
Parallel Community Detection Algorithm
Using a Data Partitioning Strategy

with Pairwise Subdomain Duplication

Diana Palsetia1(B), William Hendrix2, Sunwoo Lee1, Ankit Agrawal1,
Wei-keng Liao1, and Alok Choudhary1

1 Northwestern University, Evanston, IL, USA
{drp925,slz839,ankitag,wkliao,choudhar}@eecs.northwestern.edu

2 University of South Florida, Tampa, FL, USA
whendrix@usf.edu

Abstract. Community detection is an important data clustering tech-
nique for studying graph structures. Many serial algorithms have been
developed and well studied in the literature. As the problem size grows,
the research attention has recently been turning to parallelizing the tech-
nique. However, the conventional parallelization strategies that divide
the problem domain into non-overlapping subdomains do not scale with
problem size and the number of processes. The main obstacle lies in
the fact that the graph algorithms often exhibit a high degree of data
dependency, which makes developing scalable parallel algorithms a great
challenge.

We present PMEP, a distributed-memory based parallel commu-
nity detection algorithm that adopts an unconventional data partitioning
strategy. PMEP divides a graph into subgraphs and assigns each pair of
subgraphs to one process. This method duplicates a portion of computa-
tional workload among processes in exchange for a significantly reduced
communication cost required in the later stages. After data partition-
ing, each process runs MEP on the assigned subgraph pair. MEP is a
community detection algorithm based on the idea of maximizing equi-
librium and purity. Our data partitioning method effectively simplifies
the communication required for combining the local results into a global
one and hence allows us to achieve better scalability over existing par-
allel algorithms without sacrificing the result quality. Our experimental
results show a speedup of 126.95 on 190 MPI processes for using syn-
thetic data sets and a speedup of 204.22 on 1225 processes for using a
real-world data set.

1 Introduction

Data clustering is a branch of data mining algorithms that organizes a collec-
tion of data points into groups based on their similarity [10]. Clustering graph
data, also known as community detection, usually refers to the identification of
vertex subsets (clusters) that have significantly more internal edges than exter-
nal ones [7]. Since the past few years, the volume of data has surpassed the
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 98–115, 2016.
DOI: 10.1007/978-3-319-41321-1 6



Parallel Community Detection Algorithm 99

capabilities of traditional sequential algorithms. For instance, CNM (Clauset,
Newman, Moore), a popular community detection algorithm based on maxi-
mum modularity takes approximately 18 hours to process a social network data
set containing 2,238,731 users and 14,608,137 connections [5,22]. Demands on
high-performance solutions have encouraged researchers to develop heuristic and
parallel algorithms for tackling large data problems.

Graph problems are data-driven, i.e., the memory access pattern in graph
algorithms is often irregular and highly dependent on the network structure.
Unlike spatial-based data clustering algorithms where the similarity of two data
points can be determined by their distance, most graph algorithms must tra-
verse the edges to calculate the affinity of a vertex to another. Thus, scalable
performance can be difficult to achieve for a parallel algorithm because the graph
structure is not known a priori [16]. In addition, graph clustering algorithms are
iterative in nature with a high degree of data dependency. While there have
been a few parallel graph clustering algorithms proposed recently, they suffer
from frequent process synchronization and their result quality is affected by the
processing order of vertex assignment to communities [1].

We propose a distributed-memory based parallel algorithm called PMEP
which parallelizes MEP, a community detection algorithm based on the idea of
maximizing equilibrium and purity of communities [23]. MEP has been demon-
strated to produce high quality of results for medium to large graphs. To par-
allelize MEP, we use a data partitioning strategy that duplicates a portion of
computational workload in exchange for a lower communication cost required
in the later stage when combing local results into a global one. This strategy is
motivated by the fact that graph problems are highly data dependent and it is
unlikely for a data partitioner to produce subgraphs that can be processed inde-
pendently on multiple processes without incurring a high cost of synchronization
and communication. We employ the Parallel METIS (ParMETIS) graph parti-
tioner [12,13] to break a graph into K subgraphs and assign each subgraph pair
of all possible pairwise combinations to one of P processes, where P =

(K
2

)
.

This pairwise subgraph partitioning approach assigns each subgraph to (K − 1)
processes, resulting in (K − 2) duplicated computation for processing the sub-
graph. Once received the assigned subgraph pairs, each process performs MEP
on local data independently from other processes. The partial clustering results
are then combined by resolving the conflicts on the community memberships
found across all processes, which requires only one synchronization.

We used both synthetic and real-world data to evaluate PMEP. Using a
synthetic data with 2 million vertices and 35.3 million edges, we achieved a
speedup of 126.95 when running PMEP on 190 MPI processes. We evaluated
the real-world data collected from Youtube using up to 1225 MPI processes and
achieved a speedup of 204.22. We also compare the scalability of PMEP against
the MPI implementation of parallel Louvain and observe that PMEP delivers a
better performance.



100 D. Palsetia et al.

2 Related Work

Fortunato gives a thorough overview of representative community detection algo-
rithms, of which modularity-based methods are the most popular [7]. Since maxi-
mizing the graph modularity was proven to be an NP-complete problem [4], there
have been several greedy approaches proposed [2,5,19]. Other than modularity-
based methods, Zardi et al. introduced MEP, an algorithm that aims to maximize
the equilibrium of communities [23]. This technique does not suffer from “resolu-
tion limit” problem that small communities are absorbed into large communities,
an issue commonly seen in most of the modularity-based methods.

Riedy et al. use maximal matching to solve the parallel modularity maximiza-
tion problem [17], based on CNM algorithm proposed by Clauset, Newman, and
Moore [5]. This parallel approach was implemented using OpenMP and achieved
a maximal speedup of 13× on a Cray-XMT shared-memory machine using 80
compute cores and uk-2002 graph data set [3]. Louvain is another popular algo-
rithm that addresses CNM drawbacks by using a hierarchical extraction process
[2]. The majority of parallel implementations for Louvain are using OpenMP
for shared-memory machines. Bhowmick and Srinivasan proposed a heuristic
to eliminate some computations that can be implicitly obtained by computing
the modularity [1]. Their OpenMP implementation creates a need for critical
sections, which eventually limits the scalability. Staudt and Meyerhenke [18]
parallelized the Louvain algorithm using an ensemble learning technique that
combines multiple base classifiers or weak classifiers to form a strong classifier,
as a preprocessing step. Lu et al. [15] use heuristics of coloring and vertex follow-
ing to parallelize the Louvain algorithm. All of the above approaches achieved
the maximal speedups of 8× on 32 threads.

Wickramaarachchi et al. [21] implemented a distributed memory parallel Lou-
vain algorithm using MPI and achieved the best speedup of 5× on 128 processes.
Similar to our approach, they also used a graph partitioning method. However,
they only parallelized the first stage of Louvain.

3 MEP Algorithm

The Maximizing Equilibrium and Purity algorithm (MEP) is a community detec-
tion algorithm that identifies a community based on its internal and external
connectivity [23]. Let G = (V,E) be an undirected graph, where V and E are
the sets of vertices and edges, respectively. MEP partitions G into k communities
C = {C1, . . . , Ck}, where ∀ i, Ci ⊆ V and ∀ i %= j, Ci ∩ Cj = ∅. In other words,
C1, . . . , Ck are non-overlapping communities. The computation of MEP consists
of two phases: region growing and community merging. The region growing
phase starts with each vertex as a community containing only itself and grows
the communities based on the connectivity of vertices. The communities identi-
fied in this phase are the locally optimal solutions, which will later be examined
and possibly combined in the merging phase.

In the rest of this paper, we refer N(v) as the set of vertices that have edges
directly connecting to vertex v. We denote d(v) as the cardinality (or degree)



Parallel Community Detection Algorithm 101

Algorithm 1. Region Growing Phase
Input: graph G = (V,E)
Output: Communities C = {C1, C2, . . . , Ck}
1: for each vi ∈ V do
2: Ci ← {vi} ! vertex starts out as a singleton
3: Create F , a free list, and add all vertices into F
4: Sort the vertices in F based on their degrees
5: while F #= ∅ do
6: Select v from F with the highest degree
7: Delete v from F
8: NFDN(v) ← 0
9: comp(v, 1 · · · N(v)) ← 0

10: for each u ∈ N(v) do
11: if u is free then
12: NFDN(v) ← NFDN(v) + 1
13: else
14: comp(v, Cu) ← comp(v, Cu) + 1
15: Find Cx whose comp(v, Cx) is the maximal
16: if NFDN(v) ≤ comp(v, Cx) then
17: Add v to Cx

18: else
19: RecuriveGrowth(N(v), Cv, F ) ! grows Cv

of v and d(v) = |N(v)|. A vertex v is referred as a free vertex, if it does not
belong to any community but itself. The number of free, direct neighbors of
vertex v is denoted as NFDN(v) = |{u|u ∈ N(v) ∧ u is free}|. A vertex is
said to be compatible to a community Ci if most of its direct neighbors are
in Ci. Equation 1 defines the compatibility of vertex v to community Ci. The
maximum compatibility of vertex v is the maximum among its compatibilities
to all communities and its NFDN, as shown in Eq. 2. A vertex is defined as pure
to a community Ci if and only if its compatibility to Ci is equal to its maximum
compatibility.

comp(v, Ci) = |{(v, u)|u ∈ N(v) ∧ u ∈ Ci}| (1)

compmax(v) = max{maxCi∈C comp(v, Ci),NFDN(v)} (2)

v is pure to Ci iff comp(v, Ci) = compmax(v) (3)

3.1 Region Growing Phase

Algorithm 1 presents the region growing phase. Initially, all vertices start out
as singleton communities and are marked as free in list F . The vertices in F
are then sorted by their degrees in an increasing order. The algorithm grows
communities starting from the vertex with the highest degree, v. If v’s maximal
compatibility is larger than NFDN(v), then v is added to the community that
has the maximal compatibility. Otherwise, the algorithm will grow Cv by adding



102 D. Palsetia et al.

direct neighbors of v if they are pure to Cv. For each newly added members, the
algorithm recursively adds pure neighbors of those members (indirect connected
neighbors of v) to grow Cv. The vertices are removed from the free list F once
they were added to a community. This process iterates until the direct neighbors
of v are exhausted, at which point the algorithm moves on to the vertex with
next highest degree in F . At the end, the region growing phase produces an
initial set of communities C = {C1, C2, . . . , Ck}.

The community initialization in line 2 of Algorithm1 takes O(|V |) time.
In line 4, we sort the vertices by their degree using a counting sort in O(|V |)
time. Starting from the vertex with the highest degree in F , we compute its
compatibilities to the communities to which its (non-free) direct neighbors belong
in lines 10–14. This takes O(d) time. In the worst case, the time becomes O(∆),
where ∆ as the maximum degree of a graph from the most connected vertex
in the graph. The next step is to check the purity by comparing the maximal
compatibility currently found against the number of free direct neighbors. If the
number of free direct neighbors is larger, then we need to recursively check the
purity for all the neighbors in line 19. The number of iterations to call procedure
RecursiveGrowth is O(d) and in the worst case O(∆). Finding the maximal
compatibility for each neighbor in line 3 takes O(|V |) time. Thus, each call to
RecursiveGrowth takes O(∆|V |) time, which makes the complexity of entire
recursive call O(∆2|V |). Assuming the while loop in line 5 repeats "1 times and
1 ≤ "1 ≤ |V |/2. The overall complexity of the region grow phase is O("1∆2|V |).
The worst case, "1 = |V |/2, happens when each vertex in the graph is connected
to only one other vertex, making the complexity become O(∆2|V |2). The best
case, "1 = 1, happens when every vertex is connected to every other vertex
i.e. the graph being a clique, which makes the complexity become O(∆2|V |).
Therefore, the complexity of region grow depends on how close the neighbors
of a vertex v form a clique. This quantity can be measured and is commonly
referred to the local clustering coefficient, denoted as lcc. A high average local
clustering coefficient alcc of a graph is an indicator of the presence of dense
subgraphs [20]. The alcc values range from 0 to 1. Value of "1 decreases as alcc
value approaches to 1 and increases as alcc approaches to 0.

The region-growing phase exhibits a high degree of data dependency, because
the processing of vertex v depends on the results of processing all the vertices
with higher degrees than v. However, this priori information is not known. Such a
high degree of data dependency exhibited in graph problems in general makes the
parallelization of any graph clustering algorithm an extremely challenging task.

3.2 Community Merge Phase

This phase first checks whether the initial communities found in the region grow-
ing phase are in equilibrium or not. The concept of equilibrium is simply the
definition of strong communities. A community is strong if it has more internal
connections (also defined as compactness) than the average external connections
(also defined as separation). Equation 4 defines compactness of a community as
the number of edges within the community and Eq. 5 defines separation of two



Parallel Community Detection Algorithm 103

Algorithm 2. Recursive Growth
Input: a set of vertices N , Community C, and free list F
Output: updated C and F
Procedure RecursiveGrowth(N, C, F )
1: newN ← ∅
2: for each u ∈ N do
3: Find compmax(u)
4: if comp(u, C) = compmax(u) then ! if u is pure
5: Add u to C and delete u from F
6: Add u to newN
7: if newN #= ∅ then
8: RecursiveGrowth(newN, C, F )

communities as the number of edges between them. Equation 6 defines the aver-
age separability of a community. Equation 7 describes the equilibrium condition
for a community, i.e. its average separation over all other communities is less
than its compactness. Communities that are not in equilibrium will be merged
to the community with which it has the highest separation. After the merge, the
overall purity of a community may decrease. In this case, the impure vertices
are moved to communities in which they are pure. Algorithm3 describes the
community merge phase.

compact(Ci) = |{(v, u)|(v, u) ∈ E, v ∈ Ci ∧ u ∈ Ci}| (4)

sep(Ci, Cj) = |{(v, u)|(v, u) ∈ E, v ∈ Ci ∧ u ∈ Cj}| (5)

sepavg(Ci) =
1

|C|

|C|∑

j=1∧j $=i

sep(Ci, Cj) (6)

sepavg(Ci) < compact(Ci) (7)

We denote |C ′| to be the number of communites after the region growing
phase. Algorithm 3 initially populates a |C ′| × |C ′| matrix with the pairwise
separability and calculates the compactness for each community in C ′. It iter-
ates through all the edges of the graph, which takes O(|E|) time. Finding the
maximum and average separability for each community, as well as updating the
matrix for any merged community (lines 8–12), take O(|C ′|) time, for a total of
O(|C ′|2) time per iteration of the while loop in line 5. The algorithm iterates
through all the vertices after each merge round for reassigning the membership
(lines 15–18), at a cost of O(|E|). While this while loop could potentially iter-
ate O(|C ′|) times, we find empirically that the number of iterations is a small
constant. If the number of iterations is "2, then the overall complexity for the
merge phase becomes O("2(|C ′|2 + |E|)). This phase of the MEP algorithm has
a high data dependency on the order of communities being processed, because
when a community pair is merged, all connections with those two communities
need to be updated.



104 D. Palsetia et al.

Algorithm 3. Community Merge Phase
Input: graph G = (V,E)
Input: initial communities C = {C1, C2, . . . , Ck}
Output: modified communities C = {C1, C2, . . . , Ck′}
1: for each Ci ∈ C do
2: Calculate compact(Ci)
3: for each Cj ∈ C ∧ j #= i do
4: Calculate sep(Ci, Cj)
5: while true do
6: merge count ← 0
7: for each Ci ∈ C do
8: if sepavg(Ci) > compact(Ci) then
9: Find Cj in C where sep(Ci, Cj) is maximal

10: Merge Ci and Cj into a new Ck′

11: Delete Ci and Cj from C
12: Update compact(Ck′) and sep(Ck′)
13: Add Ck′ to C
14: merge count ← merge count + 1
15: for each v in Ck′ do
16: if comp(v, Ck′) #= compmax(v) then
17: Find Ct in C that has compmax(v)
18: Add v to Ct and delete v from Ck′

19: if merge count = 0 then
20: break the while loop

4 Design and Implementation

Conventional parallelization strategies often consist of three steps: breaking the
problem domain into a set of subproblems, solving subproblems independently
and concurrently, and combining the subproblem solutions into a global solution
for the original problem instance. Following the same principle, our paralleliza-
tion divides a graph into subgraphs, detects communities within each subgraph
independently using MEP, and merges the local communities to get the global
solution. Contrary to the conventional approach that often seeks to generate
non-overlapped subproblems, we adopt a data partitioning method that dupli-
cates workload among processes. Our idea is motivated by the fact that graph
problems are highly data dependent and it is unlikely for a data partitioner to
produce subgraphs that can be processed independently without a high cost of
process synchronization and communication at a later stage. For instance, if a
non-overlapping partitioning is used, then the local results computed in each
process must be sent to all other processes for merging, because any subgraph
may have external edges connecting to all other subgraphs. Such a complete
all-to-all personalized communication may be required multiple times when the
algorithm traverses edges across multiple subgraphs to grow a community. Thus,
a high communication cost is inevitable for such an approach. Owing to this, we
design a strategy that duplicates a portion of computational workload among



Parallel Community Detection Algorithm 105

processes in exchange for a lower communication cost and hence heavier local
computational workload. Our parallel algorithm consists of the following phases:

4.1 Parallel Read

The input graph data is stored in a file of compressed storage format (CSR), a
widely used text format for storing graphs. In a CSR file, each line corresponds
to a vertex and its adjacency list (vertex IDs of direct neighbors). This format
is understood by ParMETIS [11], the data partitioner employed by our parallel
algorithm (discussed in the next section). To enable parallel I/O, we convert the
input file into a binary form but in the same data layout. During this off-line
conversion, we also calculate the file starting offsets of adjacent lists and store the
offsets in a separate file. In our parallel read phase, we partition vertices evenly
into disjoint blocks among all processes. At first, all processes read the total
number of vertices and edges to calculate the ranges of vertices to be assigned
to individual processes. Through the offset file, each process can perform a file
seek operation to jump to the file location containing the vertex subset to be
read. We use an MPI collective read to read the graph data in parallel. A low
cost is expected for this phase, as the I/O pattern from the above partitioning
method is known to be highly scalable on state-of-the-art parallel file systems.

4.2 Graph Partitioning

There are several graph partitioning techniques proposed in the literature [8]. A
high-quality partitioner can produce subgraphs that are well connected within
each subgraph and fewer edges between them. Our parallel algorithm employs the
Parallel METIS (ParMETIS) graph partitioner. METIS is a multilevel partition-
ing algorithm that produces high quality partitions by minimizing the resulting
inter-subdomain connectivity and enforcing contiguous partitions [12,13]. Imple-
mented using MPI, ParMETIS partitions a graph into K disjoint subgraphs in
parallel, given K as a user input parameter.

Given P compute processes, one naive parallelization strategy is to partition
a graph into P subgraphs and assign each subgraph to a process. However,
when using this approach, the external edges between two subgraphs cannot be
used to grow communities during the local computation, as processes possess no
vertex data on the remote subgraphs connected through those external edges.
To continue growing or merging the local communities, the intermediate results
must be distributed among processes, which could involve multiple levels of data
synchronization. Because a subgraph may have external edges connecting to all
other subgraphs, a high communication cost is anticipated if this naive approach
is used. To avoid such problem, we choose to duplicate a portion of computational
workload in exchange for a lower communication complexity.

Our data partitioning method assigns every possible combination of subgraph
pairs to a unique process. In this approach, the external edges between every two
subgraphs can be used by a process to grow the communities. Given a graph and
P processes, we call the ParMETIS library subroutine ParMETIS V3 PartKway to



106 D. Palsetia et al.

partition the graph into K subgraphs such that P =
(K

2

)
. A process is assigned all

edges in subgraphs ki, and kj , along with the edges between them. This strategy
requires the number of processes P to be

(K
2

)
. For instance, when K = 2 we have

one process, which is the serial case. When K = 10, our parallel program must
run on

(10
2

)
= 45 processes. This subgraph partitioning approach assigns each

subgraph to exactly (K − 1) processes, resulting in duplicated computation for
detecting communities within the subgraph. This is the cost we intend to trade
for achieving a lower communication cost later on.

The subroutine ParMETIS V3 PartKway consists of three phases: graph coars-
ening, initial partitioning, and refinement. According to [11], coarsening and
refinement take O(|E|) time with O(log(|V |)) stages. The partitioning phase
takes O(|E′|) time, where E′ is the number of edges in the coarsened graph, and
scales relative to

√
P . This partitioning function and hence our data partitioning

phase takes O(|E| log(|V |) + |E′|/
√

P ) time.

4.3 Subgraph ID Distribution

The output of ParMETIS V3 PartKway is an array in each process containing the
subgraph IDs for the local vertices. Thus only the subgraph IDs of the local
vertices assigned in the read phase are known. To achieve the pairwise subgraph
duplication, we must also obtain the subgraph IDs for the vertices in the local
vertices’ adjacency lists. The subgraph IDs will be used to calculate the ranks of
processes to which a vertex and its edges are to be duplicated. Because vertices
are divided among processes in a block fashion in the read phase, the rank of a
process that possesses the subgraph ID of a given vertex can be calculated by
simply dividing the vertex ID by the block size.

In order to minimize the communication, we sort each list based on the vertex
IDs and remove repeated vertices. The inter-process communication is carried
out in three steps. First, an MPI Alltoall is called to exchange the number
of vertices to be sent and received among all processes. Next, send and receive
buffers, one for each remote process, are allocated and a hash table lookup is
performed to fill the send buffer with the requested subgraph IDs. The last
step uses asynchronous communication calls (isend and irecv) to complete the
communication. On average, each process is assigned |E|/P edges and out of
which |V |/P vertices’ subgraph IDs are already known. Thus, the complexity of
this phase in terms of communication is O(|E|/P ).

4.4 Pairwise Subgraph Duplication

Given K subgraphs, there are
(K

2

)
combinations of subgraph pairs. We assign

each process a pair of subgraphs along with the internal and external edges
connecting the pair. If the two vertice of an edge belong to the same subgraph,
the edge is internal. Otherwise the edge is external. An internal edge is identified
when the subgraph IDs of its two vertices agree. To assign an external edge
to a process, we use Eq. 8 to calculate the process rank p, where ki and kj



Parallel Community Detection Algorithm 107

are subgraph IDs of the edge’s two vertices, respectively. Using our duplication
scheme, an external edge will be assigned to one and only one process and an
internal edge is assigned in duplication to (K − 1) processes.

p = kj ∗ (kj + 1)/2 − ki − 1, for j > i (8)

To start the duplication, each process first scans and packs all the edges
from its local adjacency lists to send buffers if they are for remote processes.
Adopting the similar communication method used in the previous phase, we
call MPI asynchronous isend/irecv functions to distribute the workload. Edge
scanning and packing takes O(|E|/P ) time. Assuming ParMETIS evenly divides
the edges into K subgraphs, there are at most O(|E|/K) external edges between
each subgraph pair. Therefore, the complexity of this phase is O(|E|/

√
P ) as

K =
√

P .

4.5 Local Graph Construction

We use adjacency lists to represent the vertices and edges of the subgraph pair
assigned to each process. To achieve a constant time for a vertex lookup in the
later local MEP phase, we use a hash table to store the adjacency lists. The
timing of creating a hash table depends on the efficiency of hashing function and
the frequency of hash collision. In our implementation we use Jenkins’ hash1.
Assuming that it takes O(h) time for adding an edge to the hash table, the time
complexity of this phase is O(h|E|/P ), as each process is assigned O(|E|/P )
edges on average.

4.6 Local Region Growing

We implement the region growing phase of MEP algorithm using a union-find
data structure to keep track of a vertex’s community membership [6]. We also
store the maximum compatibility (Eq. 3) of each vertex denoted as its purity and
use it later in the global resolution phase to finalize the vertex’s membership. The
sequential complexity of this phase is O("1∆2|V |). Because of our duplication
strategy, each subgraph is duplicated in

√
P processes and thus the complexity

of this phase is O("1∆2|V |/
√

P ).

4.7 Local Community Merge

We implement the community merge phase of MEP algorithm using a sparse
community matrix M to represent the number of edges within and between the
communities. As mentioned in Sect. 3.2, a vertex may change membership upon
merging. When this happens, we update the vertex’s purity value, which will be
used in the next phase for resolving membership conflicts. As each process has
O(|E|/

√
P ) edges and |C ′|/P communities, where |C ′| denotes the number of

communities found after the region growing phase, the time complexity of this
phase is O("2(|C ′|2/P + |E|/

√
P )).

1 http://burtleburtle.net/bob/.

http://burtleburtle.net/bob/


108 D. Palsetia et al.

4.8 Global Resolution

The locally detected communities are to be merged globally. Because each ver-
tex is assigned to (K − 1) processes, the memberships calculated by different
processes may disagree. When such conflicts occur, we resolve them based on
the vertex’s purity. We divide this global resolution task among all processes
based on the vertex IDs, in a block partitioning fashion. In other words, process
rank i is responsible for vertices of IDs from (|V |/P ) · i to (|V |/P ) · (i + 1). All
processes only redistribute the vertices’ purities and their root IDs, using MPI
asynchronous communication (isend and irecv). The overall communication mes-
sage size exchanged among processes is 2|V | integers.

Each process receives (K − 1) purities and root IDs for each of |V |/P vertices
it is responsible. To resolve a conflict, we let the community with higher purity
win the conflict. Essentially, we treat the purity as the support of a vertex to a
community. When root IDs differ but the purities are equal, we assign the vertex
to the community with a larger root ID. Since the operation of finding the maxi-
mum is both associative and commutative, this strategy ensures the convergence,
no matter in what order the resolution is performed on the partial results. Once
all conflicts are resolved, we use an MPI collective write function to write the com-
munity IDs to a shared file in parallel. The computation time complexity of this
phase is O(K|V |/P ) = O(|V |/

√
P ) and communication complexity is O(|V |/P ).

4.9 Complexity Analysis

The overall complexity of PMEP becomes O(|E|log(|V |) + "1∆2|V |/
√

P +
"2(|C ′|2/P + |E|/

√
P )), which corresponds to the graph partitioning and local

MEP phases. Our complexity analysis implies that the computation time of
PMEP is to be dominated by these two phases.

5 Experiments and Performance Evaluation

We implement PMEP in C using Message Passing Interface (MPI) for com-
munication and I/O. Our experiments were carried out on Hopper, a Cray XE6
supercomputer at the National Energy Research Scientific Computing (NERSC)
Center. Each compute node on Hopper contains two twelve-core AMD Magny-
Cours 2.1-GHz processors and 32 GB of memory. We use both real-world and
synthetic graph data sets. Table 1 provides some graph properties of the data
sets used in our experiments, which include number of vertices (|V |), number of
edges (|E|), maximum degree (∆), number of ground truth communities (|C|),
and average local clustering coefficient (alcc). Note that higher the alcc value,
denser the graph [20].

5.1 Synthetic Graphs

For a better control on the quality of community results with various graph
properties, we synthesize four large graphs, g1, g2, g3, and g4, with ground truth



Parallel Community Detection Algorithm 109

Table 1. Graph properties of data set used in our experiments.

Graph |V | |E| ∆ |C| alcc

g1 2.00 M 35.37 M 88 39,685 0.111

g2 2.00 M 35.06 M 88 35,318 0.299

g3 6.00 M 88.88 M 75 122,750 0.299

g4 6.00 M 88.85 M 75 122,471 0.587

Youtube 1.13 M 2.99 M 28,754 8,385 0.081
M: million

Fig. 1. Execution time and speedups for synthetic graphs (Color figure online).

using LFR benchmark [14]. The graphs become denser from g1 to g4 as the alcc
values increase. The LFR benchmark allows us to set alcc values by changing
the fraction of edges a vertex shares with others in different communities, while
keeping other parameters constant, such as |V |, |E|, and ∆. Figure 1 presents
the execution time and speedup of PMEP. Given two graphs of the same size,
we observe that lower the alcc value higher the execution time. For example,
g1’s alcc = 0.111 is lower than g2’s 0.299 and g1 has a higher execution time
than g2. Similarly, g3 has a smaller alcc value than g4 and thus takes more time
to complete. This performance trend matched our complexity analysis in Sect. 3
that the lower alcc value corresponds to higher values in∆, "1, "2, and |C ′|. Given
a fixed alcc value, the execution time increases as the number of vertices and
edges. In our experiment, graphs g2 and g3 have the same alcc value, 0.299, and
because g3 has more vertices and edges, its execution time is higher than g2.

Among the four graphs, we observe that g1 scales much better than the rest
and g4’s speedups are the worst. To help understand the differences, we collected
the timing breakdown for individual phases of PMEP. In Fig. 2, the upper four
charts show the percentages of timing for all phases and the bottom four charts
show the speedups for the top three phases that dominate the overall execution
time. From the percentage charts, we can see that the top three phases are the



110 D. Palsetia et al.

Fig. 2. Timing breakdown and speedup for individual phases of PMEP. (Color figure
online)

local MEP, ParMETIS, and graph construction. For g1, the local MEP takes
about 64 % to 93 % of the total time and because its speedup curve is quite close
to the linear line, the overall speedups follow the similar trend. The best speedup
for g1 is 126.95 when running 190 MPI processes.

For graphs g2, g3, and g4, the non-MEP phases start to take larger portions
of the total time. However, since the local MEP still shows the dominant per-
centages in most of the cases, its scalability remains a strong influence to the
overall speedup. The top three speedup charts show that the local MEP achieves
lower speedups than the ones in g1’s chart and similar trends for the other two
phases. The lower speedups altogether from the top three phases explain the
lower overall speedups for g2, g3, and g4.

The high timing percentage of local MEP phase in g1 can be explained by its
lower alcc value. As discussed in Sect. 3, a smaller alcc corresponds to a larger "1,
meaning more iterations required on checking the compatibility and purity of a
vertex’s neighbors. In addition, the sparser graph g1 produces more fragmented
intermediate communities |C ′| and hence a larger "2. Therefore, small alcc in g1
makes both the region growing and community merging of the local MEP phase
the most expensive phase. This behavior is consistent with the local MEP’s
complexity analysis.

As the number of processes increases, the timing percentages of graph par-
titioning phase (ParMETIS) increases proportionally, taking a significant per-
centage of the overall execution time. From its speedup charts, the scalability of
ParMETIS flattens quickly as the number of processes reaches to 40. Recall that
ParMETIS consists of three phases, among which only the initial partitioning



Parallel Community Detection Algorithm 111

phase scales with respect to
√

P , and the other two remain constant regardless
of P . As the number of processes increases, the two non-scalable phases start
to dominate and hence explain the speedup curve. This behavior implies the
PMEP’s overall performance could be limited by the scalability of ParMETIS.

The local graph construction phase noticeably takes a larger portion of the
overall time for dense graphs. In addition, the percentages increase significantly
as the number of processes. As we build the vertex adjacency lists into a hash
table, the timing depends on the efficiency of the hash function and the frequency
of hash collision. For dense graphs, a high number of hash collisions is expected
because more vertices sharing the same neighbors. When using vertex IDs as
hash keys, there is a high chance for a densely connected graph that the same
keys (vertices) are used when inserting new edges to the hash table. The effect of
increasing cost on hash collisions can be seen when comparing the percentages
of g2 to g1 and g4 to g3.

The subgraph ID distribution phase occupies only a small fraction of the
overall execution time and the main cost of this phase is the communication. Its
complexity in term of communication amount is O(|E|/P ) per process. When
there are sufficiently large workloads, this phase appears negligible compared
to other phases. Both the pairwise subgraph duplication and global resolution
phases are mainly communication tasks. The complexity of pairwise duplica-
tion phase O(|E|/

√
P ) is the worst case scenario and in the real timing results

show much smaller, as seen from the timing percentage breakdown charts for
all the synthetic graphs. The global reduction phase also occupies very a small
percentage of the execution time. The small communication amount complex-
ity O(|V |/P ) explains the observed results. The I/O cost takes less than 1 % of
the overall time. As we use MPI collective I/O to read/write files stored in the
Lustre parallel file system on Hopper, the low I/O cost is expected.

5.2 Real World Data Set

The real-world dataset, youtube, used in our experiments was obtained from the
collection of the Stanford Large Network Dataset Collection2. Although there
are other real-world graphs that come with the ground truth communities, but
most of them do not contain disjoint communities. This graph is considered
sparse, it has very low alcc value 0.081. Figure 3 shows the overall execution time,
speedups, percentage breakdown, and speedups of the top-three phases. The
youtube graph has a small alcc value similar to the synthetic graph g1 and both
numbers of vertices and edges are less than g1. However, the maximum degree
(∆ = 28, 754) of youtube graph is much higher than all the synthetic graphs.
According to the overall complexity derived in Sect. 4.9, such a high ∆ value
makes the local MEP workload much higher than the rest of phases. This effect
can be seen from the breakdown percentage chart where the local MEP phase
dominates the overall execution time. As the local MEP speedups show good
scalability, the overall speedups follow the similar trend. The highest speedup

2 http://snap.stanford.edu/data/index.html.

http://snap.stanford.edu/data/index.html


112 D. Palsetia et al.

Fig. 3. Performance results of the youtube graph. (Color figure online)

achieved is 204.22 when running PMEP on 1225 MPI processes. Although this
number is far from the linear speedup, we consider it a very good result for a
parallel graph algorithm, given the fact that a high degree of data dependency
in graph problems.

In Fig. 3, we also show the number of edges assigned to each process for our
pairwise subgraph duplication strategy and the even data partitioning method.
The number of edges per process for our approach is O(|E|/

√
P ), while the

even partitioning method is O(|E|/P ). As the number of processes increases,
the chart shows the average number of edges of our approach deviates increas-
ingly from the even partitioning method. This indicates that achieving a linear
speedup is unlikely for PMEP if the computation workload of the graph prob-
lem is determined by the number of edges. However, our pairwise duplication
approach produces a very small cost of inter-process communication, which is
unlikely achievable by the even partitioning method.

5.3 Result Quality Analysis

In order to evaluate the quality of the community structures output from our
algorithm against the known ground truth generated by the benchmark, we
adopt a metric called adjusted rand index (ARI) [9]. Given two communities
X and Y , the overlap between the two communities can be summarized by
a contingency table where each entry txy denotes the number of vertices in



Parallel Community Detection Algorithm 113

Fig. 4. Comparison between PMEP and parallel Louvain (Color figure online).

common between X and Y . ARI outputs a score ranging from −1 to 1, where 1
indicates that the two communities match perfectly and −1 indicates that two
communities are in complete disagreement.

In terms of quality, we find PMEP results within 95 % accuracy to ground
truth for both synthetic and real-world dataset. The quality results for graphs
g1 to g4 for selected numbers of MPI process counts are shown in Table 2. These
results demonstrate PMEP produces a high quality clustering solution when we
increase the number of processes. Duplicating the internal edges implies that
communities within the subgraphs are not split up, while still allowing to grow
communities across multiple subgraphs. Thus, the heuristic used in our global
resolution phase is shown to work well in producing high quality results.

5.4 Comparison with Parallel Louvain

We compare PMEP with the MPI implementation of parallel Louvain3 [21].
Louvain is designed to minimize the value of modularity (Q), a popular metric
in the graph community for measuring the strength of division of a graph into
communities. Modularity is defined in Eq. 9, where ei and ai denote the fractions
of internal and external edges in community Ci, respectively.

Q =
∑|C|

i=1
(ei − a2

i ) (9)

Although the design goal of PMEP is different (PMEP is to maximize equilib-
rium and purity), we are interested to see the scalability of the parallel Louvain
and its comparison to PMEP. Note that a direct comparison in execution time
is not fair because MEP and Louvain are two completely different algorithms. In
our experiments, we set the stop condition ε to 0.1, meaning when the change of
modularity value from the previous iteration increases to more than ε. In Fig. 4,
we present the speedup chart for g1 and g3. PMEP scalability is significantly
3 https://github.com/usc-cloud/parallel-louvain-modularity.

https://github.com/usc-cloud/parallel-louvain-modularity


114 D. Palsetia et al.

Table 2. ARI and modularity for synthetic graphs.

P g1 g2 g3 g4

ARI Q Q(PL) ARI Q Q(PL) ARI Q Q(PL) ARI Q Q(PL)

1 0.997 0.504 0.504 1.000 0.700 0.703 1.000 0.700 0.701 1.000 0.899 0.900

3 0.999 0.504 0.502 0.999 0.699 0.695 1.000 0.700 0.699 1.000 0.899 0.900

10 0.986 0.501 0.504 0.998 0.699 0.698 0.980 0.700 0.699 0.998 0.899 0.900

28 0.957 0.504 0.503 0.974 0.699 0.700 0.964 0.700 0.700 0.991 0.899 0.900

55 0.946 0.504 0.504 0.969 0.700 0.699 0.950 0.700 0.698 0.988 0.899 0.900

91 0.962 0.502 0.504 0.980 0.700 0.699 0.955 0.700 0.700 0.985 0.899 0.900

136 0.950 0.502 0.504 0.994 0.700 0.700 0.972 0.700 0.700 0.985 0.899 0.900

190 0.971 0.504 0.500 0.998 0.700 0.700 0.982 0.700 0.700 1.000 0.899 0.900

better for both graphs and in the meanwhile the parallel Louvain’s speedup curve
starts to flatten when P reaches 32. We note that parallel Louvain currently only
parallelizes its first phase that computes the initial communities based on mod-
ularity maximization. To show that PMEP can also deliver high quality results
in term of modularity, the measured values are provided in Table 2. We observe
PMEP’s modularity measures are consistent with parallel Louvain (PL).

6 Conclusion

Community detection for large graphs is extremely challenging due to a lack of a
priori information of the graph structure and a high degree of data dependency.
The scalability and quality of a parallel algorithm is significantly impacted by the
data partitioning scheme it employs. Our proposed PMEP addresses this chal-
lenge by adopting a pairwise subdomain duplication partitioning approach that
aims to trade some additional computation workload for significant reduction
in communication cost. The experimental results show that PMEP successfully
achieves this goal and in the meanwhile maintains a high quality of clustering
results. Our future work include the investigation of the ParMETIS and graph
construction phases, as they have shown poor scalability in the timing break-
down charts.

Acknowledgment. This work is supported in part by the following grants: NSF
awards CCF-1029166, IIS-1343639, CCF-1409601; DOE awards DE-SC0007456, DE-
SC0014330; AFOSR award FA9550-12-1-0458; NIST award 70NANB14H012; DARPA
award N66001-15-C-4036.

References

1. Bansal, S., Bhowmick, S., Paymal, P.: Fast community detection for dynamic com-
plex networks. In: Mangioni, G. (ed.) CompleNet 2010. CCIS, vol. 116, pp. 196–207.
Springer, Heidelberg (2011)



Parallel Community Detection Algorithm 115

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

3. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: a scalable fully dis-
tributed web crawler. Softw.: Pract. Experience 34(8), 711–726 (2004)

4. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z.,
Wagner, D.: On finding graph clusterings with maximum modularity. In:
Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769,
pp. 121–132. Springer, Heidelberg (2007)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
8. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.

Parallel Comput. 26(12), 1519–1534 (2000)
9. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review (1999)
11. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular

graphs. In: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing
(1996)

12. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

13. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Parallel Distrib. Comput. 48(1), 96–129 (1998)

14. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing
community detection algorithms. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
78(4 Pt 2), 046110 (2008)

15. Lu, H., Halappanavar, M., Kalyanaraman, A., Choudhury, S.: Parallel heuristics
for scalable community detection. In: Proceedings of the International Workshop
on Multithreaded Architectures and Applications (MTAAP), IPDPS Workshops
(2014)

16. Meyerhenke, H., Gehweiler, J.: On dynamic graph partitioning and graph clustering
using diffusion. In: Algorithm Engineering. Dagstuhl Seminar Proceedings, vol.
10261 (2010)

17. Riedy, E.J., Meyerhenke, H., Ediger, D., Bader, D.A.: Parallel community detection
for massive graphs. In: Graph Partitioning and Graph Clustering, pp. 207–222
(2012)

18. Staudt, C., Meyerhenke, H.: Engineering high-performance community detection
heuristics for massive graphs. In: ICPP, pp. 180–189 (2013)

19. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social net-
works:[extended abstract]. In: Proceedings of the 16th International Conference on
World Wide Web, pp. 1275–1276. ACM (2007)

20. Watts, D.J., Strogatz, S.H.: Collective dynamics of’small-world’networks. Nature
393(6684), 409–10 (1998)

21. Wickramaarachchi, C., Frincu, M., Small, P., Prasanna, V.: Fast parallel algorithm
for unfolding of communities in large graphs. In: 2014 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–6, September 2014

22. Zafarani, R., Liu, H.: Social computing data repository at arizona state university.
School Comput. Inf. Decis. Syst. Eng. (2009)

23. Zardi, H., Romdhane, L.B.: An o(n2) algorithm for detecting communities of unbal-
anced sizes in large scale social networks. Know.-Based Syst. 37, 19–36 (2013)


	Parallel Community Detection Algorithm Using a Data Partitioning Strategy with Pairwise Subdomain Duplication
	1 Introduction
	2 Related Work
	3 MEP Algorithm
	3.1 Region Growing Phase
	3.2 Community Merge Phase

	4 Design and Implementation
	4.1 Parallel Read
	4.2 Graph Partitioning
	4.3 Subgraph ID Distribution
	4.4 Pairwise Subgraph Duplication
	4.5 Local Graph Construction
	4.6 Local Region Growing
	4.7 Local Community Merge
	4.8 Global Resolution
	4.9 Complexity Analysis

	5 Experiments and Performance Evaluation
	5.1 Synthetic Graphs
	5.2 Real World Data Set
	5.3 Result Quality Analysis
	5.4 Comparison with Parallel Louvain

	6 Conclusion
	References


