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Abstract—Additive Manufacturing (AM) is a manufacturing
paradigm that builds three-dimensional objects from a computer-
aided design model by successively adding material layer by layer.
AM has become very popular in the past decade due to its utility
for fast prototyping such as 3D printing as well as manufacturing
functional parts with complex geometries using processes such
as laser metal deposition that would be difficult to create using
traditional machining. As the process for creating an intricate
part for an expensive metal such as Titanium is prohibitive
with respect to cost, computational models are used to simulate
the behavior of AM processes before the experimental run.
However, as the simulations are computationally costly and time-
consuming for predicting multiscale multi-physics phenomena
in AM, physics-informed data-driven machine-learning systems
for predicting the behavior of AM processes are immensely
beneficial. Such models accelerate not only multiscale simulation
tools but also empower real-time control systems using in-situ
data. In this paper, we design and develop essential components of
a scientific framework for developing a data-driven model-based
real-time control system. Finite element methods are employed
for solving time-dependent heat equations and developing the
database. The proposed framework uses extremely randomized
trees - an ensemble of bagged decision trees as the regression
algorithm iteratively using temperatures of prior voxels and laser
information as inputs to predict temperatures of subsequent
voxels. The models achieve mean absolute percentage errors
below 1% for predicting temperature profiles for AM processes.
The code is made available for the research community at
https://github.com/paularindam/ml-iter-additive.

Index Terms—ensemble learning, additive manufacturing, spa-
tiotemporal modeling

I. INTRODUCTION

Additive Manufacturing (AM) is a modern manufacturing
approach in which digital 3D design data is used to build
parts by sequentially depositing layers of materials [1]. AM
techniques are becoming very popular compared to traditional
approaches because of their success in building complicated
designs, fast prototyping, and low-volume or one-of-a-kind
productions across many industries. Direct Metal Deposition
(DMD) [2] is an AM technology where various materials such
as steel or Titanium are used to develop the finished product.
Computational simulations are an essential part of the AM
design and optimization as they eliminate the trial and error

on expensive manufacturing processes. Finite element-based
multi-physics simulation models (FEM) [3], [4] are designed
to replicate the AM process before generating the required part
using AM. However, FEM-based simulations are computation-
ally costly and time-consuming. This leads to the motivation
to develop a predictive tool based on machine learning (ML)
that can instantaneously yield the simulation result instead of
performing expensive physics-based simulations.

A real-time AM control system can be useful in manufactur-
ing because it can control machines considering the changes
in the environment and the machine itself. This can be more
important in AM since most of the vital parameters in the
quality of final product change considerably during the build
process. The temperature field created while building a part
using AM is one of the critical components in determining
microstructure, porosity, and grain size. This system requires
a fast data-driven predictive model that can relate machine
parameters and replicate desired property behavior accurately
using ML techniques, without the need for computationally
expensive calculations. There has been an upsurge of interest
in the manufacturing community to connect and share data be-
tween geographically distributed facilities [5], [6]. We believe
a significant amount of experimental data will be available in
the near future for manufacturing processes, especially AM.
This urges the scientific community to develop suitable data-
driven tools and techniques.

In this work, we use Generalized Analysis for Multiscale
Multi-Physics Application (GAMMA) [7], [8], a FEM based
method for developing the database to train our model-based
control system. GAMMA is used to solve the time-dependent
heat equation and simulate the manufacturing DMD process
at the part scale. As the AM process is a spatiotemporal
phenomenon (since there is cooling and reheating depending
on whether and when a neighboring element is created), any
approach for predicting the temperature profile must include
the information about neighboring voxels as well as tempo-
ral information. In our proposed approach, we harness this
characteristic of the AM process during feature reconstruction
for our learning system. The input features for our proposed



system include the distance of a given voxel from the current
laser beam in the x, y and z axes, laser intensity, time at
which the point is created, the time elapsed, and tool speed.
One of the advantages of a real-time system is instead of
training a prior model ahead of time, one can be developed
in-situ. This is crucial for the versatility of ML-driven control
system, especially as factors such as laser path, laser speed,
and laser temperature can largely influence the temperature
profile in AM processes which in turn can predict presence of
residual stress [9]. Residual stress caused in AM is the critical
issue for fabricated metal parts since steep residual stress
gradients generate distortion which dramatically deteriorate
the functionality of the parts.

The proposed approach uses extremely randomized trees
(ERTs) [10], a tree-based ensemble algorithm to iteratively
train a model-based control system. A model is developed on
the features of first m voxels to predict the temperature of next
n voxels at the first stage, and then iteratively a new model
is developed at every subsequent stage using the ground-truth
temperature of m voxels as well as the predicted temperature
of the n voxels. The result of this work is a real-time iterative
supervised predictive model that achieves % mean absolute
error (% MAE) below 1% for predicting temperature profiles
for AM processes. The iterative model outperforms a tradi-
tional model that does not use predicted intermediate voxel
temperatures. The code is made available for the research
community at https://github.com/paularindam/ml-iter-additive.

The rest of the paper is organized as follows. Section II
provides a brief background of AM and DMD, and the FEM
code used for developing the database and some related works
for application of machine learning in materials informatics,
and specifically AM. In Section III, we explain the generation
and transformation of the dataset and describe the input
features and voxel categories. We describe the motivation and
methodology and development of the dataset in Section IV.
We discuss the experimental settings and results in Section V,
and finally in Section VI, we summarize our conclusions with
some future directions.

II. BACKGROUND AND RELATED WORKS

In this section, we present a background of AM and DMD,
and the FEM code used for developing the database and
some related works to the application of machine learning in
materials informatics.

A. Additive Manufacturing: Overview

The initial development process for creating a three-
dimensional object using computer-aided design (CAD) for
a layer by layer deposition was realized due to a desire
for rapid prototyping [11], [12]. It reduced the time-cycle
of realizing an initial prototype after the conception of de-
sign by engineers [13]. Among the major advances that this
process presented to product development are the time and
cost reduction, and the shortening of the product development
cycle. Further, it led to the possibility of creating shapes that

were difficult to be machined using traditional manufacturing
processes.

AM can appreciably reduce material waste, decrease the
amount of inventory, and reduce the number of distinct parts
needed for an assembly [14], [15]. Further, AM can reduce
the number of steps in a production process, both in the case
of tool making as well as direct manufacturing, reducing the
need for manual assembly [16]. Besides, AM processes can
significantly reduce the total amount of tooling required and its
impact on the cost [17]. AM parts can be manufactured in an
almost final state, thus reducing the amount of connecting parts
required to put them together and decreasing part count [18].

B. Direct Metal Deposition
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Fig. 1. Additive Manufacturing using Direct Metal Deposition (DMD)
process. The laser source provides the heat while the powder stream provides
the metal for the deposition. The metal powder gets melted by the heat
from the laser beam and deposited on the substrate. The laser scans over
the substrate in a zigzag motion.

DMD [19] is an additive manufacturing technology using
a laser to melt metallic powder. DMD processes can produce
fully dense, functional metal parts directly from CAD data by
depositing metal powders using laser melting and a patented
closed-loop control system to maintain dimensional accuracy
and material integrity [20]. Heat is generated as a focused
heat source such as a laser to sufficiently melt the surface
of the substrate and creates a melt pool. A focused powder
stream provides material for the melt pool using to form a
raised portion of the material. The nozzle is moved over the
substrate using a computer-controlled positioning system to
create the desired geometry. This is illustrated in Figures 1

https://github.com/paularindam/ml-iter-additive


Fig. 2. The simulated metal surface built using DMD is depicted in the
figures. The first figure demonstrates the metal created using DMD on the
substrate with the temperature scale. The color of the metal surface indicates
the spatio-temporal characteristic of the DMD process.

and 2 that depict the DMD process and laser motion, and the
metal surface built across layers, respectively.

C. Finite Element Method Solver

Finite element method (FEM) analysis is a numerical ap-
proach for solving differential equations over complex geome-
tries with broad applications in simulating structural properties
and fluid dynamics [21]. In this method, first the domain is
discretized into small elements, and then a system of equations
is assembled over all the elements. GAMMA is a FEM frame-
work that solves transient heat transfer equations for metal
powder-based AM processes such as Directed Energy Depo-
sition (DED) [22] and Selective Laser Melting (SLM) [23].
Although an accurate thermal analysis of AM provides vital
information for determining microstructure evolution and me-
chanical performance of the part [4], [24], this kind of analysis
can take weeks or months of computing time and therefore
too computationally expensive for large-scale problems or
optimization purposes [25]. For a given set of processing
parameter inputs such as build geometry, laser power, and
scan speed, GAMMA calculates spatially-dependent thermal
histories within the part, such as temperature profiles and
maximum cooling rate. In this work, we use GAMMA to
generate the database to train our ensemble model.

D. Related Work

The idle pace of development and deployment of
new/improved materials has been deemed as the main bot-
tleneck in the innovation cycles of most emerging technolo-
gies [26]. Exploring and harnessing the association between
processing, structure, properties, and performance is a critical
aspect of new materials exploration [27]–[30]. Data-driven
techniques provide faster methods to know the important
properties of materials and to predict feasibility to synthesize
materials experimentally. This can expedite the research pro-
cess for new materials development. Many initiatives to com-
putationally assist materials discovery using ML techniques
have been undertaken [31]–[43].

There has been some limited work on the application
of ML techniques for AM processes. Mozaffar et al. [44]
proposed a data-driven approach to predict the thermal be-
havior in a directed energy deposition process for various
geometries using recurrent neural networks. The proposed
approach mapped the position of a point on the printing
surface, the time of deposition, the distance of the closest
cooling surface, and laser parameters with the thermal output.
Baturynska et al. [45] propounded a conceptual framework
for combining FEM and ML methods for optimization of
process parameters for powder bed fusion AM. Choy et
al. [46] designed a novel recurrent neural network architecture
3D recurrent reconstruction neural network (3D-R2N2) that
learned mapping from images of objects to their underlying
shapes in an AM simulation environment. Scime et al. [47]–
[49] developed supervised as well as unsupervised models for
detecting irregularities and flaws on the laser bed during the
AM process.

III. DATA

In this section, we explore the generation of the FEM
dataset, the transformation of the FEM dataset for machine
learning and description of input features and voxel categories.

A. Data Generation

The database for training the supervised model was devel-
oped using GAMMA by solving time-dependent heat equa-
tions and simulating the manufacturing process at the part
scale. It provides temperature and heat flux for every time
step for every element that is created during the AM process.
In this work, we utilize a GAMMA FEM simulation of 20
mm x 20 mm x 3 mm cuboidal dimensions. A mesh voxel
size of the edge length of 0.5 mm was used. This refers to
a cross-section of 40 x 40 voxels along the x (lateral) and
y (longitudinal) axes, and Therefore, there are 40 x 40 x 6
voxels in the simulation or 9600 voxels. The time taken for
the FEM simulation is about an hour.

The voxel edge length of 0.5 mm chosen in this work
is fairly coarse. However, the time taken for a simulation
exponentially increases as the mesh voxel size is made finer.
For instance, if we reduce the mesh size to half or 0.25 mm,
the FEM simulation would take 9 hours. Moreover, the number
of data points is in the order of O(n2) in terms of the voxels.
This is because the FEM simulation contains the temperature
history of a voxel from the time of creation to the end of
the simulation. Therefore, if one voxel is created at each
timestep, there will be n data points pertaining to the first
voxel created, n− 1 data points for the second voxels and so
on resulting in n∗(n+1)/2 data points. However, as the laser
deposition process creates multiple voxels at the same time-
instant, the number of total data points is significantly smaller
but nonetheless of the order of O(n2). This is because each
data point corresponds to a unique (x, y, z, t) where (x, y, z)
represents an individual voxel and t represents the timestep. In
this case, for the 9600 voxels, there are about 9.051652e+06
or about 9.05 million data points. It must be noted that each



timestep does not create the same number of voxels as the
simulation mimics the weaving (zigzag) motion of the laser
(illustrated in Figure 1(b)). More voxels are created during
the lateral movements as compared to when the laser motion
reverses.

We chose this simulation size by making a trade-off between
a very large simulation that would take days or weeks and
potentially create trillions of data points and a small simulation
that have too few data points to train and evaluate the proposed
approach rigorously.

B. Data Pre-processing

Figure 3(a) illustrates the overall temperature profile for the
DMD process at the end of the AM process. The index of the
point in the x-axis demonstrates the time of the creation of the
point. We can observe that the points with the lower index or
those created earlier slowly approach the room temperature.
However, the temperature of the points created later is much
higher. Although the overall temperature curve goes higher,
we can observe troughs and crests. The troughs are a result of
slow cooling of a point created by DMD, and the crest happens
when a nearby voxel gets created or heated up. Figure 3(b)
illustrates the temperature pattern across different layers are
similar, as well as across different laser intensities. Therefore,
for a higher laser intensity, we can observe a steeper curve. The
temperature curves indicate that the AM temperature profile
has spatiotemporal as well as other factors dependent on the
laser.

There are many features that impact the temperature of a
given voxel. The most important elements are the position
of the voxel (x,y,z) and the time elapsed after the creation
of a voxel. Instead of considering the absolute voxel (x,y,z)
position, we consider the distance in the x,y,z with the current
position of the laser. The temperature of a given voxel change
with time: cooling or heating. As time passes, the temperature
of a given voxel reduces. However, if a new voxel is created
proximal to the given voxel, this leads to the increase of the
temperature of the voxel. However, the temperature profile
fluctuates because of cooling and subsequent reheating due
to new material creation. Hence, the feature set for training
the supervised model that is agnostic of the temperature of
adjacent elements would not provide sufficient information for
a supervised learning algorithm to learn the AM process. The
temperature of each element is influenced by the temperature
of its neighboring elements. The following are the input
features used for building the proposed predictive model:

• Historical Features: Temperature of the given voxel at
t− 1 through t− 5 (if applicable)

• Spatio-Temporal Features: Temperature of neighboring
26 voxels at t− 1

• Spatial Features: relative x, y and z coordinates of the
current voxel with respect to the current position of the
laser

• Temporal Features: Time of voxel creation and time
elapsed since the creation of given voxel

(a) Temperature Profile of overall Additive Manufacturing Process at the end of
the FEM simulation

(b) Temperature Profile across different laser intensities and layers

Fig. 3. Temperature profiles for the DMD process. The temperatures are in
Kelvin (K) scale.

It is to be noted that the current position of the laser is
dependent on both the tool path as well as the tool speed of
the laser. Further, it is not necessary that all the input features
are available for all the data points. This is possible in case
of voxels at the edge that does not have neighboring voxels
or the absence of temperature history of the given voxel. If
the temperature of any feature is missing, we assign a dummy
value of -99 as most machine learning algorithms do not accept
missing values. One of the essential elements of selecting
features is selecting independent attributes. We attempt to build
a predictive model which only depends on elements which can
be reproducible independent of the dataset on which it has
been trained. Figure 4 depicts the cross-section of the AM-
surface to represent conduction of heat between neighboring
voxels.

C. Voxel Categories

We classify the voxels into five categories based on the
spatial location of the voxel. As the temperature profiles of
voxels surrounded by other voxels may differ from voxels at
the periphery, we wanted to investigate if the voxels at the
outer edge that have one or more missing neighboring voxels



Fig. 4. Illustration of the cross-section of the AM-surface to represent
conduction of heat on target voxel (labeled in red) from neighboring voxels.
However, as this is a 2D cross-section of a voxel, there are eight neighboring
voxels indicated by arrowheads. In three dimensions, a voxel is surrounded
by 26 neighboring voxels. The different colors of adjacent layers indicate
the relative temperature. Layers farther away from a newly created voxel
are comparatively cooler: green indicating cool, yellow indicating warm and
orange indicating hot.

are predicted worse than the interior voxels. This is because
our proposed model is dependent on the temperature of the
neighboring voxels. To characterize this, we categorize the
voxels into five categories.

• Interior: all neighboring voxels present
• Edge (Lateral): neighboring voxel on the x-axis missing
• Edge (Longitudinal): neighboring voxel on the y-axis

missing
• Edge (Vertical): neighboring voxel on the z-axis missing
• Edge (Diagonal): a neighboring voxel on the planar or

cubical diagonal is missing (but no lateral, longitudinal
or vertical neighbors are missing)

To avoid confusion, we avoid categorizing a single voxel
into multiple categories. If a voxel has a missing neighbor on
the x-axis, it is considered an edge (lateral) voxel even if it
has a missing y or z-axis neighbor. Similarly, if a voxel has
a missing neighbor on y-axis but no missing edge on the x-
axis, it is considered as an edge (longitudinal) even if there
is a missing z-axis neighbor. We decide in this fashion as we
can anticipate that newly created voxels might have a missing
voxel vertically above (z axis). Therefore, a voxel that has x
or y-axis neighbors missing are considered more distinct than
a missing z-axis neighbor. If a voxel has any neighbor missing
apart from the immediate adjacent neighbor along the x, y and
z axes, it is considered a diagonal edge voxel. It is noteworthy
that when we categorize a voxel, we do it at a specific time
t. This is because for a given newly created voxel at layer l
would be an edge(lateral) voxel at the time of creation, but
the layer l + 1 is deposited on top of this voxel, it would be
an interior voxel.

Fig. 5. The overall methodology of the proposed multi-stage iterative model
for predicting temperature profile of an additive process

IV. METHOD

The motivation and methodology of the proposed iterative
approach are outlined in this section. Figure 5 illustrates the
flow diagram of the proposed methodology.

A. Motivation for real-time system

Control systems in manufacturing can be divided into two
broad categories [50]. The first class is error-based control
systems in which changing parameters (parameters of manu-
facturing machine such as laser power, speed) are estimated
and based on the error values from the experiment, the initial
guess is corrected until the desired criteria is met. The second
class is model-based in which instead of estimating the initial
value of machine parameters, they will be determined by a
model.

While an error based control system can be useful in many
applications such as motion control, its application in AM
process parameter control is not common because a significant
deviation will ruin the part. Developing control manufacturing
processes in a way to achieve desired properties in the final
product is not a new attempt. It started from simple trial and
errors and gradually developed to complicated multiple-layer
feedback control systems to manipulate system settings for
real-time control. However, growing demand for controlling
more and more detailed and complicated properties of products
overpassed current science and many scientists tried to come
up with new methods to overcome this challenge. As a data-
driven methodology is more intuitive with a model-based
system, our proposed approach outlines such a control system
where the model is developed by training a machine learning
algorithm.

B. Iterative Ensemble Model

We explored across many regression algorithms for the
developing our models including linear regression (ordi-



TABLE I
COMPARISON OF PERFORMANCE FOR DIFFERENT MACHINE LEARNING

ALGORITHMS WITH CORRESPONDING R2 AND % MAE BASED ON
TRAINING ON THE FIRST 200 TIMESTEPS AND PREDICTING NEXT 300

TIMESTEPS. FOR EACH ALGORITHM, WE EXPLORE VARIOUS
HYPERPARAMETERS AND PRESENT THE BEST MODEL.

Algorithm R2 % MAE Training Time
(in seconds)

Linear Regression 0.23 25.08 0.52
Lasso Regression 0.21 23.11 0.53
Ridge Regression 0.38 17.28 0.56
ARIMA 0.15 29.39 0.67
Decision Trees 0.76 9.74 2.30
AdaBoost (20 trees) 0.89 9.40 9.89
AdaBoost (50 trees) 0.92 6.45 55.27
AdaBoost (200 trees) 0.94 3.21 202.58
XGBoost (20 trees) 0.71 13.25 15.65
XGBoost (50 trees) 0.96 2.59 30.92
XGBoost (200 trees) 0.97 2.01 105.67
Random Forest (20 trees) 0.96 1.66 9.88
Random Forest (50 trees) 0.97 1.44 26.68
Extra Trees (20 trees) 0.99 0.81 7.25
Extra Trees (50 trees) 0.99 0.21 21.32

nary least square), regularized linear regression: Lasso (L1-
regularization) and Ridge (L2-regularization), boosted and
bagged decision trees. We did not consider neural networks
for this framework. Although, a recurrent neural network
model trained on temporal features can be combined with a
feed-forward neural network trained on non-temporal features,
training deep neural networks would take hours to train which
is many order of magnitudes time more than the simulation
time for FEMs and not feasible for a real-time prediction
system where training has happened in-situ. Further, algo-
rithms based on autoregression and moving average such as
ARIMA [51] would not be able to capture spatial non-temporal
relationships. This is also evident from our benchmarking ex-
periment in Table I. We considered two metrics R2 (coefficient
of determination) and % MAE to evaluate the performance of
the models.

Algorithms using an ensemble of decision trees have
achieved state of the art results for various machine learn-
ing tasks [52]. As a non-parametric method like decision
trees performed better than parametric methods like linear
regression, we decided to explore both boosting and bagging
decision trees. Ensemble-based methods have been successful
in tackling problems with sequential components [53], [54].
While AdaBoost and XGBoost are tree-based ensemble boost-
ing algorithms in which each successive tree harnesses the
decision made by the previous tree, bagged algorithms like
Random Forest(RFs) and ERTs make a decision based on
the average of many different trees. For both boosting and
bagging, weak learners are utilized in the form of trees with
limited depth. Boosting models are sequential learners and
harnesses weak learners in sequence. As bagged models use
many weak tree-based learners in parallel, and hence can be
parallelized in the order of the number of processors. As the
time of training is essential for a real-time application, we

choose bagged decision trees and in particular, ERTs as they
outperform RFs for our experiments. Table I demonstrates the
performance of all the different algorithms trained on the first
200 time steps for predicting the next 300 time steps.

ERTs use an ensemble of decision trees in which a node
split is selected completely randomly with respect to both
variable index and variable splitting value. ERTs are very
good generalized learners and perform better in the presence
of noisy features. As compared to RFs, ERTs decrease the
variance and increase the bias by randomly selecting a node
split independent of the splitting value. Both RFs and ERTs
can utilize bootstrap aggregation wherein each weak learner
builds a model based on a random sample of observations from
the training data, with replacement. Bootstrap aggregation
helps in reducing variance in bagged ensembles.

Researchers have proposed rolling recursive or iterative au-
toregressive moving average modeling [55] for time series pre-
diction. In this work, we decided to explore iterative prediction
based on ERTs as we have a combination of historical as well
as spatiotemporal features. We propose an iterative model in
which an initial model is first developed based on the ground-
truth data. Then, the data points predicted by the initial model
is added to the ground-truth data to develop a model for the
next stage, which predicts the temperature profile of voxels for
future time-steps. We iteratively keep predicting future time-
steps using predicted temperature profiles from the previous
stage alongside ground-truth data. Figure 6 demonstrates the
iterative learning process of our proposed model.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental settings and
describe the results of the proposed system for predicting
temperature profiles in an AM process.

All experiments are carried out using NVIDIA DIGITS
DevBox with a Core i7-5930K 6 Core 3.5GHz desktop
processor, 64GB DDR4 RAM. The python VTK librarywas
used for processing and converting the voxel data. The data
preprocessing, as well as most of the regression models,
were implemented using Scikit-Learn [56]. The XGBoost
package [57] was utilized for creating the xgboost model. The
ARIMA model was trained from the statsmodels package [58].

For the iterative model, we performed extensive grid-search
across various sizes of time step intervals and found the best
results when the time step interval was equal to 20. For
the experiments, we evaluate with different combinations and
ratios of train and test splits. It is to be noted that instead
of splitting the train and test set based on a fixed fraction,
we divided the dataset based on the timesteps. For instance
in Table II, we use data points up to 1000, 800, 500 and
300 timesteps for training and then we predict the next 200,
400, 700, and 900 timesteps respectively. For instance, when
we use 800 timesteps for training and 400 for the test set,
it corresponds to about 4.34 million training data points and
4.71 million test data points.

Table III compares the timing and regression metrics for the
proposed iterative model with a standard non-iterative model
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Fig. 6. The proposed model using ERTs to predict temperature profiles for additive manufacturing processes. It is to be noted that the number of data-points
predicted at each step is not the same as the number of data-points for each voxel. This is because the model predicts not only the temperature of the newly
created voxels but also the temperature of the same voxels present in the training set at a later time-step.

TABLE II
COMPARISON OF COMBINATIONS OF TIME-STEPS USED FOR TRAINING AND TEST IN THE ITERATIVE MODEL (WITH CORRESPONDING R2 AND % MAE).

WE VARY THE NUMBER OF TIME-STEPS USED FOR TRAINING AND VALIDATION. THE TOTAL NUMBER OF TIME-STEPS - SUM OF THE TRAINING AND
VALIDATION TIME-STEPS ARE ALWAYS EQUAL TO 1200.

Training Test R2 % MAE
No. of timesteps No. of datapoints No. of timesteps No. of datapoints

(in millions) (in millions)
1000 6.75 200 2.30 0.992 0.289
800 4.34 400 4.71 0.989 0.679
500 1.72 700 7.33 0.982 1.329
300 0.63 900 8.42 0.972 1.848

TABLE III
COMPARISON OF PROPOSED ITERATIVE MODEL WITH A DIRECT MODEL THAT DIRECTLY PREDICTS THE TEMPERATURE OF SUBSEQUENT POINTS. WE

PRESENT THE TIME TAKEN AS WELL AS REGRESSION METRICS (CORRESPONDING R2 AND % MAE) FOR BOTH THE MODELS. THE INITIAL NUMBER OF
TIME-STEPS USED FOR TRAINING IS SET TO 200 AND THE SIZE OF THE ITERATION IS SET AS 20 TIME-STEPS. WE VARY THE NUMBER OF FUTURE

TIME-STEPS PREDICTED.

Iterations Future Iterative Model Standard Model
Timesteps
Predicted

Time R2 % MAE Time R2 % MAE
(in seconds) (in seconds)

10 200 68.69 0.989 0.675 0.293 0.921 5.39
20 400 137.08 0.978 1.444 0.308 0.906 5.71
30 600 210.04 0.976 1.489 0.317 0.876 6.07
40 800 278.61 0.971 1.903 0.480 0.861 6.55
50 1000 353.96 0.969 1.721 0.590 0.794 6.63

that directly predicts temperatures of future time steps varying
between 200 to 1000. This experimental design of selecting
training data based on timesteps instead of layers also helps
in generalizing the training set-up. For instance, the first 200
timesteps would represent a few completed layers and an
incomplete layer. The same intuition follows for the timesteps
in the test set. By training on different timesteps allows us
to generalize the framework to different shapes. Although the
direct model is much faster, the iterative model performs much
better than the direct model. For instance, while predicting
the temperature for 1000 future time steps, the iterative model
takes 353.96 seconds, the direct model requires 0.29 seconds.
However, we can observe that the % MAE value of the direct
model is much worse as compared to the iterative model.
While the iterative model has R2 between 0.97 and 0.99 and
% MAE between 0.68 to 1.73 %, the direct model has R2

between 0.79 and 0.92 and % MAE between 5.39 to 6.63 %.

The results in Table IV illustrates that interior and edge
(vertical) voxels comprise the bulk of the voxels (40.15% and
49.20%). This is anticipated as for any new layer created, none
of the voxels in the new layer would have a vertical neighbor
until a new layer is deposited. We also find that there is no

TABLE IV
COMPARISON OF R2 AND MEAN ABSOLUTE ERROR% ACROSS THE

DIFFERENT TYPES OF VOXEL

Type of voxel % of overall R2 % MAE
voxels

Interior 40.15 0.990 0.916
Edge (Lateral) 4.92 0.992 0.898
Edge (Longitudinal) 5.09 0.988 0.923
Edge (Vertical) 49.20 0.989 0.918
Edge (Diagonal) 0.63 0.988 0.926

TABLE V
COMPARISON OF NUMBER OF TREES/ESTIMATORS IN THE ENSEMBLE. AS
WE VARY THE NUMBER OF ESTIMATORS, WE PRESENT THE TRADE-OFF IN

THE FORM OF TIME AND R2 AND MEAN ABSOLUTE ERROR%. THE
NUMBER OF VOXELS PREDICTED IN EACH ITERATION IS 25, AND THERE

ARE 40 STEPS IN EACH ITERATION

No. of estimators Overall Time R2 % MAE
(in seconds)

4 154.5 0.964 2.14
10 257.5 0.970 1.38
20 493.2 0.975 1.29
50 902.4 0.981 1.03



Fig. 7. The feature importance for the top input features in the ensemble iterative approach

(a) 4 trees (b) 10 trees

(c) 20 trees (d) 50 trees

Fig. 8. Scatterplot for predicted vs. FEM temperatures. As the number of estimators/trees increase, the prediction accuracy improves.

significant difference in the prediction accuracy between the
type of voxels. This demonstrates further that our iterative
prediction model is able to learn the temperature profiles for
both edge voxels as well as interior voxels.

Table V depict how varying the number of estimators (trees,
in the case of ERTs) impacts the overall time (sum of the
training and prediction times). As expected, the % MAE
reduces and R2 increases as the number of estimators increase.
The variance of bagged ensembles reduce as more trees are
used to make the prediction, and MAE reduces with variance.
However, as the overall time increases with the number of
estimators, any deployed system would need to make a trade-
off between reducing the % MAE and the cost and time of
the available computing resources.

Figure 7 illustrates the impact of the temperature profiles of
the voxels immediately surrounding the target voxel for which
we are predicting the temperature profile. The voxels on the
x-axis have a more significant impact than the voxels on the y-
axis. This is expected as the direction of the laser is towards the
x-axis. Further, the importance of the T immediate (y + 1)
and T immediate (y − 1) features are equal and this is also
unsurprising as the laser path zig-zags on the y-axis during the
AM process (as illustrated in 2b) and is therefore agnostic of
the directionality in the y-axis. Figure 8 depicts the scatterplot
for the predicted vs. the ground-truth FEM voxel temperatures.
We can observe that the prediction accuracy increases with
the number of estimators. Further, we have fewer outliers
when the number of estimators is higher. This is expected



as bagged ensembles perform well based on crowd-sourcing
the prediction of weak learners which are likely to have a high
bias on their own but have low bias overall as an ensemble.

The primary motivation of this work was to develop an ML-
aided framework that can reduce or replace FEM simulations.
Hence, it was very important to have a model that has a
low MAE guarantee. ERTs are especially effective at creating
data-driven rules for handling different kinds of data points.
For a voxel that has been created long ago, such as in the
first layer, the temperature of the voxel would not change as
a new voxel is created at the topmost layer. However, the
temperature of a given voxel created few time steps or a
voxel created many time steps before but immediately below
a newly created voxel would be high. Not only are ERTs
fast to train, but they are also easy to interpret as we can
rank the features as well as visualize the different candidate
trees. Interpretability of algorithms is extremely important in
the scientific and engineering community.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents essential components of a scientific
framework for a model-based real-time AM control system.
The proposed approach utilizes extremely randomized trees -
an ensemble of bagged decision trees as the regression algo-
rithm iteratively using temperatures of prior voxels and laser
information as inputs to predict temperatures of subsequent
voxels and is able to achieve % MAE below 1% for predicting
temperature profiles. One of the advantages of a real-time
system is instead of training a prior model ahead of time, one
can be trained in-situ. It is crucial for the versatility of the
AM ML-driven simulation process, especially as factors such
as laser path, laser speed, and laser temperature can largely
influence the temperature profile.

In the future, we plan to explore the impact of voxel mesh
size on the prediction results across coarse to finer mesh. The
next goal of this framework is to be part of an interleaved
FEM-ML control system that harnesses the temperature profile
of the odd layer (Layer i) calculated using FEM to predict
the subsequent even layer (Layer i + 1). Layer i + 2 will
then be calculated using FEM simulation, and Layer i + 3
will be predicted. This can accelerate the speed of simulations
by nearly a factor of two, hopefully without impacting the
accuracy significantly. Although this work restricts itself to
temperature profile prediction for an AM process, the same
idea can be extended to related manufacturing processes such
as incremental forming [59]. In general, this work can be
extended to any phenomenon which utilizes partial differential
equation based modeling.
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