

An Integrated Approach to Reducing Power Dissipation in
Memory Hierarchies

Jayaprakash Pisharath
Department of Electrical & Computer Engineering

Northwestern University
Evanston IL 60208

Phone: 1–847–467–2299

jay@ece.northwestern.edu

Alok Choudhary
Department of Electrical & Computer Engineering

Northwestern University
Evanston IL 60208

Phone: 1–847–467–4159

choudhar@ece.northwestern.edu

ABSTRACT
In recent years, both performance and power have become key
factors in efficient memory design. In this paper, we propose a
systematic approach to reduce the energy consumption of the
entire memory hierarchy. We first evaluate an existing power-
aware memory system where memory modules can exist in
different power modes, and then propose on-chip memory module
buffers, called Energy-Saver Buffers (ESB), which reside in-
between the L2 cache and main memory. ESBs reduce the
additional overhead incurred due to frequent resynchronization of
the memory modules in a low-power state. An additional
improvement is attained by using a model that dynamically
resizes the active cache based on the varying needs of a program.
Our experimental results demonstrate that an integrated approach
can reduce the energy-delay product by as much as 50% when
compared to a traditional non power-aware memory hierarchy.

Categories and Subject Descriptors
C.4 [Performance of Systems] – design studies, measurement
techniques, performance attributes; B.3.2 [Memory Structures]:
Design Styles – cache memories, primary memory; B.3.3 [Mem-
ory Structures]: Performance Analysis and Design Aids – simu-
lation

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Dynamic Cache, energy-delay product, Energy-Saver Buffers
(ESB), integrated approach, power, RDRAM

1. INTRODUCTION
One of the major challenges that the hardware industry faces
today is to cope with the immense power requirements of
integrated circuits. Most of the studies and proposals for
minimizing the power requirements of computing systems are
directed towards processors and peripherals. Researchers

recommend the deployment of different power modes based on
the idleness of processors. For instance, the mobile Pentium III
processor has five power management modes [23]. The RDRAM
technology [12, 24] enables even memories to operate in any of
the six low power modes. Similar methods have been proposed
for minimizing the power consumption of disks and other
peripherals [22]. These low-power modes of operation work well
when the system is idle, but one has to pay the price for
resynchronization overhead when the hardware goes to the active
state from an idle one.

In this paper, we investigate the entire memory hierarchy to
subsequently achieve considerable savings in terms of both delay
and power dissipation. We efficiently mask the resynchronization
costs associated with reactivating memory modules from a low-
power state by introducing Energy-Saver Buffers. An effort to
reduce the energy consumption is made at every level of the
memory hierarchy. A reasonable power-performance tradeoff is
also targeted for the proposed low-power design. Our
experimental results demonstrate that such an integrated approach
to designing a power-aware memory hierarchy can reduce the
energy-delay product by almost 50% of the traditional memory
hierarchies, while incurring a considerably shorter delay than
other suggested power-aware schemes.

The rest of the paper is organized as follows. Section 2 focuses on
some of the related work in the field of low-power memory design
and the implications on our work. Section 3 outlines the design of
a power-aware modular memory that forms the base model for our
work. This section also covers the experimental setup. In Section
4, we present the design of our Energy-Saver Buffers (ESB),
concentrating on mainly their functionality. Section 5 elaborates a
dynamic cache design that can co-exist with our ESBs in the
memory hierarchy. In Section 6, we discuss our results for a
power-aware memory hierarchy that integrates our previous
designs with a focus on ESB. Section 7 summarizes the overall
results and the paper.

2. RELATED WORK
Memory is a very common candidate for low power design.
Lebeck et al. proposed a power-aware page allocation scheme for
the main memory [21]. In this work, the different operating
modes of RDRAM are exploited to improve the energy-delay
product. This dynamic scheme forms the basis for our work.
Another approach by Delaluz et al. introduced novel techniques to
exploit the low-power operating modes of DRAMs [11]. These
techniques include heuristics that use fixed thresholds for
detecting idleness and an adaptive threshold that attempts to
adjust itself with the dynamics of a program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
CASES 2002, October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010…$5.00.

Significant work has been done on designing low-power caches.
An integrated architectural and circuit-level approach by Se-Hyun
et al. aims at reducing leakage energy in instruction caches [28].
They introduced DRI i-cache, an i-cache that can dynamically
resize and adapt itself to an application’s requirements. Kamble
and Ghose proposed architectural techniques to reduce power
consumption in on-chip caches, and also provided analytical
models for estimating energy dissipation of conventional caches
as well as low-power caches [14, 17]. Compiler and hardware-
based approaches to reduce cache misses, by Sherwood et al. [25],
suggest dynamic reordering of pages in physically addressed
caches. In [1], Albonesi proposed an on-demand cache resource
allocation policy called selective cache ways. Selective cache
ways technique gives the ability to disable a subset of ‘ways’ in a
set associative cache during periods of modest cache activity,
while the full cache may remain operational for more cache-
intensive periods. A mechanism called Cache Decay, proposed by
Kaxiras and Hu [19], exploits generational behavior of caches to
reduce cache leakage power. Bahar et al. have studied power-
performance tradeoffs for several power/performance sensitive
cache configurations, which involve techniques like increasing
cache size or associativity and including buffers along side L1
caches [3].

Brooks et al. proposed a framework for analysis and optimization
of power at the architectural level [8]. Wattch provides a power
evaluation methodology within the portable and familiar
SimpleScalar [2, 9] framework. Our model for power estimation
is based on the Wattch model.

Our work differs from all of the preceding research in that we
propose an integrated approach for building a memory model that
optimizes power at each level of the memory hierarchy. As a
result, we study the outcome of combining many of the existing
power-aware schemes described above. A separate unique
contribution involves the introduction of Energy-Saver Buffers
(ESB), which are meant to reduce the power and delay overhead
associated with the frequent resynchronization of memory
modules in a low-power state.

3. POWER-AWARE PAGE ALLOCATION
(Base Model)

Our base model follows the Power-Aware DRAM model
(PADRAM) as suggested by Lebeck et al. [21] (Figure 1b). In this
scheme, RDRAM [12, 24] functions in one of the four power
modes, namely: active, standby, nap and power-down. The active
state consumes the maximum energy during operation. A mem-
ory module will gradually go down to a lower-power state based
on the number of cycles it remains inactive. The power-down
state consumes the minimum energy during operation. A memory
module in a low-power state is reactivated on a read or write op-
eration.

For our base model, we use the sequential first touch page place-
ment policy, which allocates pages sequentially in a single mem-
ory module until it gets completely filled, before moving on to the
next module. Thus all the pages would restrict themselves to
fewer memory modules than is the case for random placement,
where pages are spread across all memory modules.

It is evident that this PADRAM scheme incurs a sizeable delay
and an additional power dissipation during resynchronization of
the memory modules. In Section 4, we propose on-chip Energy-
Saver Buffers for smoothing out the high frequency of transitions
between different power modes, in an attempt to improve upon
this base model. In the rest of this section, we discuss both our
experimental methodology and the results obtained after imple-
menting the PADRAM scheme, with an emphasis placed on
points of our interest.

3.1 Experimental Setup
For our experiments, we used the SimpleScalar/Arm architecture
simulator [2, 9] modified to incorporate a detailed power model.
The benchmarks used were binaries of applications from the
SPECint2000 suite, Mediabench suite and some other custom
applications. These binaries were built using GNU GCC version
2.95.1. Table 1 gives a summary of the applications used as
benchmarks.

(a) (b)

Processor

L1 Cache

L2 Cache

Traditional Memory

Processor

L1 Cache

L2 Cache

PA Memory
Module 0

PA Memory
Module k

PA Memory
Module k - 1

PA Memory
Module 1

Figure 1. (a) Traditional memory without any power-aware schemes and (b) the equivalent power-aware (PA) DRAM im-
plementation with power-aware memory modules. Cache shown here is a traditional cache, where all sets are active.

Table 1. Benchmarks used for experiments

Benchmarks Description
Instructions

Executed
(millions)

anagram Anagram 425
bzip Compressor 137
gcc GNU GCC 235
grep Text search algorithm 7

jpeg-encode JPEG encoder 145
jpeg-decode JPEG decoder 10
mpeg-decode MPEG decoder 250

pegwit-keygen Public key generation 27
pegwit-encode Public key encryption 57

yacr2 VLSI router 70

For all measurements, a comparison is made with respect to a tra-
ditional memory hierarchy that does not incorporate any power-
aware mechanisms (Figure 1a). The memory delay that gets added
due to the introduction of new schemes is measured using their
corresponding access times. For instance the access time for tradi-
tional memory hierarchy (as seen from the L1 cache) is given by:

 tTM = hL1 ⋅ tL1 + mL1 ⋅ (hL2 ⋅ tL2 + mL2 ⋅ tMEM) (1)

where, hL1 and hL2 are the hit ratios of L1 and L2 caches, mL1 and
mL2 are the miss ratios of L1 and L2 caches, and tL1, tL2 and tMEM
are the times taken to access L1, L2 caches and memory respec-
tively. The model used for evaluating power is a customized ver-
sion of the Wattch [8] model. This architectural model has been
incorporated within the existing framework of SimpleScalar. For
our work, we developed an additional analytical framework to
evaluate the power consumed by our proposed schemes. We
measure the energy and access times for each of our selected
benchmarks. We also evaluate the energy-delay product of the
entire memory hierarchy for each of the proposed schemes. From
these values, the relative performances of our new schemes are
measured using simple ratios, with the energy consumed by addi-
tional buffers being calculated explicitly. The power consumed by
the additional circuit, namely the extra logic gates that would be
needed for our memory hierarchy implementations, works out to
be a constant, and was found to be an insignificant factor when
compared to the overall power values. For similar reasons, we
also ignored the effect of leakage power. If the ratio of leakage
power to the total power dissipation is very high, it would affect
our memory hierarchy modifications. In that case, techniques to
reduce leakage power must be applied in conjunction with all our
proposed mechanisms.

3.2 Performance of Power-Aware Memory
Scheme

We experimented with four variations of the PADRAM model,
where we varied the threshold for memory state transitions (the
number of instructions for which the memory remains in a par-
ticular energy state). Figure 2 depicts the energy ratio, memory
delay ratio and energy-delay product ratio for each case when
considering a 512MB memory having 16 modules each of size
32MB. Due to space limitations, all experimental results aren’t
presented here. FFnap and FFstdby denote the cases when the
memory modules go directly to Nap and Stand-by states.

0

1

2

3
4

5

6

7

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

M
em

or
y

D
el

ay
 R

at
io

0

0.2

0.4

0.6

0.8

1

1.2

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
 R

at
io

0

0.2

0.4

0.6

0.8

1

1.2

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
 -

D
el

ay
 P

ro
du

ct
 ra

tio

FFnap FFstdby RND100 RND1000 FF100 FF1000

Figure 2. Memory delay (i), energy (ii) and energy-delay
product ratios (iii) for a 512MB PADRAM scheme with
sixteen 32MB modules. The base model is traditional cache
and memory, where all modules are active. FFnap and
FFstdby denote the cases when the memory modules go di-
rectly to nap and stand-by states. FF100 and FF1000 are
the cases when sequential first touch policy (with 100 and
1000 instructions as the threshold for transition to the next
power state) is used for replacement. RND100 and
RND1000 denote the corresponding random page replace-
ment policies.

(i)

(ii)

(iii)

FF100 is the sequential first touch scheme with 100 instructions
as its threshold and FF1000 is the scheme with 1000 instructions
as its threshold. We use the PADRAM power model with the
sequential first touch scheme for all the models that are used in
subsequent sections, noting that the FF1000 scheme performs the
best in terms of energy-delay ratio on an average across all our
selected benchmarks. The results are consistent with the
conclusions arrived in the work done by Lebeck et al. in [21].

4. ON-CHIP ENERGY SAVER BUFFERS
(ESB)

During a typical memory read/write operation, many memory
modules of the power-aware memory get reactivated. Eventually,
this would result in additional energy consumption and delay due
to repeated resynchronization of the modules, which had gone
back to a lower power state. Hence, to reduce the number of times
the modules get reactivated, we propose onchip memory module
buffers, called Energy-Saver Buffers (ESB), in between the L2
cache and the main memory. These buffers would be located on
the same chip where the L2 cache resides (Figure 3). This tech-
nique would also reduce the dependence of activation of memory
modules on the characteristics of programs since the traffic be-
tween L2 cache and each memory module still remains the same.

An Energy-Saver Buffer is associated with each memory module1.
The ESB interacts with the memory module using the following
protocol:

1 A unified ESB for all memory modules (similar to the Victim
Buffer proposed in [16]) was also considered for our experiments.
As can be seen in Table 3, utilizing a Victim Buffer in place of an
ESB increased the energy consumption significantly while dem-
onstrating only slight performance improvements.

• If a memory read is initiated, before going to the memory
module (which might be in a low-power state) the ESB of the
corresponding module is searched for the word line. If the
data is found, the delay and the power associated with the
read operation are reduced since the ESB is located near the
L2 cache.

• If the word-line is not found in the ESB, the corresponding
memory module is activated for a read.

o All the “dirty” lines in the ESB are first written
back to the memory module.

o All lines of the ESB are invalidated.

o The data is read from the corresponding memory
module to L2 cache.

• If a memory write is initiated and if the L2 cache is full,
“dirty” data is written back to the ESB of the corresponding
memory module and not to the memory module itself.

• If an ESB is full, the corresponding memory module is acti-
vated, the entire content of the ESB is flushed, and the ESB
lines are invalidated.

From the results in Section 6, it will be shown that the overall en-
ergy consumption of a memory system with ESBs is significantly
less than a memory configuration without any buffers, even after
considering the additional energy consumed by ESBs. Moreover,
the protocol ensures that data present in the ESB is the most re-
cently updated copy. Thus the protocol ensures consistency and
maximum utilization of the activation of memory modules, amor-
tizing the overhead incurred due to resynchronization.

The ESBs are implemented as logically separated buffers within a
single chip along with the L2 cache (owing to their small size –
see Table 2). The cache controller is responsible for a harmonious

Figure 3. Schematic showing the addition of on-chip Energy-Saver Buffers to a power-aware memory hierarchy. Dotted line
shows the chip boundary. Energy-Saver Buffers reside in the same chip as L2 cache. These buffers reduce the number of
times the PA memory modules get reactivated.

L2 Cache

……. PA Memory
Module k - 1

PA Memory
Module k

PA Memory
Module 1

PA Memory
Module 0

...

Processor

L1 Cache Set 0

ESB
0

ESB
1

ESB
k - 1

ESB
k

…….

Set n Set 1

operation between L2 cache and ESBs since they co-exist in the
same chip. The L2 cache has exclusive read/write access to ESBs.
For read/write operations directed to the memory, the bus is ac-
cessed. Since L2 cache and ESBs are placed on the same chip, the
bus and the arbitration logic remain the same. Thus existing hard-
ware technologies can be used for implementing the new power-
aware memory hierarchy and hence, addition of ESB is an eco-
nomic solution. The modeling of ESBs for our experiments is
explained in Section 6.

5. DYNAMIC CACHE
The proposed ESB can co-exist either with the traditional caches
or in a system using any of the existing (or new) power-aware
caching schemes. In this section, we illustrate this fact by estab-
lishing a scheme that allocates cache sets depending on varying
needs of the program at a given instance. Note that similar ap-
proaches were examined in [1, 5]. The memory and hence the
cache access patterns are carefully studied and then the number of
active cache sets are dynamically increased or decreased (enabled
or disabled) [28] according to the access patterns. Cache access
patterns are similarly studied in [18, 19]. As proposed in the
model by Se-Hyun et al. [28], the unused portion of the cache is
provided with a gated Vdd to reduce the energy consumption. Fig-
ure 4 shows a flowchart describing the protocol for our dynamic
cache operation.

Initially the program starts with a minimal number of sets, which
we term as "active sets". The cache access pattern is then carefully
followed. The Active cache Miss-cycle Counter (AMC) keeps
track of the number of miss cycles for the current active sets. The
Critical Miss-cycle Counter (CMC) keeps track of variations in

the AMC. Depending on the value of the CMC, the cache is dy-
namically increased or decreased (more sets are enabled or some
of the currently enabled active sets are disabled). For removing a
currently active set, the cache access patterns for each individual
set are studied and one is removed according to a Least-Recently
Used (LRU) algorithm. In either case, the cache data and the tag
bits undergo realignment [28].

The graphs in Figure 5 depict the memory delay, energy, energy-
delay product ratios of the memory hierarchy comprising of dy-
namic cache and PADRAM without any ESB. The next section
elaborates the experimental results obtained after integrating ESB
as a part of the power-aware memory.

6. ANALYSIS OF INTEGRATED AP-
PROACH

The ESBs are implemented in our experiments as multiple fully-
associative caches. Hence the modeling of power and delay for
ESB is the same as that for a fully associative cache. In our ex-
periments we found that two different configurations of a direct-
mapped L1 cache [15], one of size 128K with 32 sets and one of
size 256K with 64 sets performed well in terms of energy-delay
product when used in conjunction with a 512 MB PADRAM us-
ing the FF1000 page replacement scheme (Table 3). Conse-
quently these predominant configurations were employed as a ba-
sis for comparison when adding our ESBs, using combinations as
shown in Table 2. Note that for all of our results explained in this
paper, the only L2 cache configuration considered is a unified 2-
way 1M cache.

Current Active

Sets1

N1 Instrns. Over?

AMC >
T1_UPPER?

AMC <
T1_LOWER?

Increment CMC

Decrement CMC

Yes

Yes No

Yes

2

No

N2 Instrns. Over?

CMC >
T2_UPPER?

AMC <
T2_LOWER?

Increase cache
sets

Decrease cache
sets

Yes

Yes No

Yes

1

No

2

No

No 1

Figure 4. Flowchart showing the operation of dynamic cache. In dynamic caches, the caches resize periodically depending
on the memory access pattern of a given application and hence the varying needs of the application. This is achieved by
disabling unused portions of the cache.

Table 2. Combinations considered for Dynamic Cache, En-
ergy-Saver buffer, PADRAM combination

Case Dynamic L1 Cache
Size

Total Energy-Saver
buffer Size (# word
blocks on each of 16

modules)
a 128K with 32 sets 4K (64)
b 256K with 64 sets 4K (64)
c 128K with 32 sets 8K (128)
d 256K with 64 sets 8K (128)

As can be seen from Figure 6, when adding the ESBs to our
power-aware memory hierarchy, there is a large savings in terms
of energy consumption that is offset by an increase in memory
delay, when compared to the traditional memory hierarchy. This
increased delay can be attributed to the dynamic caches, as when
the number of cache sets used during a program’s execution is
reduced, there is an increased likelihood that data would be ac-
cessed directly from the memory. That is, in equation (1), the hit
ratios hL1, hL2 decrease. As can also be seen from Figure 6, the
power consumption decreases significantly when utilizing dy-
namic caches since for long periods of time during program exe-
cution, many sets remain unused (experimental results also proved
that the program itself did not require them). Consequently, for
our integrated approach, the average energy consumption is 27%
of the traditional model.

As is demonstrated in Figure 7, the addition of the ESB to the
model without any buffers (a hierarchy with just dynamic cache
and PADRAM) leads to an overall improvement in terms of en-
ergy consumption, memory delay, and energy-delay product. This
result can be more deeply investigated by examining the access
time equation for the memory model utilizing Energy-Saver Buff-
ers:

 tNEW = hL1 ⋅ tL1 + mL1 ⋅ [hL2 ⋅ tL2 + mL2 ⋅
 (hESB ⋅ tESB + mESB ⋅ tMEM)] (2)

where hESB, mESB, tESB are the hit ratio, miss ratio and access time
of ESBs.

The results showed that the hit ratio (hESB) is substantial. The hits
increased as most of data being sought was already present in
ESB. When the size of ESB was increased, the memory delay de-
creased further by as much as 13% (of the model with just dy-
namic cache and PADRAM without any buffers). This implies
that an optimal value of the buffer size has the potential to reduce
the delay significantly. Also, the average energy consumption re-
duces by 25% (with respect to the model with just the dynamic
cache and PADRAM without any buffers). Consequently, the av-
erage energy-delay product also decreases by 26% for cases (a)
and (b), while 36% for cases (c) and (d).

7. CONCLUSION
Given the large number of experiments and design alternatives
presented (and other experiments not presented here due to space
limitation), we discuss the overall results in a concise manner in
this section. Table 3 summarizes our results.

Recalling the results derived in the earlier sections, PADRAM
performs better than traditional memory. A hierarchy with dy-
namic cache increases the energy-delay product by 50%.

Memory Delay Ratio for Dynamic Cache - PADRAM
Combination

0

0.5

1

1.5

2

2.5

3

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

M
em

or
y

D
el

ay
 R

at
io

Energy Ratio for Dynamic Cache - PADRAM
Combination

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
 R

at
io

Energy-Delay Product Ratio for Dynamic Cache -

PADRAM Combination

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
-D

el
ay

 P
ro

du
ct

 R
at

io

128K Cache, 32 Sets 256K Cache, 64 Sets

Figure 5. Memory delay ratio (i), energy ratio (ii) and en-
ergy-delay product ratio (iii) for dynamic cache and
PADRAM combination (no ESB). The base model is tradi-
tional cache and memory without any buffers. The AMC
and CMC thresholds (lower, upper) are (20, 50) and (4, 8).
The instruction threshold (N1, N2) is (100, 1000). The aver-
age energy-delay product is 73% of traditional memory
hierarchy. The energy consumed is just 35% of the tradi-
tional hierarchy.

(i)

(ii)

(iii)

Memory Delay Ratio for Dynamic Cache, ESB and
PADRAM (wrt traditional cache and memory)

0

0.5

1

1.5

2

2.5

3

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

M
em

or
y

D
el

ay
 R

at
io

Energy Ratio for Dynamic Cache, ESB and PADRAM
(wrt traditional cache and memory)

0

0.1

0.2

0.3

0.4

0.5

0.6

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
 R

at
io

Energy-Delay product ratio for Dynamic Cache, ESB
and PADRAM (wrt traditional cache and memory)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
-D

el
ay

 P
ro

du
ct

 R
at

io

case (a) case (b) case (c) case (d)

Contribution of Energy-Saver Buffers towards
Memory Delay

0

0.2

0.4

0.6

0.8

1

1.2

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

M
em

or
y

D
el

ay
 R

at
io

Contribution of Energy-Saver Buffers towards

savings in Energy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
 R

at
io

Contribution of Energy-Saver Buffers towards
Energy-Delay Product

0

0.2

0.4

0.6

0.8

1

1.2

Ana
gra

m
Bzip Gcc

Grep

Jp
eg

Dec

JP
eg

Enc

Mpe
gDec

PgW
tKGn

PgW
tEnc

Yac
r

En
er

gy
-D

el
ay

 P
ro

du
ct

 R
at

io

case (a) case (b) case (c) case (d)

Figure 6. Memory delay ratio (i), energy ratio (ii) and
energy-delay product ratio (iii) for dynamic cache,
ESB and PADRAM Combination. The base model is
traditional cache and memory without any buffers.
The average energy consumption decreases by 70% of
the traditional model. The average energy-delay
product is 55%. The results show that the model with
Energy-Saver Buffers performs better than the model
with just PADRAM and dynamic cache (Figure 5).

Figure 7. The contribution of Energy-Saver Buffers to-
wards the overall performance. The base model is dy-
namic cache and PADRAM combination without any
intermediate buffers. ESBs bring down the memory de-
lay by 13% of traditional hierarchies on an average (i).
The addition of Energy-Saver Buffers has decreased the
energy consumption by 25% further, when compared to
the model without it (ii). The energy-delay product also
reduces considerably (iii).

(i) (i)

(ii)
(ii)

(iii) (iii)

When using both dynamic cache and PADRAM in the hierarchy,
the energy-delay product dropped by 30% of the case without
them. On-chip ESBs were then added in-between dynamic cache
and PADRAM to further improve the energy-delay product. A
hierarchy with dynamic cache, ESBs and PADRAM established a
50% cutback in the energy-delay product, when compared to a
traditional hierarchy.

From the results shown in Table 3, it is clear that the combination
of a traditional cache, Energy-Saver Buffers, and the PADRAM
memory (denoted by (2) in the table) performs the best in terms of
energy-delay product, on average bearing a savings of 80% when
compared to traditional memory hierarchy. This is at the cost of a
three-fold increase in memory delay, which might drastically slow
down the whole system. A better tradeoff between the memory
delay and energy consumption is achieved with the introduction
of dynamic cache. In Table 3, it can be seen that a more complex
power-aware memory hierarchy combination (shown as (1) in the
table) provides a substantial improvement in the delay, while still
maintaining low energy consumption ratio. Even though the en-
ergy-delay product has increased, there is a substantial drop in the
delay. This shows that the combination of dynamic cache, ESB,
and PADRAM performs better than the combination of traditional
cache, ESB, and PADRAM by providing an optimal tradeoff be-
tween energy and delay.

The following inferences can be derived from our experimental
results:

• When two power-aware schemes are merged, the resulting
scheme need not necessarily be power-aware. In our case, it
is quite evident from Table 3 that on combining (TC,-, PM)
and (DC,-, TM), the resulting scheme (DC,-, PM) does not
perform well.

• While designing a power-aware scheme for any given layer
in the hierarchy, the power schemes of both the immediate
layers (upper and lower) should also be considered. For in-
stance, cache schemes should be aware of the power schemes
of the memory. Any buffer in between the cache and the
memory should be aware of the power schemes of both the
cache and the memory.

• Customization is necessary. For example, Victim Buffers,
proposed in [16] and elsewhere, are known to improve per-
formance. In our case, adding a Victim Buffer in-between
dynamic cache and PADRAM (aiming to improve perform-
ance) ultimately results in an undesirable behavior (as seen in
the [*, VB, *] combinations in Table 3). Hence a customiza-
tion, similar to ESB, is necessary.

• Achieving a tradeoff between performance and power is in-
dispensable in efficient memory hierarchy design. As we
have already shown, certain memory schemes that are ex-
tremely power-aware can lead to considerably worse per-
formance due to increased component delays. Achieving a
superior solution often requires a complete enumeration of
valid configurations.

In conclusion, an integrated approach to reducing memory hierar-
chy’s power consumption leads to significant savings in terms of
energy-delay product. Due in part to the efficiency of our pro-
posed Energy-Saver Buffers, our power-aware memory hierarchy
designed through such an effort reduces the energy delay product

by 50% when compared to a traditional non power-aware mem-
ory hierarchy.

8. ACKNOWLEDGMENTS
This work was supported by DARPA under the contract F33615-
01-C-1631. We thank Todd Austin (University of Michigan) for
providing the SimpleScalar/Arm toolkit to Northwestern Univer-
sity. Our thanks to the other members of the Center for Parallel
and Distributed Computing at Northwestern University for their
invaluable help in refining this paper.

9. REFERENCES
[1] D.H. Albonesi. Selective Cache Ways: On-Demand Cache

Resource Allocation. Journal of Instruction-Level
Parallelism, Vol. 2, 2000.

[2] T. M. Austin and D. Burger. Micro-30 SimpleScalar
Tutorial. Available HTTP:
http://www.cs.wisc.edu/~mscalar/simplescalar.html

[3] R. I. Bahar, G. Albera, and S. Manne. Power and
Performance Tradeoffs Using Various Caching Strategies, in
Proceedings of the International Symposium on Low Power
Electronics and Design (Monterey CA, 1998), ACM Press,
pp. 64-69.

[4] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory Hierarchy Reconfiguration for
Energy and Performance in General Purpose Processor
Architectures, in Proceedings of the International
Symposium on Microarchitecture (Monterey CA, 2000),
ACM Press, pp. 245-257.

[5] N. Bellas, I. Haij, and C. Polychronopoulos. Using dynamic
cache management techniques to reduce energy in a high-
performance processor, in Proceedings of the International
Symposium on Low Power Electronics and Design (San
Diego CA, 1999), ACM Press, pp. 64-69.

[6] L. Benini and G. De Micheli. System-Level Power
Optimization: Techniques and Tools. ACM Transactions on
Design Automation of Electronic Systems (TODAES), Vol.
5, Issue 2 (April 2000).

[7] S. Borkar. Design challenges of technology scaling. IEEE
Micro, Vol. 19, No. 4 (July/August 1999).

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architecture-Level Power Analysis and
Optimizations, in Proceedings of the International
Symposium on Computer Architecture (Vancouver, Canada,
2000), ACM Press, pp. 83-94.

[9] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the SimpleScalar tool set. Technical Report
TR-1308, Univ. of Wisconsin-Madison Computer Sciences
Dept., July 1996.

[10] R. Chen, M. Irwin, and R. Bajwa. Architectural Level Power
Estimation and Design Experiments. ACM Transactions on
Design Automation of Electronic Systems (TODAES),
Volume 6, Issue 1 (January 2001).

Table 3. Summary of all viable combinations considered for the experiment
Legend
TC – Traditional Cache, DC – Dynamic Cache, EB – Energy-Saver Buffer, TM - Traditional Memory, PM – PADRAM, VB – Victim Buffer.
DC, EB, PM means all of DC, EB and PM were considered for the case. ‘-‘ means that the particular component in the hierarchy wasn’t
considered for the test. For example, DC, -, PM means there was no EB or VB. means that the component has been considered for that
particular case. Blank means the component wasn’t considered.
* L2 cache size : 2-way set-associative 1M cache

Dynamic L1 Cache Energy Saver
Buffer

Case Consid-
ered

(in order of
memory hierar-

chy)
128K,
32 Sets

256K,
64 Sets

Victim
Buffer
(8K) 4K 8K

PADRAM
(FF1000,

512K)

Memory
Delay
Ratio

Energy
Ratio

Energy-
Delay

product
ratio

TC, - , TM 1 1 1
TC, - , PM 4.06 0.15 0.55

 3.64 0.06 0.20
TC, EB , PM

 3.62 0.05 0.20
 10.10 0.23 2.02

DC, - , TM
 10.59 0.17 1.54
 2.13 0.38 0.79

DC, - , PM
 2.10 0.32 0.66
 2.11 0.30 0.62

 2.08 0.24 0.49
 1.85 0.30 0.56 DC, EB , PM

 1.83 0.24 0.44
TC, VB , TM 1.00 1.00 1.01

 8.95 0.24 1.82
DC, VB , TM

 8.88 0.25 1.34
 2.21 0.39 0.84

DC, VB , PM
 2.19 0.32 0.69
 2.19 0.31 0.67

 2.17 0.32 0.64
 1.93 0.31 0.60

DC, VB , EB,
PM

 1.91 0.33 0.58

[11] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A.

Sivasubramaniam. M. J. Irwin. DRAM Energy Management
Using Software and Hardware Directed Power Mode Control,
in IEEE Proceedings of the International Symposium on High
Performance Computer Architecture (Nuevo Leone, Mexico,
2001), pp. 159-169.

[12] 128/144-Mbit Direct RDRAM Data Sheet, Rambus Inc.,
1999.

[13] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory Controller
Policies for DRAM Power Management, in Proceedings of
the International Symposium on Low Power Electronics and
Design (Huntington Beach CA, 2001), ACM Press, pp. 129-
134.

[14] K. Ghose and M. B. Kamble. Reducing Power in Super
Scalar Processor Caches using Sub-banking, Multiple Line
Buffers and Bit Line Segmentation, in Proceedings of the
International Symposium on Low Power Electronics and
Design (San Diego CA, 1999), ACM Press, pp. 70-75.

[15] J.L. Hennessey and D.A. Patterson. Computer Architecture –
A Quantitative Approach. Morgan Kaufmann, 2000.

[16] N.P. Jouppi. Improving direct-mapped cache performance by
addition of a small fully associative cache and pre-fetch
buffers, in Proceedings of the International Symposium on
Computer Architecture (Seattle WA, 1990), ACM Press, pp.
364-373.

[17] M. B. Kamble and K. Ghose. Analytical Energy Dissipation
Models for Low Power Caches, in Proceedings of the
International Symposium on Low-Power Electronics and
Design (Monterey CA, 1997), ACM Press, pp. 143-148.

[18] M. Kandemir, U. Sezer, and V. Delaluz. Improving Memory
Energy Using Access Pattern Classification, in Proceedings
of the International Conference on Computer Aided Design
(San Jose CA, 2001), ACM Press, pp. 201-206.

[19] S. Kaxiras and Z. Hu. Cache Decay: Exploiting Generational
Behavior to Reduce Cache Leakage Power, in Proceedings of
the International Symposium on Computer Architecture
(Göteborg, Sweden, 2001), ACM Press, pp. 240 - 251.

2

1

[20] S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.
Energy-efficient instruction cache using page-based
placement, in Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems (Atlanta GA, 2001), ACM Press, pp. 229 - 237.

[21] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware
Page Allocation, in Proceedings of the International
Conference on Architectural Support for Programming
Language and Operation Systems (Cambridge MA, 2000),
ACM Press, pp. 105 - 116.

[22] K. Li, R. Kumpf, P. Horton, and T. Anderson. A Quantitive
Analysis of Disk Drive Power Management in Portable
Computers. Winter Usenix, 1994, pp. 279-291.

[23] Pentium III Processor Mobile Module MMC-2, Datasheet
243356-001, Intel Corporation, 2001.

[24] RDRAM Technology, Rambus Inc., 1999. Available
HTTP: http://www.rdram.com/

[25] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, and R. Patel.
Reducing Power in high-performance microprocessors, in
Proceedings of the Design Automation Conference (San
Francisco CA, 1998), ACM Press, pp. 732 - 737.

[26] C-L. Su and Despain. Cache Design Tradeoffs for Power and
Performance Optimization: A Case Study, in Proceedings of
the International Symposium on Low-Power Electronics and
Design (Dana Point CA, 1995), ACM Press, pp. 63-68.

[27] T. Sherwood, B. Calder, and J. Emer. Reducing Cache
Misses Using Hardware and Software Page Placement, in
Proceedings of the International Conference on
Supercomputing (Rhodes, Greece, 1999), ACM Press, pp.
155 - 164.

[28] Se-Hyun Yang, M. D. Powell, B. Falsafi, K. Roy, and T.N.
Vijaykumar. An Integrated Circuit/Architecture Approach to
Reducing Leakage in Deep-Submicron High-Performance I-
Caches, in IEEE Proceedings of the International Symposium
on High-Performance Computer Architecture (2001), pp.
147-158.

[29] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte.
Adaptive Mode Control: A Static-Power-Efficient Cache
Design, in IEEE Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques
(Barcelona, Spain, 2001), pp. 61 -70.

