
Clique Guided Community Detection

Diana Palsetia∗, Md. Mostofa Ali Patwary†, William Hendrix∗, Ankit Agrawal∗, Alok Choudhary∗

∗Northwestern University, Evanston, IL
{drp925,whendrix,ankitag,choudhar}@eecs.northwestern.edu

†Parallel Computing Lab, Intel, Santa Clara, CA
mostofa.ali.patwary@intel.com

Abstract—Discovering communities to understand and
model network structures has been a fundamental problem in
several fields including social networks, physics, and biology.
Many algorithms have been developed for finding the com-
munities. Modularity based technique is fairly new relative
to clustering, though it is very popular currently. Although
some fast modularity based algorithms exist for detecting
communities, the quality of these solutions is limited. At the
other extreme, a clique embodies a basic community as it has
the greatest possible edge density. However, the requirement
that each pair of vertices be connected is too strict. Therefore,
techniques to merge partitioned cliques using a hill-climbing
greedy algorithm have been studied to form communities. How-
ever, the task of finding cliques is computationally expensive.

In this paper, we present a new approach for fast and
efficient community detection. We propose a clique guided
community detection framework that consists of two phases.
In the first phase, the framework finds disjoint cliques. In the
second phase, the cliques from the first phase are used to guide
the merging of individual vertices until a good quality solution
is obtained. For the first phase, we develop an algorithm
named MACH (Maximum Clique Heuristic), which is a new
approach to compute disjoint cliques using a heuristic-based
branch-and-bound technique. We provide experimental results
to demonstrate the efficiency of the new algorithm and compare
our approach with other previously proposed algorithms.

Keywords-Link and Graph Mining; Graph Clustering; Com-
munity Detection

I. INTRODUCTION

A fundamental problem in the study of networks is com-
munity detection [1]. Analyzing networks is useful as they
model complex systems [2]. For example, Social networking
Sites (SNS), which allow millions of users to interact and
allow connections represented by frendship relations or con-
tent sharing [3]. The identification of community structures
in large-scale SNSs allows to group users with similar
profiles and interests and can be employed to identify targets
for marketing or improving the quality of recommender
systems. In recent years, there has been a surge of interest to
develop computational techniques that help understand the
properties of large network datasets.

Fortunato [4] provides a survey of community detection
algorithms on different types of networks. The communities

can be disjoint or overlapping. In this paper we restrict our
work to networks that are unweighted, and undirected, which
form disjoint communities. Recent work in clustering has
focused on the idea of maximizing modularity, a metric to
measure the quality of the solution. Although some fast
algorithms exist for detecting communities [5], [6], the
quality of these solutions for large-scale networks is affected
by the resolution limit i.e., the tendency of producing larger
communities that may contain small communities with high
density but lower connectivity between them [7], [8].

In social sciences, cliques are among the most visible and
interesting types of groups in society. In network theory, a
clique embodies a basic community as it has the greatest
possible edge density. However, the requirement that each
pair of vertices be connected is too strict. Recently tech-
niques have been developed where cliques are considered as
the starting communities to be merged based on modularity
or other metrics [9], [10]. However note that the task of
finding cliques itself is computationally expensive [11]. To
tackle this problem, heuristics have been developed to obtain
sub-optimal solution in a reasonable time.

In this paper, we present a new approach for fast and
efficient community detection. We propose a clique guided
community detection framework that consists of two phases.
In the first phase, the framework finds disjoint cliques. For
the first phase, we develop an algorithm named MACH
(Maximum Clique Heuristic), which is a new approach to
compute disjoint cliques using heuristic-based branch-and-
bound technique. The idea is that MACH first computes
the maximum clique size for each vertex and maintains the
vertex order based on decreasing clique size. The heuristic
bounds the graph traversal from a vertex to strictly fewer
neighbors (whose degree is greater than or equal to the size
of the maximum clique already computed). Pre-computing
the graph traversal order is another strategy that reduces
the search space for our algorithm as it avoids repeated
exploration of the same vertices. It then explores the graph
based on the vertex order to find all disjoint cliques (i.e.
initial communities). In the second phase, the cliques from
the first phase are used to guide the merging of individual
vertices until a good quality solution is obtained.

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE 500

Our approach, though similar to approach in [12], differs
in both phases. In the first phase, Yan and Gregory [12] use
approximate BronKerbosch, which is an existing maximal
clique algorithm. In the second phase, the start up cost that
is required to setup the initial communities for our approach
does not require additional time and space. We also compare
our MACH algorithm to a modified version of Tomita et el
[13] called TOMD (Tomita Disjoint) to find all maximal
disjoint cliques. From our experiments, we find that TOMD
provides significant improvement in runtime over technique
propsed in [12] for finding all disjoint cliques. However, our
MACH approach achieves significantly faster execution time
over TOMD. Our results on both random and real-world
datasets show that MACH with guided merging technique
has a higher qualitiy solution and is better or equivalent in
runtime when compared to the previous approaches in [6],
[7], [12], [14], [15].

II. RELATED WORK

In recent years, many new algorithms for detecting com-
munities have been proposed, most of which belong to one
of the two broad categories, divisive and agglomerative.
Divisive algorithms initially assume that all vertices belong
to one community and then the algorithms keep partitioning
the vertices until they obtain the desired communities. For
example in the divisive approaches proposed in [16], [17],
[18], the vertices or edges with the largest betweenness (the
number of shortest paths passing through the edge or vertex)
are removed one by one to split the graph into communities
hierarchically. Agglomerative algorithms [5], [19], [20] on
the other hand starts assuming each vertex as a singleton
communtiy and then the algorithms iteratively merge the
communities until they obtain meaningful communities.

Many of these community detection algorithms use an
well-known metric called modularity during the division or
the merging. Modularity is a quantitative measure of the
quality of a partition of a graph. More formally, it is the frac-
tion of edges that fall within the given communities minus
the expected fraction of edges if the edges were distributed at
random [5]. The formulation of modularity reflects that each
community should have a high number of intra-community
edges and few inter-community edges. It can be used to
compare the quality of different partitioning algorithms of a
graph. The formula for modularity is provided in Equation
1. The term eii denotes the fraction of edges that fall within
community i. Then

∑
i eii is the total fraction of edges that

fall within all communities and the term ai =
∑

j eij is the
proportion of links belonging to community i.

Q(C) =
∑
i

(eii − a2
i) (1)

The original algorithm proposed by Newman [5] uses
a greedy approach in which the algorithm starts with n
communities corresponding to the vertices of G i.e., each

community starts with a singleton member. The algorithm
repeatedly chooses the community pair i and j with the
largest contribution to Q (maximum ∆Q) and merges them
into a new community. Since the number of community pairs
decreases monotonically, the algorithm eventually stops
when maximum modularity is reached. It has a runtime
complexity of O((m+ n)n) or O(n2) for sparse networks.

In [6] Clauset, Newman, and Moore (CNM) further im-
proved the complexity to O(md log n) where d is depth of
the dendrogram by demonstrating that the contribution, ∆Q
can be easily computed using the previous iteration, thereby
avoiding recalculations. However, CNM computation is sig-
nificantly affected when merging communities of unbalanced
sizes, which yields very unbalanced dendrograms. In such
cases, the relation d ∼ log n does not hold anymore and
hence the runtime complexity deteriorates from O(n log2 n)
to O(n2 log n) for sparse graphs [15].

Dannon, Diaz and Arenaz (DDA) [14] proposed a nor-
malization to ∆Q so as to treat communities of different
sizes as equal by diving ∆Q by the number of links (ki).
DDA improves CNM by improving the modularity while
retaining its speed. Note that DDA applies the normalization
to all community pairs (i,j) and the CNM step is mod-
ified to choose a pair(i,j) with with maxij(∆Q

∗
ij) where

∆Q∗ij = ∆Q
ki

. Note that the real value of Q is calculated at
each step using the original ∆Q. Wakita and Tsurumi (WT)
[15] proposed some modifications to accelerate CNM with
different data structures and consolidation-ratio heuristic to
avoid unbalanced community merges, but encountered a
decrease in modularity in their fastest algorithm (called
HE). In our analysis we compare our approach to HE’
implementation as it provides the best modularity but has
higher cost compared to HE.

Yuta and Leon [7] further proposed an improvement to
CNM model. They introduced their own data structures and
acceleration techniques namely LY, DDA-M1 and DDA-M2
to further improve quality and speed of CNM. LY applies
factor that penalizes communities that have large number of
interconnected communities (denoted as nic) and is applied
to the to community pair(i,j) with maxij∆Qij . DDA-M1
and DDA-M2 are extensions to DDA but unlike DDA, the
factors keep the symmetry by taking min(ki, kj).

Based on the experiments and discussion in [7], LY
and DDA-M1 behave differently based on the level of
randomness of a network. DDA-M1 is slower for larger
level of randomness as it prioritizes the pair of communities
that has lower degree regardless of the degree of the pair,
which may be larger in randomized networks and therefore
impacting the speed. Based on the experiments, LY on
average produces lower modularity and DDA-M2 is found
to be in between LY and DDA-M1.

However, having maximum modularity does not neces-
sarily reflect that a network has a community structure [4],
[8]. In particular, it remains true even if the communities

501

are cliques [8]. These hill climbing algorithms could give
poor results in some cases, where some communities tend
to become excessively large [12]. One way to overcome this
problem is by detecting communities at a much finer scale by
recursively applying the algorithm on sub-networks that are
eligible for further partitioning have been proposed in [21],
[22]. Another approach is by forming initial communities
[23], [24], [25]. An alternate approach is considering the
cliques of a graph as the starting communities and then
merge them based on modularity or other metrics. Several
such algorithms exists such as CFinder [9], [26] and Greedy
Clique Expansion (GCE) [27], but these techniques are only
applicable to identify overlapping communities.

Yan and Gregory [12] presents a general clique based
community detection algorithm called CliqueMod (CM). It
consists of two phases: (i) divide the graph into a set of dis-
joint cliques (intial communities) and (ii) repeatedly merge
the communities until maximum modularity is reached. The
second phase is similar to the merging used in the CNM
algorithm. In the first phase, [12] used two variations of
clique algorithms: Konc and Janezic (KJ) algorithm [28]
and Bron and Kerbosch (BK) algorithm [29]. These two
variations of the CliqueMod (CM) algorithms are denoted
by CM-KJ and CM-BK. KJ finds a maximum clique using
graph-coloring techniques. CM-KJ thus finds all maximum
cliques, by repeatedly calling KJ with the optimization that
the size of the last clique found is used as and upper
bound. CM-BK finds all approximately maximal disjoint
cliques. Like BK, it repeatedly expands candidate cliques
until they are maximal. But once a maximal clique is found,
it outputs it immediately and deletes vertices that belong
to current maximal clique instead of exploring alternatives.
Both algorithms have been compared with the existing well
known algorithms including WT [15], and CNM [6] algo-
rithms. [12] established that CM-KJ and CM-BK algorithms
outperform all these algorithms both in speed and quality
(modularity). Additionally, CM-BK is faster than CM-KJ
as the time complexity of CM-KJ is exponential. CM-BK
in the worst case has O(n2) complexity. WT is found to
be competitive with the CM algorithms in terms of speed,
but consistently gives lower modularity. Similar to CM
algorithm, our proposed framework uses a 2-phase approach,
but differs in both phases. In the first phase, we develop a
new technique to find all disjoint cliques called MACH. In
the second phase, the key difference is that we still start with
singleton communities and then use the cliques to guide the
initial merging process. This is advantageous because we do
not incur the overhead of formulating initial communities
with cliques.

For comparison purposes, we have also implemented a
modified version of the BK algorithm developed by Tomita
et al [13]. It uses a specific pivoting policy to cut computa-
tional branches. Instead of iterating at each expansion on the
set P (set containing possible candidates), it choses a pivot.

The results will have to contain either the pivot or one of
its non-neighbors, since if none of the non-neighbors of the
pivot is included, then we can add the pivot itself to the
result. Hence we can avoid iterating on the neighbors of the
pivot at this step. Like BK in [12], for disjoint cliques, once a
maximal clique is found, it gets outputted immediately and
vertices that belong to current maximal clique are deleted
instead of exploring alternatives. Throughout the paper, we
use BKD and TOMD to denote Bron and Kerbosch and
Tomita algorithms, which extract approximately maximal
disjoint cliques.

III. ALGORITHM

In the following subsections, we present our framework
for community detection using clique guided merging. Our
framework consists of two phases. In the first phase all
disjoint cliques are extracted from the network. In the second
phase we start to merge the individual vertices using the
cliques to guide the merging process.

Let n be the number of vertices of the input graph
G = (V,E) where V = {v1, v2, . . . , vn} and E denote the
set of vertices and edges, respectively. The set of vertices
adjacent to a vertex vi, the set of its neighbors, is denoted
by N(vi) and the cardinality of N(vi), its degree, is denoted
by d(vi). The community detection problem is typically
formulated as finding a partition C = {c1, . . . , ck} of G,
where ∀i, ci ⊆ V and ∀i,j , ci ∩ cj = ∅, which gives non-
overlapping communities. C is also known as a clustering of
G. We use k to denote the number of resulting communities,
that is, |C| = k.

A. Maximum Clique Heuristic (MACH) Algorithm

To discover all cliques, we use a heuristic based branch-
and-bound technique to determine a maximum clique.
MACH first computes the maximum clique size for each
vertex containing itself and stores them in a priority-queue,
and then iterates over the priority-queue to find all disjoint
cliques. The cliques are used to guide the merging process
in next phase.

A clique in an undirected graph is a subset of vertices
in which every pair of vertices are adjacent to each other.
The maximum clique problem is to find the clique of largest
possible size in a given graph. The maximum clique problem
is NP-Hard [11]. Therefore, most practical applications
employ some form of branch-and-bound approach [30].
While branching systematically searches for all candidate
solutions, bounding (also known as pruning) discards fruit-
less candidates based on a previously computed bound.
An example of a simple and effective branch-and-bound
algorithm for the maximum clique problem is presented in
[30].

502

In [31], we proposed an effective branch-and-bound algo-
rithm based on degree of a vertex. To obtain the maximum
clique in a graph, our approach computes the largest clique
containing each vertex and the largest among these is picked.
The main ingredient of our algorithm is that during the
search for the largest clique containing a given vertex,
vertices that cannot form cliques larger than the current
maximum clique are pruned, in a hierarchical fashion. This
reduces the search space and thus improves the performance.
We also introduced a heuristic approach, which speeds up
this process by examining only a subset of the relevant
cliques making the algorithm orders of magnitude faster than
the exact algorithm, while providing optimal or near-optimal
solutions.

A naı̈ve way to extract all disjoint cliques would be by
extracting the largest clique at every iteration, however, it
can repeat traversal of vertices that have not been elimi-
nated from the graph and that are not part larger cliques.
This approach would be very expensive for large graphs.
Therefore MACH’s main contribution is that it determines
the largest clique size for each vertex in graph G and stores
this information in a priority-queue Q where the priority is
the vertex with the largest clique. To get all disjoint cliques,
MACH iterates through the running graph G′ in order of
the vertices in the priority-queue Q. This exploration order
significantly prunes the search space and hence provides a
significant time reduction in finding all disjoint cliques.

Algorithm 1 Heuristic for finding the maximum clique in a graph.
Input: Graph G = (V,E). Output: Set of Vertices that form maximum
clique [31].

1: procedure MAXCLIQUEHEU(G = (V,E))
2: for i : 1 to n do
3: if d(vi) >= max then . Pruning 1
4: U ← ∅
5: for each vj ∈ N(vi) do
6: if d(vj) >= max then . Pruning 2
7: U ← U ∪ {vj}
8: CLIQUEHEU(G,U, 1)

– Subroutine
1: procedure CLIQUEHEU(G = (V,E), U , size)
2: if U = ∅ then
3: if size > max then
4: max← size
5: return
6: Select a vertex u ∈ U of maximum degree in G
7: U ← U \ {u}
8: N ′(u) := {w|w ∈ N(u) ∧ d(w) > max} . Pruning 3
9: CLIQUEHEU(G,U ∩N ′(u), size + 1)

The branch-and-bound heuristic that assists MACH is
presented in Algorithm 1. The main routine MAXCLIQUE-
HUE considers only the neighbors with maximum degree at
each step instead of recursively considering all neighbors.
The routine thus generates for each vertex vi ∈ V a set

U ⊆ N(vi) (neighbors of vi that survive pruning) and calls
the subroutine CLIQUEHEU on U . Since we are looking
for the largest clique containing each vertex, the maximum
degree vertex is more likely to be a member of the largest
clique compared to the other vertices. The effect of choosing
the maximum degree vertex as opposed to any random vertex
is discussed in detail in [31]. Throughout the algorithm, the
variable max stores the size of the maximum clique found
so far. Variable size indicates the size of the clique found
at any point through the recursion. Since we start with a
clique of just one vertex, the value of size is set to be 1
initially when the subroutine CLIQUEHEU is called (Line
8 of Algorithm 1), from MAXCLIQUEHUE. Our algorithm
consists of several pruning steps to filter our vertices. The
most significant of these pruning steps is on Line 8 of
subroutine CLIQUEHEU, which further chooses only those
neighbors of the max degree vertex whose degree is greater
than or equal to the current max clique.

Algorithm 2 MACH(G): Disjoint Clique Extraction Algo-
rithms Input: Graph G = (V,E). Output: Cliques Clq list =

{c1, c2, . . . , ck} and |Clq list| denotes the number of cliques.
1: procedure MACH(G = (V,E))
2: /*Phase I - Find all cliques*/
3: Declare Clq Size[n] as Integer
4: Initialize Clq Size[i]← 0 for all i
5: for each vi in G do
6: for each vj ∈ N(vi) do
7: if d(vj) >= Clq Size[vi] then
8: U ← U ∪ {vj}
9: clq ← CliqueHeu(G,U, 1)

10: for each vi in clq do
11: if Clq Size[vi] < |clq|+ 1 then
12: Clq Size[vi]← |clq|+ 1

13: Q← ∅
14: for ci in Clq Size do
15: Q.add(ci, |ci|)
16: G′ ← G
17: while (Q 6= ∅) do
18: {v, cs} ← Q.pop()
19: if (v /∈ G′) then
20: continue
21: clq ←MaxCliqueHeu2(G′, v, cs, Clq Size)
22: clq ← clq ∪ {v}
23: Mark all vertices ci in clq as processed
24: Clq list← Clq list ∪ clq
25: G′ ← UpdateGraph(G′, clq)

26: return Clq list

Algorithm 2 provides the psuedocode of MACH. The
algorithm starts by initializing an array Clq Size of size
n. To determine the clique size per vertex (Line 5-12),
the algorithm employs similar approach as discussed in
Algorithm 1, except that it does not iterate over the entire
graph but just for the vertex of interest. For each vertex, a
set of neighbors U is chosen. The criteria for a neighbor, vj ,
of vertex vi to be part of U is based on whether its degree is

503

greater than equal to vi’s current clique size (Line 7). With
the initial set U , the subroutine CLIQUEHEU is called and
hence for each vertex vi, a set vertices that form a clique
(clq) with vi is established. For each vertex vi ∈ clq, their
clique size(Clq Size[vi]) is updated if the vertex’s current
clique size is lower than the current clique size (|clq|+ 1).
This update allows each vertex to reflect the largest clique
it can be part.

Next, the vertices are added to the priority-queue Q and
ordered by their max clique size (Line 13-15). Next, we
explore the graph to extract cliques (Line 17-25) based on
the order of vertices in the priority-queue. Note this is a
significant pruning strategy as we now have a guide in
traversing the graph, and we will also not explore the same
vertices repeatedly. Because of this pruning step, we achieve
significantly faster execution time. To find all disjoint cliques
we still use our heuristic described in Algorithm 1 but
with few modifications. Algorithm 3 describes the modified
heuristic algorithm. MAXCLIQUEHEU2 explores the vertex
of interest (instead of going through all vertices). In the
pruning step, we only allow neighbors that have degree
greater than equal to cs − 1 where cs is clique size of the
interested vertex, and whose clique size is greater than or
equal to cs (Line 6 in Algorithm 3). The latter is similar
bounding principal [31] but instead of the current maximum
clique size, we use the size of the largest clique the interested
vertex can be part of. Similarly, in subroutine CLIQUEHEU2,
the pruning step uses cs (Line 9) instead of using max
(where max is the size of the current clique) to prune
the neighbors. Once the clique is determined, the graph is
updated (Line 25). Additionally we make sure that all the
vertices that form a clique are marked as processed so that
we can skip these vertices when they are popped from the
queue (Line 23).

After all cliques are found, Phase II of our approach is
performed. The singleton communities are merged based
on the cliques. This allows the greedy merge to start at a
good starting point. Once the initial clique communities are
established, the rest of the communities are established based
on greedy merge.

B. CLIQUE GUIDED COMMUNITY DETECTION

The greedy hill climbing algorithm proposed in [5] starts
with singleton communities. The algorithm then computes
change in modularity, denoted by ∆Q, for each pair of
communities, say ci and cj when they are merged. Then
the algorithm repeatedly chooses a pair of communities
with maximum ∆Q and joins them into a new community.
Note that due to this merge, ∆Q needs to be updated for
those pair communities connected to this pair. Also, this
merging reduces the number of communities monotonically
and therefore, algorithm continues as long as there two
communities to be merged or when ∆Q < 0.

Algorithm 3 Heuristic for finding the maximum clique in a graph.
Input: Graph G = (V,E). Output: Set of Vertices that form maximum
clique [31].

1: procedure MAXCLIQUEHEU2(G = (V,E) , vi, cs, Clq Size)
2: max← 0
3: U ← ∅
4: clq ← ∅
5: for each vj ∈ N(vi) do
6: if d(vj) >= cs− 1 ∧ Clq Size[vj] >= cs then
7: U ← U ∪ {vj}
8: clq ← CLIQUEHEU2(G,U,max, clq, 1, Clq Size[vi])
9: return clq

– Subroutine
1: procedure CLIQUEHEU2(G,U ,max,clq, size, cs, Clq Size)
2: maxPrev ← 0
3: if U = ∅ then
4: if size > max then
5: max← size
6: return
7: Select a vertex u ∈ U of maximum degree in G
8: U ← U \ {u}
9: N ′(u) := {w|w ∈ N(u) ∧ Clq Size[w] >= cs}

10: maxPrev = max
11: CLIQUEHEU2(G,U ∩N ′(u), size + 1, cs, Clq Size[u])
12: if max > maxPrev then
13: clq ← clq ∪ u

Algorithm 4 CGCD (G, Clq list) : Clique Guided Commu-
nity Detection Algorithm. Input: Graph G = (V,E), Clq list

denotes set of cliques from Phase I. Output: Communities C =

{c1, c2, . . . , ck}, where |C| = k, ∀i, ci is a resulting community.
1: procedure CGCD(G = (V,E) , Clq list)
2: procedure UPDATE∆Q()
3: for each pair of communities ci ∈ C, cj ∈ C do
4: Update change in modularity, ∆QC

ci,cj

5: procedure JOIN((C, ci, cj))
6: C ← (C \ {ci, cj}) ∪ {ci ∪ cj}

return C
7:
8: C ← v ∈ V |{v} . Singleton Communities
9: Clq list← DisjointCliques(G) . Phase I

10: for each clq ∈ Clq list do . Phase II : Guided merge
11: for each (ci, cj) ∈ clq do
12: JOIN(C, ci, cj)
13: UPDATE∆Q()
14: while (true) do . Phase II : Greedy merge
15: Find a pair ci ∈ C, cj ∈ C with max ∆Q
16: if max < 0 then
17: break
18: JOIN(C, ci, cj)
19: UPDATE∆Q()

Since we know that cliques are good starting point, we
modify the above approach to merge singleton communities
based on the Phase I findings (Clq list). Note that Phase I
can use any algorithm that computes all disjoint cliques,
therefore, denoted by the function DisjointCliques. Lines

504

10 - 13 in Algorithm 4 basically allows our algorithm to
get to a good starting point. After we find the C partitions
that contain cliques, we use the standard greedy strategy.
Additionally, we have also experimented with reduction
strategies that improve upon CNM (discussed in section
II) namely, WT(HE’), DDA, DDA-M1, DDA-M2 and LY.
Therefore, line 15 in Algorithm 4 is modified according to
the weighting specified by these algorithms.

C. Complexity Analysis

We now provide the time complexity for our framework.
In Phase I, for each vertex, algorithm MACH (Algorithm
2) first determines the maximum clique size by calling the
heuristic MAXCLIQUEHUE2 (Algorithm 3), possibly calling
the subroutine CLIQUEHEU2, which effectively is a loop
that runs until the set U ⊆ N(v) is empty. Clearly, |U |
is bounded by the max degree ∆ in the graph. For each
(recursive) iteration of MAXCLIQUEHUE2, we need to find
the maximum degree vertex in U, calculate N(u), and then
remove all of the vertices from U that aren’t in N ′. If we
assume that checking adjacency is O(1), then the runtime can
be bounded by O(∆). At each iteration at least one vertex u
is removed from U (though in the case of a complete graph,
only u might be removed). Therefore, the time complexity
of the heuristic is O(n ·∆2). To find all disjoint cliques, in
the worst case, the algorithm iterates through all the vertices
in the priority queue, thus complexity of finding all cliques
is O(n · log n · ∆2). Thus our proposed MACH approach
has polynomial complexity for extracting all disjoint cliques.
From our experiments, we find that our pruning strategies
make MACH significantly faster than TOMD and BKD.
In addition to the time complexity, our algorithm MACH
has space complexity, O(n) for storing the clique sizes,
and O(n) for priority-queue (each item in the queue store
the vertex id and its clique size). Thus, the overall space
complexity is linear.

As we adopt the framework and data structures from
[15], our community merge step will take O(k) time, where
k is the number of communities. If the merging is very
unbalanced in this phase, we could perform O(n) merges,
taking up to O(n2) time for this phase. While this time is
potentially longer than CNM’s complexity of O(md log n),
this worst case analysis doesn’t represent expected runtime
well, as can be seen in our empirical results.

IV. EXPERIMENTS AND RESULTS

In this section we evaluate our proposed approach. In the
first phase of the algorithm we deploy the BKD, TOMD
and MACH algorithms. In the second phase we use the
results from first phase to guide the initial merges and then
use the greedy hill-climbing approach from CNM. We also
incorporate strategies that improve quality and speed of

CNM, namely WT(HE’), DDA, DDA-M1, DDA-M2 and
LY for Phase II of our approach. We denote algorithms
with clique guided community detection framework as X+Y
where X implies the disjoint clique algorithm and Y implies
greedy hill climbing approach.

To perform our experiments, we adopt the C++ frame-
work1 from Wakita et al [15]. Besides the heuristics dis-
cussed in Section II , significant improvements were made
to CNM community detection framework described in [6].
The framework in [15], replaces the balanced binary trees
and max heap data structured with a doubly-linked list that
is sorted in the order of community ID. This framework ini-
tially came with implementation of CNM and WT heuristics
algorithm. We have modified this framework for our imple-
mentation and other modifications to incorporate DDA* and
LY. Our experiments are performed on a Intel R©Xeon R©2 E5-
2407, which is 2 x quad-core CPU running at 2.20 GHz and
memory size of 32 GB. The programs are compiled using
gcc with -O3 optimization.

A. Synthesized Networks

To generate more realistic model of real world graphs,
we use the LFR benchmark [32] for testing the community
detection algorithms. Using several parameters, the random
networks can be used to emulate real networks. The param-
eters are as follows 1) n : number of vertices 2) k : average
degree 3) γ : exponent of the power-law distribution for
degree 4) cs : minimum community size 5) β : exponent of
the power-law distribution for community sizes 6) µ : mixing
parameter, or the fraction of the edges a vertex shares with
other vertices in other communities.

To evaluate the quality of the algorithms, we use Adjusted
Rand Index [33], a metric to compare the community struc-
ture outputted by algorithm to that of the known community
structure generated by the benchmark. The measure of this
index is based on how the pairs of vertices have been
clustered. The Adjusted Rand Index is the corrected-for-
chance version of the Rand index. The score ranges from
-1 to 1, where a value of 1 indicates that the two solutions
perfectly match. More details can be found in [33]. We
first provide how the quality of partitioning is affected by
varying different network parameters. Note that all results
are averaged over 10 random networks generated while
varying one parameter.

Figure 1 shows the effect of varying the mixing parameter,
µ with the quality of the solution, as measured by the
Adjusted Rand Index (ARI). We compare our clique guided
technique with MACH in Phase I to non-clique guided tech-
niques such as CNM and its modifications (WT, LY, DDA,
DDA-M1, DDA-M2). Applying our clique-guided approach

1http://smartnova.net/ wakita/software/katsura-clustering-110613.zip
2Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in

the U.S. and/or other countries.

505

Figure 1. LFR Networks with n=1000, γ=2, β=1, k=10, cs=50, µ=0.1-0.6

Figure 2. LFR Networks with n=1000, γ=2, β=1, µ=0.3, cs=50, k=10-30

improves overall quality compared to different baselines i.e.
our MACH+X technique has higher quality than technique
X in every case for µ < 0.6. Our MACH+CNM (solid red
marker) approach has the highest quality for this synthetic
network configuration.

We chose µ=0.3 to further investigate change in other
parameters as the network is random enough to determine
how quality affected for our approach. In Figure 2 we
vary the average degree parameter, k in the range 10-30.
The maximum degree is set to 2.5*k. The quality for our
approach improves with increase in degree for all approaches
with MACH in Phase I except when CNM is used in Phase
II. WT, and LY approaches in Phase II, also show significant
improvement and have similar quality compared CNM in
Phase II. Figure 2, shows the effect of quality with varying
degree for BKD, MACH, and TOMD techniques in Phase
I and CNM, WT and LY techniques for Phase II. Since
our heuristic is based on maximum degree (discussed in
Section III), all approaches that use MACH improve in
quality and hence have similar or better quality compared to
employing BKD and TOMD in Phase I. Thus, if a network
has relatively high degree, our proposed disjoint clique
algorithm is able to extract good quality cliques, which in
turn produces a better quality partition. This is desirable

feature for community detection for social networks as the
average neighbor degree increases with the degree due to
associativity, which is due to the preference for a network’s
nodes to attach to others that are similar in some way [34].

To vary the distribution parameters, we chose the range 2-
3 for Degree Exponent parameter, γ and 1-2 for Community
Size exponent, β as suggested in [32]. We find that quality
for all approaches (greedy or clique guided) is unaffected.
Similarly, to vary the community size parameter, we chose
cs range 20-100. We find that all approaches except CNM
have lower quality as the community size increases. Our
approach MACH+CNM has lowest decrease in quality. The
baseline CNM actually improves in quality with increase in
community, which makes sense as to obtain a high modular-
ity value, it tends to group more vertices into one community
(to increase the first term in Equation 1). However, our
approach still has higher quality compared to their respective
baselines. For space, we do not include these figures.

Figure 3. LFR Networks with k=10, cs = 50, γ=2, β=1, µ=0.3

Now we present the execution time taken by the algo-
rithms. The network size, n (number of vertices in a graph) is
varied from 100,000 to 1,000,000 vertices with 948,432 and
4,758,415 respectively. The other parameters are as follows:
degree k=10, community size cs=50, γ=1, β=2, µ=0.4.
Figure 3 provides the time to find all disjoint cliques. MACH
clearly beats TOMD and BKD by two orders of magnitudes
for this set of synthetic graphs because our algorithm has
polynomial time complexity. TOMD is faster than BKD
due its pivoting strategy, however the TOMD is only twice
as fast compared to BKD. Figure 4 shows different clique
algorithms in Phase 1 and total time, i.e. the time to find
all disjoint cliques plus the time to merge to produce the
final communities for CNM (Figure 4(a)) and DDA (Figure
4(b)) for Phase II. Our MACH with guided merging strategy
is faster by up to an order of magnitude compared to the
baseline CNM. Our approach is fast compared to TOMD
and BKD, such that it does not add significant time to the
overall algorithm. This is especially the case for baselines
other than CNM. Thus, not only does MACH improves

506

(a) Total Time for CNM (b) Total Time for DDA

Figure 4. Total Time for LFR Networks with k=10, cs = 50, γ=2, β=1, µ=0.3

Table I
MODULARITY FOR FACEBOOK COMMUNITY BASED ON RICE UNIVERSITY UNGDERGRAD POPULATION

Ground Truth CNM MACH + CNM DDA-M1 MACH + DDA-M1 DDA-M2 MACH + DDA-M2
Modularity 0.384 0.274 0.345 0.336 0.347 0.338 0.347

ARI 1.000 0.261 0.659 0.488 0.641 0.431 0.641

quality of the partition, but is competitive in terms of speed
for baselines other than CNM (e.g. DDA in Figure 4(b)).

B. Real-World Networks

We experimented our new approach also on several real-
world large-scale networks. The structural information of the
networks can be found in Table II.

Table II
NETWORK INFORMATION OF REAL WORLD SOCIAL NETWORK GRAPHS

Network Vertices Edges Ref
fb-rice-undergrad 1,220 43,208 [35]

ca-AstroPh 18,772 396,160 [36]
amazon0302 262,111 1,234,877 [37]

dblp 317,080 1,049,866 [37]
Delicious 103,144 1,419,519 [38]
Flixster 2,523,386 9,197,338 [38]

LiveJournal 2,238,731 14,608,137 [38]

In Table I we provide community detection results for the
Facebook community extracted from Rice University under-
graduate population [35]. The data has natural communities
based on college id, year and major. We have extracted com-
munities based college ids and use this partition to denote as
ground truth. We show the Adjusted Rand Index (ARI) and
modularity results for MACH+Y where Y = CNM, DDA,
DDA-M1, DDA-M2. Note that modularity obtained for the
partition based on college ids is higher than modularity
obtained by all algorithms and hence ARI obtained will not

be closer to 100%. Our technique is able to recover com-
munities much more efficiently compared to their baselines.
As interpreted from our synthetic networks, MACH+CNM
is able to recover 65% of the communities, followed by
MACH+DDA and MACH+DDA-M1/M2, which recovers
64.6% and 64.1% of the communities respectively. Using
TOMD and BKD with any strategies in phase II, we achieve
the same ARI and modularity values. For example, when we
replace the MACH with TOMD or BKD and employing
CNM for Phase II, 58.9% of partitions are recovered and
modularity value is 0.322 for both.

In Table III, we provide the modularity (Q) the total exe-
cution time in seconds (T), speedup (S) over the respective
baseline for real world networks (other than the fb-rice-
undergrad dataset) with MACH as the Phase I algorithm and
DDA* and CNM algorithms in Phase II. We also provide
modularity and total execution time for baseline CNM as
well. We observe speedup ranging from 1.15x - 11.49x
(MACH+CNM technique has the highest speedup for the
Amazon dataset). The only abnormal case is the Delicious
dataset where baseline DDA-M1 does better compared to
our approach (MACH+DDA-M1). The same is true for
TOMD and BKD (result not shown). In terms of quality,
any approach in Phase II with MACH in phase I provides
higher compared to the baseline.

V. CONCLUSION

In this paper we have presented a fast and high quality
community detection algorithm that uses the notion of
clique guided merging. To discover all disjoint cliques, we
develop a new algorithm called MACH (Maximum Clique

507

Table III
MODULARITY AND EXECUTION TIME FOR REAL WORLD GRAPHS FOR MACH WITH CNM AND DDA* , AND BASELINE CNM

Q : Modularity, T : Time (seconds), S: Speedup w/ resp. to Baseline

MACH amazon ca-AstroPh dblp Delicious Flixster LiveJournal
with Q T(sec) S Q T(sec) S Q T(sec) S Q T(sec) S Q T(sec) S Q T(sec) S

DDA-M2 0.898 3.18 8.82 0.603 0.90 2.53 0.813 4.87 0.95 0.737 72.01 1.15 0.560 3642 1.59 0.618 7141 3.89
DDA-M1 0.900 5.85 4.89 0.608 1.08 1.83 0.812 26.98 1.26 0.726 1613.56 0.13 0.570 12371 1.61 0.600 31842.3 1.64

DDA 0.899 3.38 8.82 0.606 0.85 4.59 0.814 4.89 1.91 0.737 82.08 1.60 0.558 3568 1.78 0.620 7249 3.96
CNM 0.900 22.52 11.49 0.610 1.78 5.37 0.811 101.27 8.62 0.721 2258 1.66 0.572 93292 1.70 0.581 127884 2.15

Baseline CNM 0.813 258.72 1.0 0.511 9.53 1.0 0.733 873.43 1.0 0.673 3738 1.0 0.521 158477 1.0 0.532 275020 1.0

Heuristic). The main idea of our algorithm is that it first
computes disjoint cliques using heuristic-based branch-and-
bound technique and then merges singleton vertices initially
using cliques from the previous phase followed by greedy
merge to them to obtain the desired communities. Our pro-
posed MACH approach has polynomial complexity, which
is better than TOMD and BKD approaches. This is because
our technique employs several pruning strategies to drasti-
cally reduce the search space. Based on the experiments, we
conclude that MACH with clique guided merging approach
is better in quality and time (up to an order of magnitude
faster) compared to prior approaches such as [6], [7], [12],
[14], [15].

In the future, we intend to optimize the merging phase of
our algorithm using parallel techniques and advanced data
structures. In many real-world networks, vertices may belong
to more than one group, and such groups form overlapping
communities. Finding such overlapping community is not
supported by traditional community detection algorithms.
However, clique based algorithms is one way in which a
solution could possibly be obtained. Thus, we also would
like to investigate the feasibility of our algorithm to compute
overlapping communities.

VI. ACKNOWLEDGEMENT

This work is supported in part by the following grants:
NSF awards CCF-1029166, ACI-1144061, IIS-1343639, and
CCF-1409601; DOE awards DESC0007456.

REFERENCES

[1] M. E. J. Newman, “Modularity and community structure in
networks,” PNAS, vol. 103, no. 23, pp. 8577–8582, 2006.

[2] S. H. Strogatz, “Exploring complex networks,” Nature, vol.
410, pp. 268–276, 2001.

[3] S. Wasserman and K. Faust, Social Network Analysis. Cam-
bridge University Press, Cambridge, 1994.

[4] S. Fortunato, “Community detection in graphs,” Physics Re-
ports, vol. 486, no. 3-5, pp. 75–174, 2010.

[5] M. E. J. Newman, “Fast algorithm for detecting community
structure in networks,” Phys. Rev. E, vol. 69, no. 6, p. 066133,
2004.

[6] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys. Rev. E,
vol. 70, no. 6, p. 066111, 2004.

[7] Y. I. Leon-Suematsu and K. Yuta, “A framework for fast com-
munity extraction of large-scale networks,” in Proceedings of
the 17th International Conference on World Wide Web, ser.
WWW ’08, 2008, pp. 1215–1216.

[8] S. Fortunato and M. Barthelemy, “Resolution limit in com-
munity detection,” Proceedings of the National Academy of
Sciences, vol. 104, no. 1, p. 36, 2007.

[9] B. Adamcsek, G. Palla, I. Farkas, I. Derenyi, and T. Vicsek,
“Cfinder: locating cliques and overlapping modules in biolog-
ical networks,” Bioinformatics, vol. 22, no. 8, pp. 1021–1023,
2006.

[10] N. Du, B. Wu, X. Pei, B. Wang, and L. Xu, “Community
detection in large-scale social networks,” in Proceedings of
the 9th WebKDD and 1st SNA-KDD. ACM, 2007, pp. 16–
25.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1979.

[12] B. Yan and S. Gregory, “Detecting communities in networks
by merging cliques,” in Intelligent Computing and Intelligent
Systems, 2009. ICIS 2009. IEEE International Conference on,
vol. 1. IEEE, 2009, pp. 832–836.

[13] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case
time complexity for generating all maximal cliques and
computational experiments,” Theoretical Computer Science,
vol. 363, no. 1, pp. 28 – 42, 2006, computing
and Combinatorics 10th Annual International Conference
on Computing and Combinatorics (COCOON 2004).
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0304397506003586

[14] L. Danon, A. Dı́az-Guilera, and A. Arenas, “The effect of
size heterogeneity on community identification in complex
networks,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2006, no. 11, p. P11010, 2006.

[15] K. Wakita and T. Tsurumi, “Finding community structure in
mega-scale social networks:[extended abstract],” in Proceed-
ings of the 16th international conference on World Wide Web.
ACM, 2007, pp. 1275–1276.

[16] M. Girvan and M. E. J. Newman, “Community structure in
social and biological networks,” PNAS, vol. 99, no. 12, pp.
7821–7826, 2002.

[17] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, p. 026113, 2004.

[18] J. Pinney and D. Westhead, “Betweenness-based decomposi-
tion methods for social and biological networks,” Interdisci-
plinary Statistics and Bioinformatics, pp. 87–90, 2007.

[19] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi, “Defining and identifying communities in net-
works,” PNAS, vol. 101, pp. 2568–2663, 2004.

508

[20] F. Wu and B. A. Huberman, “Finding communities in linear
time: A physics approach,” The European Physical Journal
B, vol. 38, pp. 331–338, 2004.

[21] J. Ruan and W. Zhang, “Identifying network communities
with a high resolution,” Physical Review E, vol. 77, no. 1, p.
016104, 2008.

[22] D. Palsetia, M. M. A. Patwary, A. Agrawal, and A. N.
Choudhary, “Excavating social circles via user interests,”
Social Netw. Analys. Mining, vol. 4, no. 1, 2014.

[23] J. M. Pujol, J. Béjar, and J. Delgado, “Clustering algorithm for
determining community structure in large networks,” Physical
Review E, vol. 74, no. 1, p. 016107, 2006.

[24] H. Du, M. W. Feldman, S. Li, and X. Jin, “An algorithm for
detecting community structure of social networks based on
prior knowledge and modularity,” Complexity, vol. 12, no. 3,
pp. 53–60, 2007.

[25] H. Zardi and L. B. Romdhane, “An o(n2) algorithm
for detecting communities of unbalanced sizes in large
scale social networks,” Knowledge-Based Systems, vol. 37,
no. 0, pp. 19 – 36, 2013. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0950705112001736

[26] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society,” Nature, vol. 435, no. 7043, pp. 814–818,
2005.

[27] C. Lee, F. Reid, A. McDaid, and N. Hurley, “Detecting
highly overlapping community structure by greedy clique
expansion,” arXiv preprint arXiv:1002.1827, 2010.

[28] J. Konc and D. Janezic, “An improved branch and bound
algorithm for the maximum clique problem,” proteins, vol. 4,
p. 5, 2007.

[29] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques
of an undirected graph,” Communications of the ACM, vol. 16,
no. 9, pp. 575–577, 1973.

[30] R. Carraghan and P. Pardalos, “An exact algorithm for the
maximum clique problem,” Oper. Res. Lett., vol. 9, pp. 375–
382, 1990.

[31] B. Pattabiraman, M. M. A. Patwary, A. H. Gebremedhin,
W. keng Liao, and A. N. Choudhary, “Fast algorithms for the
maximum clique problem on massive sparse graphs,” CoRR,
vol. abs/1209.5818, 2012.

[32] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark
graphs for testing community detection algorithms.” Phys Rev
E Stat Nonlin Soft Matter Phys, vol. 78, no. 4 Pt 2, p. 046110,
2008.

[33] L. Hubert and P. Arabie, “Comparing partitions,” Journal of
Classification, vol. 2, no. 1, pp. 193–218, 1985. [Online].
Available: http://dx.doi.org/10.1007/BF01908075

[34] M. E. J. Newman, “Mixing patterns in networks,” Phys.
Rev. E, vol. 67, p. 026126, Feb 2003. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.67.026126

[35] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel,
“You are who you know: Inferring user profiles in Online So-
cial Networks,” in Proceedings of the 3rd ACM International
Conference of Web Search and Data Mining (WSDM’10),
New York, NY, February 2010.

[36] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” ACM Trans. Knowl.
Discov. Data, vol. 1, no. 1, Mar. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1217299.1217301

[37] J. Leskovec, L. A. Adamic, and B. A. Huberman,
“The dynamics of viral marketing,” ACM Trans. Web,
vol. 1, no. 1, May 2007. [Online]. Available: http:
//doi.acm.org/10.1145/1232722.1232727

[38] R. Zafarani and H. Liu, “Social computing data repository at
arizona state university, school of computing, informatics and
decision systems engineering,” 2009. [Online]. Available:
http://socialcomputing.asu.edu

509

