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ABSTRACT 
In recent years, both performance and power have become key 
factors in efficient memory design. In this paper, we propose a 
systematic approach to reduce the energy consumption of the 
entire memory hierarchy. We first evaluate an existing power-
aware memory system where memory modules can exist in 
different power modes, and then propose on-chip memory module 
buffers, called Energy-Saver Buffers (ESB), which reside in-
between the L2 cache and main memory. ESBs reduce the 
additional overhead incurred due to frequent resynchronization of 
the memory modules in a low-power state. An additional 
improvement is attained by using a model that dynamically 
resizes the active cache based on the varying needs of a program. 
Our experimental results demonstrate that an integrated approach 
can reduce the energy-delay product by as much as 50% when 
compared to a traditional non power-aware memory hierarchy.  

Categories and Subject Descriptors 
C.4 [Performance of Systems] – design studies, measurement 
techniques, performance attributes; B.3.2 [Memory Structures]: 
Design Styles – cache memories, primary memory; B.3.3 [Mem-
ory Structures]: Performance Analysis and Design Aids – simu-
lation 

General Terms 
Algorithms, Design, Measurement, Performance 

Keywords 
Dynamic Cache, energy-delay product, Energy-Saver Buffers 
(ESB), integrated approach, power, RDRAM 

1. INTRODUCTION 
One of the major challenges that the hardware industry faces 
today is to cope with the immense power requirements of 
integrated circuits. Most of the studies and proposals for 
minimizing the power requirements of computing systems are 
directed towards processors and peripherals. Researchers 

recommend the deployment of different power modes based on 
the idleness of processors. For instance, the mobile Pentium III 
processor has five power management modes [23]. The RDRAM 
technology [12, 24] enables even memories to operate in any of 
the six low power modes. Similar methods have been proposed 
for minimizing the power consumption of disks and other 
peripherals [22]. These low-power modes of operation work well 
when the system is idle, but one has to pay the price for 
resynchronization overhead when the hardware goes to the active 
state from an idle one.  

In this paper, we investigate the entire memory hierarchy to 
subsequently achieve considerable savings in terms of both delay 
and power dissipation. We efficiently mask the resynchronization 
costs associated with reactivating memory modules from a low-
power state by introducing Energy-Saver Buffers. An effort to 
reduce the energy consumption is made at every level of the 
memory hierarchy. A reasonable power-performance tradeoff is 
also targeted for the proposed low-power design. Our 
experimental results demonstrate that such an integrated approach 
to designing a power-aware memory hierarchy can reduce the 
energy-delay product by almost 50% of the traditional memory 
hierarchies, while incurring a considerably shorter delay than 
other suggested power-aware schemes.  

The rest of the paper is organized as follows. Section 2 focuses on 
some of the related work in the field of low-power memory design 
and the implications on our work. Section 3 outlines the design of 
a power-aware modular memory that forms the base model for our 
work.  This section also covers the experimental setup.  In Section 
4, we present the design of our Energy-Saver Buffers (ESB), 
concentrating on mainly their functionality.  Section 5 elaborates a 
dynamic cache design that can co-exist with our ESBs in the 
memory hierarchy.  In Section 6, we discuss our results for a 
power-aware memory hierarchy that integrates our previous 
designs with a focus on ESB.  Section 7 summarizes the overall 
results and the paper.  

2. RELATED WORK 
Memory is a very common candidate for low power design. 
Lebeck et al. proposed a power-aware page allocation scheme for 
the main memory [21].  In this work, the different operating 
modes of RDRAM are exploited to improve the energy-delay 
product. This dynamic scheme forms the basis for our work. 
Another approach by Delaluz et al. introduced novel techniques to 
exploit the low-power operating modes of DRAMs [11]. These 
techniques include heuristics that use fixed thresholds for 
detecting idleness and an adaptive threshold that attempts to 
adjust itself with the dynamics of a program.  
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Significant work has been done on designing low-power caches. 
An integrated architectural and circuit-level approach by Se-Hyun 
et al. aims at reducing leakage energy in instruction caches [28]. 
They introduced DRI i-cache, an i-cache that can dynamically 
resize and adapt itself to an application’s requirements. Kamble 
and Ghose proposed architectural techniques to reduce power 
consumption in on-chip caches, and also provided analytical 
models for estimating energy dissipation of conventional caches 
as well as low-power caches [14, 17]. Compiler and hardware-
based approaches to reduce cache misses, by Sherwood et al. [25], 
suggest dynamic reordering of pages in physically addressed 
caches. In [1], Albonesi proposed an on-demand cache resource 
allocation policy called selective cache ways. Selective cache 
ways technique gives the ability to disable a subset of ‘ways’ in a 
set associative cache during periods of modest cache activity, 
while the full cache may remain operational for more cache-
intensive periods. A mechanism called Cache Decay, proposed by 
Kaxiras and Hu [19], exploits generational behavior of caches to 
reduce cache leakage power. Bahar et al. have studied power-
performance tradeoffs for several power/performance sensitive 
cache configurations, which involve techniques like increasing 
cache size or associativity and including buffers along side L1 
caches [3].  

Brooks et al. proposed a framework for analysis and optimization 
of power at the architectural level [8]. Wattch provides a power 
evaluation methodology within the portable and familiar 
SimpleScalar [2, 9] framework. Our model for power estimation 
is based on the Wattch model. 

Our work differs from all of the preceding research in that we 
propose an integrated approach for building a memory model that 
optimizes power at each level of the memory hierarchy.  As a 
result, we study the outcome of combining many of the existing 
power-aware schemes described above.  A separate unique 
contribution involves the introduction of Energy-Saver Buffers 
(ESB), which are meant to reduce the power and delay overhead 
associated with the frequent resynchronization of memory 
modules in a low-power state.  

3. POWER-AWARE PAGE ALLOCATION 
(Base Model) 

Our base model follows the Power-Aware DRAM model 
(PADRAM) as suggested by Lebeck et al. [21] (Figure 1b). In this 
scheme, RDRAM [12, 24] functions in one of the four power 
modes, namely: active, standby, nap and power-down. The active 
state consumes the maximum energy during operation.  A mem-
ory module will gradually go down to a lower-power state based 
on the number of cycles it remains inactive.  The power-down 
state consumes the minimum energy during operation. A memory 
module in a low-power state is reactivated on a read or write op-
eration.  

For our base model, we use the sequential first touch page place-
ment policy, which allocates pages sequentially in a single mem-
ory module until it gets completely filled, before moving on to the 
next module. Thus all the pages would restrict themselves to 
fewer memory modules than is the case for random placement, 
where pages are spread across all memory modules. 

It is evident that this PADRAM scheme incurs a sizeable delay 
and an additional power dissipation during resynchronization of 
the memory modules. In Section 4, we propose on-chip Energy-
Saver Buffers for smoothing out the high frequency of transitions 
between different power modes, in an attempt to improve upon 
this base model. In the rest of this section, we discuss both our 
experimental methodology and the results obtained after imple-
menting the PADRAM scheme, with an emphasis placed on 
points of our interest. 

3.1  Experimental Setup 
For our experiments, we used the SimpleScalar/Arm architecture 
simulator [2, 9] modified to incorporate a detailed power model. 
The benchmarks used were binaries of applications from the 
SPECint2000 suite, Mediabench suite and some other custom 
applications. These binaries were built using GNU GCC version 
2.95.1. Table 1 gives a summary of the applications used as 
benchmarks. 
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Figure 1. (a) Traditional memory without any power-aware schemes and (b) the equivalent power-aware (PA) DRAM im-
plementation with power-aware memory modules. Cache shown here is a traditional cache, where all sets are active. 



 

Table 1. Benchmarks used for experiments 

Benchmarks Description 
Instructions 

Executed 
(millions) 

anagram Anagram 425 
bzip Compressor 137 
gcc GNU GCC 235 
grep Text search algorithm 7 

jpeg-encode JPEG encoder 145 
jpeg-decode JPEG decoder 10 
mpeg-decode MPEG decoder 250 

pegwit-keygen Public key generation 27 
pegwit-encode Public key encryption 57 

yacr2 VLSI router 70 
 
For all measurements, a comparison is made with respect to a tra-
ditional memory hierarchy that does not incorporate any power-
aware mechanisms (Figure 1a). The memory delay that gets added 
due to the introduction of new schemes is measured using their 
corresponding access times. For instance the access time for tradi-
tional memory hierarchy (as seen from the L1 cache) is given by: 

             tTM =  hL1 ⋅ tL1 + mL1 ⋅ ( hL2 ⋅  tL2 + mL2  ⋅ tMEM )      (1) 

where, hL1 and hL2 are the hit ratios of L1 and L2 caches, mL1 and 
mL2 are the miss ratios of L1 and L2 caches, and tL1, tL2 and tMEM 
are the times taken to access L1, L2 caches and memory respec-
tively. The model used for evaluating power is a customized ver-
sion of the Wattch [8] model. This architectural model has been 
incorporated within the existing framework of SimpleScalar. For 
our work, we developed an additional analytical framework to 
evaluate the power consumed by our proposed schemes. We 
measure the energy and access times for each of our selected 
benchmarks. We also evaluate the energy-delay product of the 
entire memory hierarchy for each of the proposed schemes. From 
these values, the relative performances of our new schemes are 
measured using simple ratios, with the energy consumed by addi-
tional buffers being calculated explicitly. The power consumed by 
the additional circuit, namely the extra logic gates that would be 
needed for our memory hierarchy implementations, works out to 
be a constant, and was found to be an insignificant factor when 
compared to the overall power values.  For similar reasons, we 
also ignored the effect of leakage power. If the ratio of leakage 
power to the total power dissipation is very high, it would affect 
our memory hierarchy modifications. In that case, techniques to 
reduce leakage power must be applied in conjunction with all our 
proposed mechanisms. 

3.2 Performance of Power-Aware Memory 
Scheme 

We experimented with four variations of the PADRAM model, 
where we varied the threshold for memory state transitions (the 
number of instructions for which the memory remains in a par-
ticular energy state). Figure 2 depicts the energy ratio, memory 
delay ratio and energy-delay product ratio for each case when 
considering a 512MB memory having 16 modules each of size 
32MB. Due to space limitations, all experimental results aren’t 
presented here.  FFnap and FFstdby denote the cases when the 
memory modules go directly to Nap and Stand-by states.  
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Figure 2.  Memory delay (i), energy (ii) and energy-delay 
product ratios (iii) for a 512MB PADRAM scheme with 
sixteen 32MB modules. The base model is traditional cache 
and memory, where all modules are active. FFnap and 
FFstdby denote the cases when the memory modules go di-
rectly to nap and stand-by states. FF100 and FF1000 are 
the cases when sequential first touch policy (with 100 and 
1000 instructions as the threshold for transition to the next 
power state) is used for replacement. RND100 and 
RND1000 denote the corresponding random page replace-
ment policies.

(i) 

(ii) 

(iii) 



 

 

FF100 is the sequential first touch scheme with 100 instructions 
as its threshold and FF1000 is the scheme with 1000 instructions 
as its threshold. We use the PADRAM power model with the 
sequential first touch scheme for all the models that are used in 
subsequent sections, noting that the FF1000 scheme performs the 
best in terms of energy-delay ratio on an average across all our 
selected benchmarks. The results are consistent with the 
conclusions arrived in the work done by Lebeck et al. in [21]. 

4. ON-CHIP ENERGY SAVER BUFFERS 
(ESB)  

During a typical memory read/write operation, many memory 
modules of the power-aware memory get reactivated. Eventually, 
this would result in additional energy consumption and delay due 
to repeated resynchronization of the modules, which had gone 
back to a lower power state. Hence, to reduce the number of times 
the modules get reactivated, we propose onchip memory module 
buffers, called Energy-Saver Buffers (ESB), in between the L2 
cache and the main memory. These buffers would be located on 
the same chip where the L2 cache resides (Figure 3). This tech-
nique would also reduce the dependence of activation of memory 
modules on the characteristics of programs since the traffic be-
tween L2 cache and each memory module still remains the same. 

An Energy-Saver Buffer is associated with each memory module1. 
The ESB interacts with the memory module using the following 
protocol:  

                                                           
1 A unified ESB for all memory modules (similar to the Victim 
Buffer proposed in [16]) was also considered for our experiments.  
As can be seen in Table 3, utilizing a Victim Buffer in place of an 
ESB increased the energy consumption significantly while dem-
onstrating only slight performance improvements.  

• If a memory read is initiated, before going to the memory 
module (which might be in a low-power state) the ESB of the 
corresponding module is searched for the word line. If the 
data is found, the delay and the power associated with the 
read operation are reduced since the ESB is located near the 
L2 cache.  

• If the word-line is not found in the ESB, the corresponding 
memory module is activated for a read.  

o All the “dirty” lines in the ESB are first written 
back to the memory module. 

o All lines of the ESB are invalidated.  

o The data is read from the corresponding memory 
module to L2 cache. 

• If a memory write is initiated and if the L2 cache is full, 
“dirty” data is written back to the ESB of the corresponding 
memory module and not to the memory module itself.  

• If an ESB is full, the corresponding memory module is acti-
vated, the entire content of the ESB is flushed, and the ESB 
lines are invalidated. 

From the results in Section 6, it will be shown that the overall en-
ergy consumption of a memory system with ESBs is significantly 
less than a memory configuration without any buffers, even after 
considering the additional energy consumed by ESBs.  Moreover, 
the protocol ensures that data present in the ESB is the most re-
cently updated copy. Thus the protocol ensures consistency and 
maximum utilization of the activation of memory modules, amor-
tizing the overhead incurred due to resynchronization.  

The ESBs are implemented as logically separated buffers within a 
single chip along with the L2 cache (owing to their small size – 
see Table 2). The cache controller is responsible for a harmonious 

Figure 3.  Schematic showing the addition of on-chip Energy-Saver Buffers to a power-aware memory hierarchy. Dotted line 
shows the chip boundary. Energy-Saver Buffers reside in the same chip as L2 cache. These buffers reduce the number of 
times the PA memory modules get reactivated. 
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operation between L2 cache and ESBs since they co-exist in the 
same chip. The L2 cache has exclusive read/write access to ESBs. 
For read/write operations directed to the memory, the bus is ac-
cessed. Since L2 cache and ESBs are placed on the same chip, the 
bus and the arbitration logic remain the same. Thus existing hard-
ware technologies can be used for implementing the new power-
aware memory hierarchy and hence, addition of ESB is an eco-
nomic solution. The modeling of ESBs for our experiments is 
explained in Section 6.  

5. DYNAMIC CACHE  
The proposed ESB can co-exist either with the traditional caches 
or in a system using any of the existing (or new) power-aware 
caching schemes. In this section, we illustrate this fact by estab-
lishing a scheme that allocates cache sets depending on varying 
needs of the program at a given instance. Note that similar ap-
proaches were examined in [1, 5]. The memory and hence the 
cache access patterns are carefully studied and then the number of 
active cache sets are dynamically increased or decreased (enabled 
or disabled) [28] according to the access patterns. Cache access 
patterns are similarly studied in [18, 19]. As proposed in the 
model by Se-Hyun et al. [28], the unused portion of the cache is 
provided with a gated Vdd to reduce the energy consumption. Fig-
ure 4 shows a flowchart describing the protocol for our dynamic 
cache operation.  

Initially the program starts with a minimal number of sets, which 
we term as "active sets". The cache access pattern is then carefully 
followed. The Active cache Miss-cycle Counter (AMC) keeps 
track of the number of miss cycles for the current active sets. The 
Critical Miss-cycle Counter (CMC) keeps track of variations in 

the AMC.  Depending on the value of the CMC, the cache is dy-
namically increased or decreased (more sets are enabled or some 
of the currently enabled active sets are disabled). For removing a 
currently active set, the cache access patterns for each individual 
set are studied and one is removed according to a Least-Recently 
Used (LRU) algorithm.  In either case, the cache data and the tag 
bits undergo realignment [28]. 

The graphs in Figure 5 depict the memory delay, energy, energy-
delay product ratios of the memory hierarchy comprising of dy-
namic cache and PADRAM without any ESB. The next section 
elaborates the experimental results obtained after integrating ESB 
as a part of the power-aware memory. 

6. ANALYSIS OF INTEGRATED AP-
PROACH  

The ESBs are implemented in our experiments as multiple fully-
associative caches. Hence the modeling of power and delay for 
ESB is the same as that for a fully associative cache. In our ex-
periments we found that two different configurations of a direct-
mapped L1 cache [15], one of size 128K with 32 sets and one of 
size 256K with 64 sets performed well in terms of energy-delay 
product when used in conjunction with a 512 MB PADRAM us-
ing the FF1000 page replacement scheme (Table 3).  Conse-
quently these predominant configurations were employed as a ba-
sis for comparison when adding our ESBs, using combinations as 
shown in Table 2.  Note that for all of our results explained in this 
paper, the only L2 cache configuration considered is a unified 2-
way 1M cache.  
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Figure 4. Flowchart showing the operation of dynamic cache. In dynamic caches, the caches resize periodically depending 
on the memory access pattern of a given application and hence the varying needs of the application. This is achieved by 
disabling unused portions of the cache. 



 

Table 2.  Combinations considered for Dynamic Cache, En-
ergy-Saver buffer, PADRAM combination 

Case Dynamic L1 Cache 
Size 

Total Energy-Saver 
buffer Size (# word 
blocks on each of 16 

modules) 
a 128K with 32 sets 4K (64) 
b 256K with 64 sets 4K (64) 
c 128K with 32 sets 8K (128) 
d 256K with 64 sets 8K (128) 

 
As can be seen from Figure 6, when adding the ESBs to our 
power-aware memory hierarchy, there is a large savings in terms 
of energy consumption that is offset by an increase in memory 
delay, when compared to the traditional memory hierarchy.  This 
increased delay can be attributed to the dynamic caches, as when 
the number of cache sets used during a program’s execution is 
reduced, there is an increased likelihood that data would be ac-
cessed directly from the memory. That is, in equation (1), the hit 
ratios hL1, hL2 decrease. As can also be seen from Figure 6, the 
power consumption decreases significantly when utilizing dy-
namic caches since for long periods of time during program exe-
cution, many sets remain unused (experimental results also proved 
that the program itself did not require them). Consequently, for 
our integrated approach, the average energy consumption is 27% 
of the traditional model.   

As is demonstrated in Figure 7, the addition of the ESB to the 
model without any buffers (a hierarchy with just dynamic cache 
and PADRAM) leads to an overall improvement in terms of en-
ergy consumption, memory delay, and energy-delay product. This 
result can be more deeply investigated by examining the access 
time equation for the memory model utilizing Energy-Saver Buff-
ers:  

          tNEW = hL1 ⋅ tL1 + mL1 ⋅ [hL2 ⋅ tL2 + mL2 ⋅   
    (hESB ⋅ tESB + mESB ⋅ tMEM)]  (2) 

where hESB, mESB, tESB are the hit ratio, miss ratio and access time 
of ESBs.  

The results showed that the hit ratio (hESB) is substantial. The hits 
increased as most of data being sought was already present in 
ESB. When the size of ESB was increased, the memory delay de-
creased further by as much as 13% (of the model with just dy-
namic cache and PADRAM without any buffers). This implies 
that an optimal value of the buffer size has the potential to reduce 
the delay significantly. Also, the average energy consumption re-
duces by 25% (with respect to the model with just the dynamic 
cache and PADRAM without any buffers). Consequently, the av-
erage energy-delay product also decreases by 26% for cases (a) 
and (b), while 36% for cases (c) and (d). 

7. CONCLUSION 
Given the large number of experiments and design alternatives 
presented (and other experiments not presented here due to space 
limitation), we discuss the overall results in a concise manner in 
this section. Table 3 summarizes our results. 

Recalling the results derived in the earlier sections, PADRAM 
performs better than traditional memory. A hierarchy with dy-
namic cache increases the energy-delay product by 50%.  
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Figure 5.  Memory delay ratio (i), energy ratio (ii) and en-
ergy-delay product ratio (iii) for dynamic cache and 
PADRAM combination (no ESB). The base model is tradi-
tional cache and memory without any buffers. The AMC 
and CMC thresholds (lower, upper) are (20, 50) and (4, 8). 
The instruction threshold (N1, N2) is (100, 1000). The aver-
age energy-delay product is 73% of traditional memory 
hierarchy. The energy consumed is just 35% of the tradi-
tional hierarchy. 
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Figure 6.  Memory delay ratio (i), energy ratio (ii) and 
energy-delay product ratio (iii) for dynamic cache, 
ESB and PADRAM Combination. The base model is 
traditional cache and memory without any buffers. 
The average energy consumption decreases by 70% of 
the traditional model. The average energy-delay 
product is 55%. The results show that the model with 
Energy-Saver Buffers performs better than the model 
with just PADRAM and dynamic cache (Figure 5). 

Figure 7.  The contribution of Energy-Saver Buffers to-
wards the overall performance. The base model is dy-
namic cache and PADRAM combination without any 
intermediate buffers. ESBs bring down the memory de-
lay by 13% of traditional hierarchies on an average (i). 
The addition of Energy-Saver Buffers has decreased the 
energy consumption by 25% further, when compared to 
the model without it (ii).  The energy-delay product also 
reduces considerably (iii). 

(i) (i) 

(ii) 
(ii) 

(iii) (iii) 



 

When using both dynamic cache and PADRAM in the hierarchy, 
the energy-delay product dropped by 30% of the case without 
them. On-chip ESBs were then added in-between dynamic cache 
and PADRAM to further improve the energy-delay product. A 
hierarchy with dynamic cache, ESBs and PADRAM established a 
50% cutback in the energy-delay product, when compared to a 
traditional hierarchy.      

From the results shown in Table 3, it is clear that the combination 
of a traditional cache, Energy-Saver Buffers, and the PADRAM 
memory (denoted by (2) in the table) performs the best in terms of 
energy-delay product, on average bearing a savings of 80% when 
compared to traditional memory hierarchy.  This is at the cost of a 
three-fold increase in memory delay, which might drastically slow 
down the whole system. A better tradeoff between the memory 
delay and energy consumption is achieved with the introduction 
of dynamic cache. In Table 3, it can be seen that a more complex 
power-aware memory hierarchy combination (shown as (1) in the 
table) provides a substantial improvement in the delay, while still 
maintaining low energy consumption ratio. Even though the en-
ergy-delay product has increased, there is a substantial drop in the 
delay. This shows that the combination of dynamic cache, ESB, 
and PADRAM performs better than the combination of traditional 
cache, ESB, and PADRAM by providing an optimal tradeoff be-
tween energy and delay. 

The following inferences can be derived from our experimental 
results: 

• When two power-aware schemes are merged, the resulting 
scheme need not necessarily be power-aware.  In our case, it 
is quite evident from Table 3 that on combining (TC,-, PM) 
and (DC,-, TM), the resulting scheme (DC,-, PM) does not 
perform well.  

• While designing a power-aware scheme for any given layer 
in the hierarchy, the power schemes of both the immediate 
layers (upper and lower) should also be considered. For in-
stance, cache schemes should be aware of the power schemes 
of the memory. Any buffer in between the cache and the 
memory should be aware of the power schemes of both the 
cache and the memory. 

• Customization is necessary. For example, Victim Buffers, 
proposed in [16] and elsewhere, are known to improve per-
formance. In our case, adding a Victim Buffer in-between 
dynamic cache and PADRAM (aiming to improve perform-
ance) ultimately results in an undesirable behavior (as seen in 
the [*, VB, *] combinations in Table 3). Hence a customiza-
tion, similar to ESB, is necessary.  

• Achieving a tradeoff between performance and power is in-
dispensable in efficient memory hierarchy design.  As we 
have already shown, certain memory schemes that are ex-
tremely power-aware can lead to considerably worse per-
formance due to increased component delays.  Achieving a 
superior solution often requires a complete enumeration of 
valid configurations. 

In conclusion, an integrated approach to reducing memory hierar-
chy’s power consumption leads to significant savings in terms of 
energy-delay product. Due in part to the efficiency of our pro-
posed Energy-Saver Buffers, our power-aware memory hierarchy 
designed through such an effort reduces the energy delay product 

by 50% when  compared to a traditional non power-aware mem-
ory hierarchy.  
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