to satisfy both multitasking and perform-
ance needs [4,5,8]. Besides performance, energy con-
sumption has also been a crucial issue in the design of
such embedded systems. Techniques to curtail the energy
consumption of embedded systems are already in
place[2,13,15]. Researchers have also proposed mecha-
nisms to study performance-energy tradeoffs for various
systems [3,16,17]. In reality, achieving a good tradeoff is
a tedious task since it requires a thorough analysis of the
system under consideration, which could be time consum-
ing.

In this paper, we first design an application-driven
scheme that aims to improve the performance and concur-
rently reduce the energy consumption of a system. The
scheme targets a multi-resource heterogeneous embedded
system consisting of low-power embedded processors
that serve as computing resources and a general-purpose
conventional processor that acts as the master controller.
We experimentally study and characterize the behavior of
our system when such an application-controlled scheme is
supported. The system is analyzed first using a traditional
evaluation framework with power, execution time, en-
ergy, and energy-delay product [6] as the metrics.

Our experimental results highlight the lack and hence,
the need for a more detailed and illustrative analysis
framework for multi-resource heterogeneous environ-
ments. Likewise, resource usage is an additional and im-
portant factor influencing the performance of a multi-
resource heterogeneous system, which is not considered
by the traditional evaluation framework. On the basis of
these factors, we present a more relevant framework to
study such heterogeneous systems. In this modified

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

evaluation framework, the improvement in performance
is judged by measuring the achieved speedups and the
efficiency of parallelization (which includes resource
usage). We propose a new metric named energy-resource
efficiency (ERE) to ensure the completeness of this
framework. ERE defines the efficiency of multi-resource
usage in improving the performance and reducing the
energy consumption. This measure also relates the im-
provements in performance with the variations in energy
consumption. Thus, one can analyze and hence, utilize the
ERE in achieving a trade-off between performance and
energy consumption. ERE also gives an estimate of the
number of resources needed to achieve the desired per-
formance and energy consumption.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the heterogeneous setup that we used
for our experiments. Section 3 presents our experimental
results. In this section, we first present a simple analysis
of the performance and energy consumption values ob-
tained after implementing certain application-level power
and performance optimizations on our architecture. Sub-
sequently in Section 4, we define the energy-resource
efficiency along with the new analysis framework, and
detail its implications on performance and energy con-
sumption. Section 5 summarizes our results.

2. Heterogeneous platform

A heterogeneous communication system with DSPs and
PowerPC forms the backbone for all our experiments.
Our setup involves a board with one Motorola MPC7410
PowerPC chip [10] and a farm of twelve Motorola
MSC8101 DSPs [12]. The block diagram for our setup is
shown in Fig. 1. The MPC7410 PowerPC (also referred to
as PPC) is used only as a master controller. The
MSC8101 DSPs are the actual computing resources.

We designed a centralized power-management mod-
ule to handle the idle states of our system. This central-
ized module executing on the PPC, manages the power
modes of both PPC and DSPs. By existing as an arbiter
between the hardware and software layers, this module
enables an application to set the entire system to various
low-power modes.

The MPC7410 PPC, offers three programmable power
modes, namely doze, nap and sleep [10]. These modes are
enabled by setting certain registers. In full-power mode,
MPC7410 typically consumes 6.6 watts of power,
whereas in doze, nap or sleep mode it consumes just 3.6,
1.35 or 1.3 watts respectively [9]. Our centralized power-
management module puts the master PPC to doze mode
whenever there is no communication with the DSPs, or if
the PPC is not controlling any task. Even after assigning a
task to the DSPs, the PPC remains in a low-power “re-

ceive” state waiting for communication from DSPs. That
is, our module shifts the PPC to the doze mode and then
listens for any external event (data from DSP) or interrupt
to break the idle state, after which the PPC returns to full-

power mode. We chose doze mode as the low-power
mode for the master controller since this mode enables

Figure 1. Heterogeneous architecture for our ex-
periments

the functioning of the core units, while still offering a
significant reduction in power consumption (and hence
return to full-power mode is faster than it is from nap,
sleep modes). The MSC8101 DSP chip supports two low-
power standby modes, namely the wait and stop
modes[12]. The typical power consumption of full-power,
wait and stop modes are 0.5, 0.25 and 0.17 watt respec-
tively [11]. We use wait state as the low-power mode for
DSPs in our analysis. If the DSPs are idle at any point of
time, the module running on PPC instantly transfers them
to the wait state.

The PowerPC operates at 1.8V and each of the
MSC8101 DSP processors at 1.5V. A HP34401A mul-
timeter [1] connected across a small resistance (0.972
Ohms), is used for measuring the voltage, current and
hence, the power consumption of our board. The
HP34401A automatically adjusts the range to the charac-
teristic being measured. The default power mode for the
MPC7410 PPC, is full-power mode and for the MSC8101
DSP, it is full-power mode (of DSP). Our board boots up
and stabilizes to consume 15 watts of power, which is
attributed to 1 PPC, 12 DSPs, system bus and the external
memory. It should be noted that this is the base power
consumption of the board when none of the power op-
timizations are turned on. Table 1 describes our develop-
ment environment.

3. Experimental evaluation

3.1. Methodology

We enhance the performance of the system by fully
utilizing the available computing resources to execute an
application. For this, we extend some of the existing par-
allelization techniques to our heterogeneous platform.

 HI: Host Interface

CM: Communications

 Module

MPC7410

Power PC

SDRAM

Flash

MSC8101

DSPMSC8101

DSPMSC8101

DSPMSC8101

DSPMSC8101

DSP

H

I

CM

Serial Backbone (TDM / ATM / Ethernet)

CM

PPC

Bus

16

DSP

Farm

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

The master splits a given task among the available re-
sources and these resources do the work in parallel. We
introduce a mechanism to reduce the energy consumption
by applying low-power optimizations in tandem with the
parallel techniques. These low-power optimizations are
implemented at the application level, and utilize the low-
power modes offered by the underlying processors to
reduce the overall energy consumption.

Table 1. Development environment

PPC DSP
Chip Name MPC7410 MSC8101

OS VxWorks 5.4 -
Development
Environment

Tornado 2.0
(IDE)

GreenHills Multi
2000 (IDE)

Compiler
Cygnus 2.7.2

(gcc)
Optimizing C

Compiler

Table 2 shows the benchmarks used for our experi-
ments. The art and bzip2 benchmarks are from the SPEC
CPU2000 suite [14], whereas g721, jpeg and pegwit are
from the MediaBench suite [7]. Each benchmark is parti-
tioned (currently done statically, we present schemes to
automate it in Section 4) in a way that allows the core
segments to be run in parallel, to ensure maximum utili-
zation of DSPs. We integrate both high-performance and
power-aware techniques into the same partitioning algo-
rithm. The following is the partitioning strategy used for
implementing each benchmark in our system.
(a) After reading the input data, the master controller

(PPC) splits the raw data into blocks of static size.
Each block is assigned a “pending” status. The PPC
assigns one of the “pending” blocks to each DSP that
is participating in the execution.

(b) The DSPs then work on their respective blocks in par-
allel. Once the computation starts, the PPC switches
itself to doze mode if idle.

(c) When a DSP finishes working on its block, it replies
to the PPC with its output. The PPC converts the
status of the received block from “pending” to “com-
pleted”. If there are any more blocks with “pending”
status, the returning DSP grabs another block to work
on.

(d) If there are no more pending jobs to take, the return-
ing DSP switches to wait mode.

(e) The PPC finally assembles the output data when all
involving DSPs complete their execution.

In steps (b) and (d) of the above scheme, the low-
power modes (doze for PPC, wait for DSP) are enabled
by invoking the centralized power-management controller
of Section 2. To recall, the controller already has schemes
defined for remotely enabling low-power modes for the
entire system.

3.2. Performance-energy analysis

In this section, we study each benchmark application
by using a traditional evaluation framework with execu-
tion time (delay), energy and energy-delay product
(EDP)[6] as the metrics. For each benchmark application,
there is an initial part of hand-shaking between PPC and
DSPs, followed by the download of code to the DSPs.
This step is a prelude to the algorithm presented in Sec-
tion 3.1 and the results presented in this section take these
phases into account too. Moreover, the presented results
are an average over many runs (typically 4) since com-
munication is involved.

Fig. 2 to Fig. 6 shows the performance of our bench-
mark applications. For all applications, the power con-
sumption increases as more DSPs are brought into the
system.

For the art, g721 and bzip2 benchmarks, the execution
time scales down linearly on designating the work to in-
creasing number of DSPs [Fig. 2(ii), Fig. 3(ii), Fig. 4(ii)].
Furthermore, it is evident that the improvements in execu-
tion time surpass the moderate increase in power con-
sumption. This implies that the system is very energy
efficient for these algorithms. The average energy con-
sumption decreases by 87% when 12 DSPs are used as
against 1 DSP [Fig. 2(iii), Fig. 3(iii), Fig. 4(iii)].

In the case of jpeg, the uncompressed data is split into
blocks based on iMCU rows and the restart marker is
used for removing data dependencies. Fig. 5(ii) indicates
that the speedups in execution times do not scale very
well with the number of DSPs (even though the execution
times decrease when multiple DSPs are used). This is due
to a tremendous amount of communication between the
PPC and DSPs. This, in turn, has a direct impact on the
energy consumption. Moreover, the overall gains in en-
ergy are much less when compared to the art, g721 and
bzip2 benchmarks. The execution times have a similar
effect on the energy-delay product too [Fig. 5(iv)].

Table 2. Benchmarks used in our study

Benchmark Explanation DSP Code Size (KB) Input Size

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

art
Neural network based

pattern recognition
algorithm

17
10 KB image,

600 KB weight

bzip2 Data compression 19 4 MB data
g721 Voice compression 12 289 KB voice
jpeg Image compression 10 10 MB image

pegwit Public key encryption 29 220 KB data

Figure 2. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for
art.

Figure 3. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for
g721.

Figure 4. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for
bzip2.

Figure 5. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for
jpeg.

5

7

9

11

13

15

P
o

w
er

 (
W

)

0

10

20

30

40

50

60

70

E
x

ec
.

T
im

e
(s

ec
)

0

100

200

300

400

500

600

700

E
n

e
rg

y
 (

J)

0

10000

20000

30000

40000

50000

E
D

P
 (

Js
ec

)

(i) (ii) (iii) (iv)

1 DSP 2 DSPs 4 DSPs 8 DSPs 12 DSPs

5

7

9

11

13

15

P
o

w
er

 (
W

)

5

7

9

11

13

15

17

E
xe

c.
 T

im
e

(s
ec

)

0

50

100

150

200

E
n

er
g

y
(J

)

0

500

1000

1500

2000

2500

3000

E
D

P
 (

Js
ec

)

(i) (ii) (iii) (iv)

1 DSP 2 DSPs 4 DSPs 8 DSPs 12 DSPs

0

200000

400000

600000

800000

1000000

1200000

E
D

P
 (

Js
ec

)

5

7

9

11

13

15

17

P
o

w
er

 (
W

)

0

50

100

150

200

250

300

350
E

xe
c.

 T
im

e
(s

ec
)

0

500

1000

1500

2000

2500

3000

3500

E
n

er
g

y
(J

)

1 DSP 2 DSPs 4 DSPs 8 DSPs 12 DSPs

(i) (ii) (iii) (iv)

0

50

100

150

200

E
xe

c.
 T

im
e

(s
ec

)

5

7

9

11

13

15

P
o

w
er

 (
W

)

0

500

1000

1500

2000

E
n

er
g

y
(J

)

0

50000

100000

150000

200000

250000

300000

350000

400000

E
D

P
 (

Js
ec

)

(i) (ii) (iii) (iv)

1 DSP 2 DSPs 4 DSPs 8 DSPs 12 DSPs

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Figure 6. The power consumption (i), execution time (ii), energy (iii) and energy-delay product (iv) for
pegwit.

pegwit is an algorithm that is very hard to parallelize
and also not computationally intensive. The performance
deteriorates when more than 2 DSPs are involved [Fig.
6(ii)]. This arises due to the increased communication
overhead that can be avoided if fewer DSPs are used.
Power consumption also increases. The worsened power
and execution times consequently increase the energy
consumption too. In our case, there are no improvements
in execution times, energy and energy-delay product be-
yond 2 DSPs (Fig. 6).

Overall Observations & Shortcomings of the tradi-
tional metric:

To conclude the experimental results presented in this
section, we realized that art, bzip2 and g721 are scalable
in terms of both execution time and energy. That is, scal-
able parallel algorithms have the potential to reduce en-
ergy consumption too, besides improving performance.
Additionally, for an algorithm that is hard to parallelize or
that which is not scalable (like pegwit, jpeg), it is better to
do the computation without much communication, i.e.,
with fewer DSPs. This conclusion is in accord with the
observations presented by researchers in the parallel
computing field. In other words, if the communication
time dominates the overall execution time, the paralleliza-
tion techniques prove to be useless. With respect to our
case, this conclusion is applicable for both performance
and energy consumption, and not just the performance.

Typically, one would be interested in studying the ef-
fect of performance improvements on the energy con-
sumption and vice versa. Therefore, a metric that high-
lights performance-energy tradeoffs is essential in an
analysis framework. An existing metric to study perform-
ance-energy tradeoffs is energy-delay product (EDP),
which takes into account the delay and the energy con-
sumption of a system. In our graphs, the EDP follows the
trend of delay (execution time). Decreasing trends in EDP
indicate good savings in both performance and energy.
EDP is good at capturing overall trends. It is difficult to
clearly say from EDP the mutual impact of performance
and energy variations on one another. Moreover, in a
multi-resource environment similar to our setup, the

number of resources that are used to achieve any savings,
also need to be considered during evaluation. This factor
is not included in EDP or in any equivalent metric. These
shortcomings and special requirements motivate us to
introduce a new framework of analysis in the following
section.

4. Resource-aware framework

4.1. Energy-Resource Efficiency

The primary entity that drives our framework is a new
metric called Energy-Resource Efficiency (ERE). This
metric identifies the relationship between the execution
time and energy consumption. ERE illustrates the trade-
off that occurs between the energy consumed by an appli-
cation and the amount of resources needed to achieve any
reduction in energy consumption. Analytically, the En-
ergy-Resource Efficiency is defined as follows:

where, ∆ is the fraction of the energy saved by using a
particular configuration, and η is the efficiency of paral-
lelization.

where, ES is the energy consumed by the non-
parallelized (serial) version of the application and EN is
the energy consumed by the parallel version running on N
processing elements.

where, Sp is the speedup achieved through execution
on N processing elements, defined as follows:

η
Sp

N
-----= (3)

Sp

TS

TN
------= (4)

0

5000

10000

15000

20000

25000

30000

E
D

P
 (

Js
ec

)

5

7

9

11

13

15

Po
w

er
 (W

)

41

41.5

42

42.5

43

43.5

E
xe

c.
 T

im
e

(s
ec

)

0

100

200

300

400

500

600

700

E
ne

rg
y

(J
)

(i) (ii) (iii) (iv)

1 DSP 2 DSPs 4 DSPs 8 DSPs 12 DSPs

ERE ∆ η×= (1)

∆
ES EN–

ES
-------------------= (2)

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

where, TS and TN are the execution times of serial and
parallel versions respectively.

We calculate the efficiency (η) to determine the scal-
ability of the system for increasing number of DSP proc-
essors. The ERE acts as a guiding factor in identifying the
amount by which energy consumption can be reduced
without sacrificing much on the performance. The base
case for our experiments is the configuration that has the
master controller and just one DSP to do the task. The
parallelized version involves more DSPs doing the same
work in parallel. Table 3 shows how one can interpret the
values got when using our new framework for evaluation.

Table 3. Interpretation of Sp, ηηηη, ∆∆∆∆, ERE values

Good Result Bad Result Impact on

Sp > 1 0 < Sp < 1
Application

speedup

η • 1 η • 0
Efficiency of

resource usage

∆ > 0 ∆ < 0
Energy

consumption

ERE > 0 ERE < 0
Performance-

energy tradeoff

Our experimental results were analyzed using the new
evaluation framework (Fig. 7). The graphs in Fig. 7 pre-
sent all three aspects of what a typical system designer
would be interested in, that is, efficiency of paralleliza-
tion (η), fraction of savings in energy (∆) and our newly
defined ERE. A system designer can use one of these
graphs according to one’s defined needs, as shown in the
succeeding paragraphs.

4.2. Trade-off Analysis using the ηηηη, ∆∆∆∆, ERE
framework

Fig. 7(ii) indicates that art benchmark has the best ef-
ficiency closely followed by g721 and bzip2. The effi-
ciency drops tremendously for jpeg and pegwit. The drop
in efficiency is attributed to the non-linear nature of
speedups got when an increasing number of DSPs are
involved to do the same task. The graphs further assert
the results discussed in Section 3.2.

A system designer has various choices to make de-
pending on what is desired. For instance, if the designer is
looking for improvements in execution time, a quick look
at the speedup of execution times [Fig. 7(i)] would be
sufficient. Even further, by calculating the efficiency of
parallelization (η), one can compare the improvements in
speedups with the amount of parallelization. In our exam-

ple, for art, g721 and bzip2, involving 4 DSPs leads to a
good speedup (~ 4) while still maintaining 100% effi-
ciency. If efficiency is not important, we can scale up to
12 DSPs thus achieving a speedup of 11.

Now, if the system designer is interested only in im-
provements in energy consumption, the designer can look
at the fraction of energy saved (∆). The energy-savings
(∆) graph for all our benchmark applications is shown in
Fig. 7(iii). Revisiting the discussions in Section 3.2, our
goal was partly to exploit the parallel techniques to
achieve reduction in energy. Power increases by a small
amount when more processors are involved in processing.
But the faster execution of the job, in turn, produces a
positive effect on the energy. This explains the trend of
the energy-savings in Fig. 7(iii). The art, g721 and bzip2
benchmarks demonstrated substantial scalability of paral-
lelization. jpeg exhibits an 18% decrease in the energy
consumption when parallelized to 2 DSPs, but the savings
reach a saturation point beyond this level. Beyond the
saturation point (around 21% energy-savings), the savings
start to drop as we extend the application to more DSPs.
Parallelization of pegwit results in a continually decreas-
ing trend in energy-savings, thus proving its futility even
in terms of energy consumption. A system designer can
typically study the energy-savings graphs and deploy the
corresponding number of DSPs (N) for parallelization
depending on the desired savings (by defining the desired
∆).

An interesting note is that the “best” points for per-
formance and energy-savings need not be the same. That
is, a designer aiming to reduce energy savings would de-
ploy a large number of processors (~12 DSPs) for paral-
lelization whereas a designer looking to improve per-
formance would look at efficiency of parallelization and
would restrict to a lesser number of DSPs. Hence each
graph leads to a different conclusion based on the desired
trade-off. In reality, the actual cumbersome task lies in
judging how much of speedup and savings in energy is
desired. Ideally, we would prefer both to be high. But
there usually is a trade-off between performance and en-
ergy consumption, as seen in the previous paragraphs.
Additionally, using a minimal number of DSPs to achieve
good performance and less energy would be best alterna-
tive. The energy-resource efficiency guides one to do all
of this.

In the ERE graph of Fig. 7(iv), art and g721 have the
same performance-energy behavior. That is, their trade-
off points are the same. For a designer looking at both
performance and energy, the 4 processor case proves to
be the best point with an ERE of 0.70. Beyond 4 proces-
sors, the ERE drops to 0.58 and then increases back (to
0.80) when 12 DSPs are used. There is only a minimal
increase in ERE from 4 to 12 processor case, which

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

makes the 4 DSP case a better choice. The reason is be-
cause the efficiency of parallelization dips from 100% in
the 4 processor case to almost 88% in the 12 processor
case. Hence it makes more sense to use lesser number of
DSPs to achieve a comparable ERE. Looking at the ERE
graph carefully, art is slightly better than g721, which is
actually the case when comparing their energy and per-
formance values independently too.

In the case of bzip2, the ERE values follow g721 and
art until the 4 DSP case. Up to this point, the algorithm
utilizes the increasing number of DSPs very well to
achieve improvements in both efficiency and energy-
savings. Beyond this point, the ERE value of bzip2 satu-
rates to 0.69. This implies that beyond 4 processors, the
improvements in performance or energy does not influ-
ence the other. Hence, depending on desired performance

or energy values, a lesser or larger number of DSPs can
be chosen.

In case of pegwit, the negative and zero values of ERE
indicate that the parallel implementation proves to be
futile towards both energy and performance improve-
ments.

For jpeg, the tradeoff is clearly visible. There is defi-
nitely an improvement in both the performance and en-
ergy consumption, which is indicated by the positive val-
ues of ERE. The ERE decreases beyond 2 DSPs because
the improvements in energy get negated by deteriorating
efficiencies (it should be noted that there still is a speedup
that is achieved). A system designer would be interested
in this graph to identify the number of DSPs to deploy,

Figure 7. Speedup (i), efficiency (ii), fraction of savings in energy (iii) and energy-resource efficiency
(iv) for all benchmark applications. By looking at each of the graphs, a different “best” point can be

chosen. For improvements in performance, one needs to look at speedup (i) and efficiency (ii) graphs.
For improvements in energy, energy-savings graph (iii) need to be chosen. For a trade-off between per-

formance and energy, ERE (iv) needs to be considered.

based on the desired trade-off. For instance, in the case of
jpeg, if only the savings in energy consumption is impor-
tant, the designer can implement 4 DSPs into the system
(from the ∆ graph). If performance is crucial, 12 DSPs
can be deployed (from Sp graph). A lesser number of
DSPs should be used if efficiency of parallelization is to
be considered (looking at η graph). If both performance
and energy-savings are crucial, 2 DSPs would be a good
number as seen from the ERE graph [Fig. 7(iv)]. Thus,
the tradeoffs are very evident when the η, ∆ and ERE
framework is used during the analysis phase.

Overall Observations on ERE:
To summarize, system designers can use the energy-

resource efficiency (ERE) metric and hence, our alterna-
tive framework to

• identify the advantages and disadvantages of a par-
ticular configuration (by looking at positive and
negative ERE values),

• detect the breakeven point where the desired perform-
ance-energy tradeoff is achieved (by looking at the
trends of ERE graph along with η and ∆),

• estimate the number of DSPs that are needed to
achieve the desired performance-energy tradeoff (us-
ing the corresponding ERE values).

The advantages of using ERE lies in identifying en-
ergy as a design factor besides performance. By stressing
on resource usage, ERE captures trends that cannot be
captured by any equivalent metric. For instance, an
equivalent metric to study performance-energy tradeoff is
the energy-delay product (EDP). The ERE graph of jpeg
in Fig. 7(iv) is different from its EDP graph [Fig. 7(iv)]
since it considers efficiency during evaluation, which is
necessary when evaluating a multi-resource environment.

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 2 4 6 8 10 12 14

Processsors

E
R

E

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14

Processors

E
ff

ic
ie

n
c

y
 (

ηη ηη
)

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0 2 4 6 8 10 12 14

Processors

E
n

e
rg

y
-S

a
v
in

g
s
 (

∆∆ ∆∆
)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 2 4 6 8 10 12 14

Processors

S
p

e
e
d

u
p

 (
S

p
)

(i) (iv)

art g721 jpeg pegw it bzip2

(iii)(ii)

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

The performance-energy tradeoffs are more clearly visi-
ble when the η, ∆, ERE framework is used during evalua-
tion.

Our experimental results and observations also dem-
onstrate the need for application-aware scheduling and
resource allocation strategies. By incorporating some ex-
isting parallelization techniques into a power-aware
scheduler, we proved that one can achieve up to 80% im-
provement in the performance and energy of such sys-
tems. Currently, the diagnosed results are utilized to
manually partition the code by taking into consideration
the desired performance-energy tradeoff. Compilers and
operating systems can instead use these results in a feed-
back mechanism during scheduling, partitioning and re-
source allocation, to do a better management of the sys-
tem. These techniques should adapt themselves to con-
sider not just the performance, but the performance-
energy tradeoffs, while making scheduling decisions. We
suggest using a framework having speedup, efficiency,
energy-savings and ERE instead of any traditional
framework, while studying and establishing these trade-
offs.

5. Conclusions

An application-controlled strategy is very effective in
reducing energy besides improving performance. We
verified this by incorporating performance and power
optimizations on a heterogeneous system with general
purpose PPC as the master controller and a set of low-
power DSPs as processing elements. There are huge per-
formance and energy gains (up to 80%) when these appli-
cation-aware techniques are applied before the scheduling
stages.

From our experimental results, it is clear that energy
consumption needs to be considered besides performance
while assessing a system. ERE considers both speedup
and energy variations to model performance-energy
tradeoffs in a system. Performance-energy tradeoffs are
prominent when the η, ∆, ERE framework is used during
evaluation. By systematically studying a configuration
using Table 3 and its relevant graphs, one can easily de-
termine the various performance-energy tradeoffs in a
system. This framework can also be used to establish a
system to a set performance-energy configuration. Such
features are not provided by any existing metric.

The schemes to study performance-energy tradeoffs in
a system should consider the underlying environment
during evaluation. For instance, our experimental base is
a multi-resource heterogeneous system. The ERE metric
identifies this fact and includes resource usage as a factor
while studying the system, which is not done by any
equivalent traditional metric.

Additionally, the η, ∆, ERE framework and the mod-
eling technique can similarly be extended to a system
having multiple processors on a single chip, like System-
on-Chip setups. As a concluding note, it is evident that by
using our energy-resource efficiency and a guided per-
formance-energy tradeoff, an application-aware heteroge-
neous system turns out to be power efficient with substan-
tial performance improvements.

6. Acknowledgements

This work was supported by DARPA under the con-
tract F33615-01-C-1631. Our thanks to the other mem-
bers of the Center for Parallel and Distributed Computing
at Northwestern University for their help in refining this
paper.

7. References

[1] 34401A Digital Multimeter Datasheet, Agilent Technolo-
gies, 2001.

[2] L. Benini and G. Micheli, System-Level Power Optimiza-
tion: Techniques and Tools, ACM Transactions on Design
Automation of Electronic Systems, ACM Press, April 2000, pp.
115-192.

[3] D. Brooks, M. Martonosi, J. Wellman, and P. Bose, Power-
Performance Modeling and Tradeoff Analysis for a High End
Microprocessor, Workshop on Power-aware Computer Systems,
Cambridge, MA., November 2000.

[4] L. Hammond, B. Nayfeh, and K. Olukotun, A single-chip
multiprocessor, IEEE Computer, IEEE Press, Vol. 30, No. 9,
September 1997, pp. 79-85.

[5] Hitachi SuperH Mobile Application Processor Specifica-
tions, Hitachi Ltd., 2003. Available HTTP:
http://global.hitachi.com/New/cnews/E/2002/0415/

[6] M. Horowitz, T. Indermaur, and R. Gonzalez, Low-power
digital design, in Proceedings of the Symposium on Low Power
Electronics, IEEE Press, 1994, pp. 8-11.

[7] C. Lee, M. Potkonjak and W.H. Mangione-Smith, Media-
Bench: a tool for evaluating and synthesizing multimedia and
communications systems, in Proceedings of the International
Symposium on Microarchitecture, IEEE Press, December 1997,
pp. 330-335.

[8] Motorola DCT5200 Digital Set-top Terminal Specifications,
Motorola Inc., 2003. Available HTTP:
http://broadband.motorola.com/

[9] MPC7410 RISC Microprocessor Hardware Specifications,
Document No. MPC7410EC/D, Motorola Inc., 2002.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

[10] MPC7410 RISC Microprocessor Users Manual, Document
No. MPC7410 UM/D, Motorola Inc., 2000.

[11] MSC8101 Network Digital Signal Processor, Datasheet
No. MSC8101/D, Motorola Inc., 2002.

[12] MSC8101 16-Bit Digital Signal Processor Reference Man-
ual, Document No. MSC8101RM/D, Motorola Inc., 2001.

[13] M. Pedram and J. M. Rabaey (Editors), Power Aware De-
sign Methodologies, Kluwer Academic Publishers, 2002.

[14] SPEC CPU2000 V1.2, CPU Benchmarks, Standard Per-
formance Evaluation Corporation, 2001.

[15] M. Tien-Chien-Lee, V. Tiwari, S. Malik, and M. Fujita,
Power Analysis and Minimization Techniques for Embedded

DSP Software, IEEE Transactions on VLSI Systems, IEEE
Press, Vol. 5, No. 1, March 1997, pp. 123-125.

[16] H. Yang, R. Govindarajan, G. R. Gao, K. B, Theobald.
Power-Performance Trade-offs for Energy-Efficient Architec-
tures: A Quantitative Study, in Proceedings of the International
Conference on Computer Design, IEEE Press, September 2002,
pp. 174-179.

[17] V. Zyuban and P. Strenski, Unified methodology for re-
solving power-performance tradeoffs at the microarchitectural
and circuit levels, in Proceedings of the International Sympo-
sium on Low-Power Electronics and Design, ACM Press, 2002,
pp. 166-171.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

