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Organic solar cells are an inexpensive, flexible alternative
to traditional silicon-based solar cells but disadvantaged by
low power conversion efficiency due to empirical design
and complex manufacturing processes. This process can
be accelerated by generating a comprehensive set of po-
tential candidates. However, this would require a labori-
ous trial and error method of modeling all possible polymer
configurations. A machine learning model has the poten-
tial to accelerate the process of screening potential donor
candidates by associating structural features of the com-
pound using molecular fingerprints with their highest oc-
cupied molecular orbital energies. In this paper, extremely
randomized tree learning models are employed for the pre-
diction of HOMO values for donor compounds, and a web
application is developeda. The proposed models outper-
form neural networks trained on molecular fingerprints as
well as SMILES, as well as other state-of-the-art architec-
tures such as Chemception and Molecular Graph Convolu-
tion on two datasets of varying sizes.
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1 | INTRODUCTION

Solar energy is a vital source of clean, versatile renewable
energy and an important component in solving the world-
wide energy problem[1,2]. Organic Photovoltaic cells (OPVs)[3–6]

are lightweight, flexible, inexpensive and more customiz-
able compared to traditional silicon-based photovoltaics[7].
However, there are challenges impeding the usage ofOPVs
in a commercial environment. The major issue surround-
ing OPVs is low power conversion efficiency of fabricated
cells. Maximum cell efficiency observed in organic solar
cells is currently 13.2%[8], and commercial devices usually
achieve around 5-8%[9], which is much lower than silicon-
based photovoltaics. The primary bottleneck in the im-
provement of OPV device design is complex manufactur-
ing processes that lead to the reduction of active layer
performance[10]. Traditionally, the design of a potential
OPV material is dependent on conjectures from experi-
ments, and expertise of materials scientists, followed by
a laborious process of synthesis, characterization, and op-
timization of a prototype device.

The screening ofOPVmaterials could be semi-automated
through utilization of various modeling techniques (finite
element[11,12] to ab initio[13,14] andmolecularmodeling[15]).
Yosipof et al.[16] establishes the importance of data reduc-
tion and visualization using Principle Component Analy-
sis and Self Organizing Maps, wherein two metal oxide
solar cell libraries are analyzed. Jorgensen et al.[17] de-
scribes deep generative models for predicting molecular
properties, and in particular, delineates screening of OPV
using molecule generation via context-free grammar VAE.
Kaspi et al[18] introduces a machine learning/data mining-
based decision support system PVAnalyzer for identifica-
tion of interesting trends not easily observable using sim-
ple bi-parametric correlations, and provides scope of find-
ing new insights into factors affecting solar cells perfor-
mances. The task of screening is complicated due to the
difficulty in capturing complex effects culminating from
multiple local minimum configurations a polymer could
adopt during the manufacturing of the active layer[19–22].

Machine learning applied to available experimental
observations and theoretical simulations could potentially
generatemany comprehensivemodelswith advanced pre-

dictive capabilities. This approach has been successfully
applied in several materials and molecular designs[23–36]

across application areas.

In this paper, machine learningmodels using extremely
randomized trees (ERTs)[37] were developed to advance
the organic monomer screening process for photovoltaic
applications[38,39]. The results of ab initio simulationswere
combinedwith the cataloged description of the structural
details of the monomers. The variance of structural mor-
phology in the actual device was approximated with sets
of local conformers that possibly could be created during
manufacturing. Models developed in this paper predict
highest occupiedmolecular orbital (HOMO) energy of the
donor monomers in the active layer of the device that is
averaged across multiple configurations using Boltzmann
averaging. The predicted value paired with the comple-
mentary lowest unoccupied molecular orbital of the ac-
ceptor molecule could be used in speeding up the screen-
ing process. The proposedmodels outperform neural net-
works trained onmolecular fingerprints aswell as SMILES[40–42],
aswell as other state-of-the-art architectures such as Chem-
ception and Molecular Graph Convolutions on both the
smaller Harvard Organic Photovoltaic (HOPV) dataset as
well as on a subset of theClean Energy Project (CEP) dataset.
For end-user convenience, the machine learning models
were implemented as a web application at http://info.
eecs.northwestern.edu/OPVPredictor.

2 | METHOD

2.1 | Extremely Randomized Trees

ERTs use an ensemble of decision trees[37] inwhich a node
split is selected completely randomlywith respect to both
variable index and variable splitting value. The principle
behind ERTs is using several small decision trees that are
individually weak learners but when aggregated in an en-
semble leads to a very robust learner. ERTs are similar
to other tree based ensemble algorithms such as random
forests (RFs) but unlike RFs, the same training set is used
for training all the trees. Further, ERTs split a node based
on both variable index and variable splitting value while
random forests only splits by variable value. This makes
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F IGURE 1 Extremely randomized trees (ERT) architecture : ERTs are a forest of decision trees where node split is
selected randomly with respect to both variable index as well as variable splitting value. Results from several small
trees (indicated in dashed boxes) are aggregated in ERTs. The black paths represent the decision tree path for a given
data point, and the gray paths represent the decision tree paths that are not selected. The output of each individual
tree is aggregated and the final predicted value is the arithmetic mean (indicated by µ).

ERTs both more computationally efficient than RFs and
generalizable. Figure 1 illustrates the working of ERTs by
aggregating results from several smaller trees.

2.2 | Scharber Model

For a solar cell, the most important property is power
conversion efficiency (PCE) or the amount of electricity
which can be generated due to the interaction of elec-
tron donors and acceptors. The Scharber model[43] pro-
vides a relation between the voltageVoc and the energies
of the HOMO and the lowest unoccupied molecular or-
bital (LUMO) level of the donor and acceptor molecules
respectively, which in turn can be related to the power
conversion efficiency (PCE), the maximum efficiency of
solar cells. In the following equation, Jsc is the short-circuit
current density, FF is electrical fill factor and Pi n is incident-
light intensity. EDonor

HOMO
and EAccept or

LUMO
indicate the HOMO

and LUMOenergy levels of the donor and acceptormolecules
respectively.

Voc = 1/e( |EDonor |
HOMO

− E |Accept or |)LUMO − 0.3V

PCE = 100 ∗ (Voc ∗ F F ∗ Jsc )/Pi n

2.3 | Datasets

The HOPV dataset[44] used in this work is a collection of
photovoltaic measurements for a diverse set of 350 or-
ganic donor compounds generated by extensively search-
ing the literature. In our experiments, the dataset was
reduced to 344 molecules after removing redundant iso-
meric samples[45]. The dataset provides density functional
theory (DFT) calculations ofHOMOenergy values for four
functionals B3LYP, BP86, PBE and M06 using the basis
set def2-SVP[46]. We get the expected values for HOMO
values across all conformers by calculating the boltzmann
average. Each molecule in the HOPV dataset is repre-
sented by a subset of 3-18 conformers obtained at kT ,
where k is the Boltzmann constant and T is the temper-
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F IGURE 2 The scatter-plot (with line of best fit)
demonstrates the linear relationship between PCE of the
device and HOMO values of the donor compound. The
boltzmann average of the HOMO values for each
conformer is used to determine the HOMO for a given
donor.

ature of the OPV device. The global minimum (T = 0K)
structures used for prediction of HOMO energies are far
from the donor molecule structures in real OPV devices,
after various manufacturing steps. We observe from Fig-
ure 2 that the PCE of the OPV device and the HOMO en-
ergy values are correlated with each other. We abstained
frombuildingmodels on the experimental values asHOMO
values were missing for many molecules, and manufactur-
ing information was not provided.

The band gap of the processed organic layer (made
up of donors, acceptors, and other additives) would be
altered from their global minimum value due to the shift
of molecules from their ideal configuration. The degree
of alteration would depend on the exact routine used in
manufacturing, and is hard to predict. The boltzmann av-
eraging is an attempt to account for the effect of struc-
tural variation in the experimental device. This is because
different conformers of the same molecule occur in real
OPV devices, and hence HOMO energies averaged over
all conformers into the predictive model is expected to
improve the relevance of the predicted HOMO values to
the performance of the actual device.

To evaluate the validity of ERTs to scale to other datasets,
we experimented on a subset of theHarvardCEPDataset[47]

which contains DFT-calculated molecular structures and
properties for many candidate donor structures for or-
ganic photovoltaic cells. TheCEP is a virtual high-throughput

discovery and design effort for the next generation of plas-
tic solar cell materials. It studies many candidate struc-
tures to identify suitable compounds for the harvesting
of renewable energy from the sun and for other organic
electronic applications. To establish the generalization of
the models for larger datasets, we scraped a portion of
the CEP database available. For scraping, we used the
python libraries selenium[48] and beautiful soup[49]. This
dataset is made available in the supplementary material.
We restricted our extraction to 22,179 data points as the
online CEP database had restrictions in place preventing
automatic web-extraction of the entire database.

2.4 | Data Preparation

For both the datasets, the original data was divided into
training and test subsets. Figure 3 illustrates the distri-
bution of the HOMO values across the complete HOPV
dataset, the training and test sets. The dataset is split into
training and test subsets with 80% and 20% of the data
points respectively. We use stratified shuffle splitting to
ensure similar distribution across the training and test set.
The HOPV dataset provided DFT calculations for 4 func-
tionals : PBE, B3LYP, BP86 and M06. In this paper, we re-
stricted ourselves to PBE calculations. Further, we found
that all the other functionals can be expressed as a linear
transformation of the PBE functional values.

Two fingerprint representations - MACCS and Atom
Pair were used for generating features[50–55]. For Atom
Pair fingerprints, we initially calculated the original un-
hashed count vector of length 4million for all themolecules
using RDKit. After that, features that are invariant across
the entire dataset were removed. This led to the reduc-
tion of the length of the unfolded fingerprint from 4 mil-
lion to 2696 . The uncompressed MACCS fingerprint was
only 166 bits long, and hence no feature reduction or
transformation was performed. We did not use 1024 bit
compressed fingerprint representation for Atom Pair as
the original meaning of the fingerprint would be lost.

The fingerprints were prepared from their simplified
molecular-input line-entry system (SMILES)[56] formulae
using RDKit Python Library[57]. SMILES is a form of line
notation for the chemical structure of molecules, and con-
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F IGURE 3 Distribution of the datasets : (a) entire
HOPV dataset, (b) training set, and (c) held-out test set.
All the HOMO values are in atomic units (a.u.). 1 atomic
unit is equal to 27.21 eV.

sidered a versatile system. Molecule editors can gener-
ate 2D and 3D models from the line notation. The HOPV
dataset provides canonical Standard SMILES implementa-
tions both in standard and shortened format.

Extensive grid search was performed across hyper-
parameters to discover the model architecture with the
least mean absolute error for 5-fold cross-validation. This
modelwas chosen and trained on the entire training dataset.

3 | RESULTS & DISCUSSION

3.1 | Experimental Results

In this work, we provide a framework for reducing the de-
sign space by screening new donor candidates using ma-
chine learning models developed on the HOPV dataset.
Although both donors and acceptors are essential for an
OPV application, the current work is restricted to donors
as there are only a small number of known acceptors[58,59]

compared to hundreds of thousands of potential donor
molecules. Therefore, developing amachine learning-based
screening solution for donor molecules would lead to the
identification of OPV devices with high PCE.

Figure 4 demonstrates the learning curve of the cross-
validated ERT models across different set of training ex-
amples. The learning curves help demonstrate the increase
of the learning capacity of the model as the dataset is in-
creased. Further, the variance of the cross-validatedmod-
els (indicated by the shaded green band surrounding the
corresponding curve) decreases as the number of training
examples increase.

To compare their performance, we also trained other
state-of-the-art architectures for all datasets used. This
includes a fully connected (FC) network trained on the fin-
gerprint representations. Further, we also compare against
1-D CNN, RNN and CNN-RNN architectures trained on
SMILES as recent papers have demonstrated their superi-
ority over FC methods[40–42]. Lastly, we compare against
other state of the art neural networks used in molecular
informatics such as ConvGraph and Chemception. While
the ConvGraph architecture uses the molecular structure
encoded as graphs as input and then performs graph con-
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TABLE 1 Comparison of performance of ERT models with other algorithms for the HOPV dataset

Algorithm Feature % MAE RMSE Q 2

AdaBoost Molecular Fingerprint (MACCS) 2.6443 0.0061 0.1670
AdaBoost Molecular Fingerprint (AtomPair) 2.5395 0.0058 0.2269
XGBoost Molecular Fingerprint (MACCS) 2.0472 0.0057 0.7277
XGBoost Molecular Fingerprint (AtomPair) 2.0141 0.0057 0.7263
Bagging Molecular Fingerprint (MACCS) 2.6162 0.0063 0.1098
Bagging Molecular Fingerprint (AtomPair) 2.4500 0.0058 0.2503
Random Forest Molecular Fingerprint (MACCS) 2.0977 0.0054 0.4982
Random Forest Molecular Fingerprint (AtomPair) 2.0589 0.0053 0.5169
ERTs Molecular Fingerprint (MACCS) 1.9703 0.0057 0.7390
ERTs Molecular Fingerprint (AtomPair) 1.9100 0.0056 0.7427
FC Molecular Fingerprint (MACCS) 3.6850 0.0084 -0.5906
FC Molecular Fingerprint (AtomPair) 3.5135 0.0078 -0.3975
CNN SMILES 3.2536 0.0072 -0.1885
RNN SMILES 2.6240 0.0062 0.1200
CNN-RNN SMILES 2.6443 0.0061 0.1670
ConvGraph Molecular Graphs 2.8170 0.0079 0.1082
Chemception Molecule Image 3.2738 0.0079 -0.4089

volutions, Chemception architecture[60], based on the In-
ception architecture for image classification[61], directly
develops a very deep neural network model by training
directly on images of molecules. Bagging, RandomForest,
ERTs and AdaBoost algorithms were implemented using
Scikit-Learn Python Library[62]. The XGBoost package[63]

was utilized for creating the xgboostmodel. The FC, CNN,
RNN, CNN-RNN and Chemception models were imple-
mented using Keras[64] with Tensorflow[65] backend. The
ConvGraphwas implemented usingDeepChem library[66].

In Table 1, we present the results of the experiments
across all the models for the HOPV dataset. We present
the % Mean Absolute Error (MAE), Root Mean Squarer
Error (RMSE) and goodness of prediction (Q 2). We can
observe the superiority of ERTs for both the MACCS and
AtomPair fingerprints over the othermodels. ERTs trained
on MACCS and Atom Pair had a mean absolute percent-
age error (% MAE) of 1.91% and 1.97%. The RNN, CNN
and CNN-RNNs trained on the SMILES had % MAE be-
tween 2.62% and 3.25%. Convolutional Graphs had %
MAE of 2.82 % and all other methods based on deep neu-
ral networks had even higher %MAE. Two ensemble tree

based algorithmsXGBoost andRandomForest outperform
all other methods except ERTs. Even other ensemble tree-
based algorithms such as AdaBoost and Bagging perform
relatively well and at par with the best neural network
based methods (RNNs and CNN-RNNs). It must be noted
that although ERT models outperform RF models based
on % MAE (lower %MAE) and Q 2 (much higher Q 2), RF
models have slightly lower RMSE.

In Table 2, the results of the randomization tests such
as y-Randomization and pseudo-Descriptor tests are de-
lineated. y-Randomization (also known as y-scrambling or
response randomization) is a form of a permutation test,
where the values of the response variable are randomly
ascribed to different compounds, while the descriptors
values are left intact. In the pseudo-descriptors test, the
descriptors are replaced by random numbers that are also
subsequently used to train the models. In our case as the
features in fingerprints are bit vectors, we generate ran-
dom bit strings for features. A comparison across the per-
formance metrics such as % MAE, RMSE and Q 2 of the
ERT models between the original dataset (in Table 1) and
the randomization tests (in Table 2) demonstrates that
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TABLE 2 Performance metrics of the randomization tests performed using the MACCS and AtomPair
fingerprints as features

Features Model % MAE RMSE Q 2

MACCS
y-Randomization 4.6036 0.0117 -2.1476
Pseudo-Descriptors 6.5617 0.0167 -5.3666

Atom Pair
y-Randomization 3.3981 0.0083 -0.5600
Pseudo-Descriptors 5.5822 0.0147 -3.9450

(a)

(b)

F IGURE 4 Learning curves for the cross-validated
ERT models across different set of training examples for
the MACCS and Atom Pair Fingerprints. The goodness
of prediction (Q 2) is used as the score.

our proposed models perform much better than models
based on random input features (pseudo-Descriptors) or
labels (y-Randomization).

3.2 | Correlation of fingerprint features

We wanted to explore the correlation between the most
important features for our model for understanding their
impact on the HOMO value. Figures 5 and 6 depict the
correlationmatrices for top 5 features important forMACCS
and Atom Pair Fingerprints, as they perform best across
all the fingerprints. We restricted to top 5 features as
the contribution of other features was very close to 0.
The length of MACCS fingerprints is 166, which is much
shorter compared to other fingerprints, and is least af-
fected by the curse of dimensionality. The correlation
plots demonstrate that presence of any ring (Feature 0),
presence of a C=C double bond (Feature 3) and presence
of an aromatic ring (Feature 4) is positively correlatedwith
HOMO value, whereas a C≡N triple bond (Feature 1) and
a N=O double bond (Feature 2) is negatively correlated
withHOMOvalue. Further, the correlation plot illustrates
that presence of any ring, the presence of C=C bond and
presence of an aromatic ring are strongly positively cor-
related with each other and hence we can conclude that
these features often co-occur together in compoundswith
high HOMO value. Similarly, C≡N triple bond and N=O
double bond have a weak positive correlation with each
other, and their co-occurrence together leads to a com-
pound with low HOMO value.

Figure 7 depicts two compoundswith the highestHOMO
value, and the abundance of rings including aromatic rings
correspond to our observation from the correlation plots.
Figure 8 illustrates two compounds from theHOPVdataset
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F IGURE 5 Correlation for MACCS Fingerprints across the top 5 features and HOMO
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F IGURE 6 Correlation for Atom Pair Fingerprints across the top 5 features and HOMO
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F IGURE 7 Specimen donor molecules with the highest HOMO
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F IGURE 8 Specimen donor molecules with the lowest HOMO
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F IGURE 9 Best predicted structures based on prediction by both MACCS and Atom Pair Fingerprints
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F IGURE 10 Worst Predicted Structures based on prediction by both MACCS and Atom Pair Fingerprints

with the lowest HOMOvalue, and the presence and abun-
dance of C≡N triple bond and N=O double bond are per
our expectation based on correlation values. Although all
compounds in the HOPV dataset had aromatic rings as
the fingerprints are count vectors and not bit vectors, it
demonstrates that the number of rings positively corre-
late to higher HOMO value rather than the presence or
absence of rings.

Figure 9 depicts the best-predicted structures from
the dataset with respect to predictions based on both
atom pair and MACCS fingerprints. All the compounds
that are predictedwell havemany aromatic rings, in agree-
ment to our models as the number of rings and the num-
ber of aromatic rings are essential features. On the con-
trary in Figure 10, the compounds have fewer aromatic
rings, and also have many features that are not part of
the important features in the extremely randomized tree
model. This makes it difficult to accurately predict the
HOMO value. Although in this paper, the predicted fea-
ture is HOMO and not PCE, the demonstrated depen-
dence of HOMO and PCE (via the Scharber model as well

F IGURE 11 Distribution of the CEP subset. All the
HOMO values are in atomic units (a.u.). 1 atomic unit is
equal to 27.21 eV.

as illustrated in Figure 2 implies that PCE values are cor-
related directly to HOMO.

3.3 | Generalization on Larger Dataset

Weexplored ERTs on the larger dataset of 22,179molecules
extracted from the Harvard CEP Database. We present
the distribution of the HOMOvalues of the larger dataset
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in Figure 11. The reportedHOMOvalues in theCEPdataset
are an aggregate across several functionals. Table 3 com-
pares the performance of the ERT models with other al-
gorithms. As this dataset is much larger compared to the
350 molecule HOPV dataset, some deep neural methods
such as convolutional graphs expectedly perform compa-
rable to the ERTs, and SMILES-based models slightly out-
perform the ERT models. As the dataset is larger, we in-
creased the number of trees in our model to 200.

4 | WEB APPLICATION

A web application is developed for the convenience of
end users. The application accepts a single donormolecule
in canonical SMILES format, converts it to the correspond-
ing fingerprint, performs feature reduction, and the ma-
chine learning model is run to predict its HOMO value.
Further, the results for other functionals are also calcu-
lated using the linear correlation betweenB3LYP and these
functionals.

The RDKit library is used for generating the finger-
print from the SMILES notation as well as generating the
molecular structure representation. The scikit learn library
is used for loading and running the trained model on the
input molecule. The libraries Tornado and Flask are used
for generating and displaying the output from themachine
learning model on the website.

It must be noted that prediction of properties based
on the Scharbermodel indicates the highest possible power
efficiency[47], and the actual efficiency after accounting
for the morphology of the final photovoltaic device is usu-
ally lower. Figure 12 illustrates the screenshot of the home-
page of the web application where a user can input the
SMILES of a potential donor compound.

Figure 13 depicts the screenshot corresponding to a
response for the predicted HOMO values across 4 func-
tionals: PBE, B3LYP, BP86 and M06 is displayed in both
a.u. as well as eV alongside the molecular structure of the
compound. Further, we also calculate the open circuit
voltage(Voc ) for the corresponding donor-acceptor com-
bination when the user provides LUMO value of the ac-
ceptor. It must be noted that our models initially predict

PBE and then a linear transformation is used to calculate
values for other functionals based on the PBE prediction.

Although the Scharber model is simplistic to account
for all the complex physics of anOPVexplicitly, it nonethe-
less provides a valuable indication of the inherent promise
of a candidate compound. Further, as the HOPV dataset
was small, the web application must be used with caution.
Due to the low mean absolute percentage error (% MAE),
it will have high precision for compounds that are similar
to those in the HOPV dataset. For instance, the HOPV
dataset has only 3 compounds that have Selenium in the
donor molecule.

5 | CONCLUSIONS

Amethodology for predicting properties using fingerprints
of donor molecules is presented. The elegance of an en-
semble based regression technique such as ERTs lies in
the fact that it minimizes the need for feature reduction
or normalization. In particular, ERTs are generalizable and
less prone to overfitting which is essential while learn-
ing from a small dataset. Further, ERTs are easily inter-
pretable - a desired trait for further understanding ofwhich
features are most important for the predicted property
of a given monomer. One of the goals of machine learn-
ing models is reusability. In the proposed work, although
the models were trained using the PBE functional values,
we ascertained that HOMO values of other functionals
namely B3LYP, BP86, and M06 could be expressed as a
linear transformation of their corresponding values for B3LYP
functionals. Hence, the models developed for PBE can be
extended to predict for other functionals. For the smaller
OPVdataset, ERTmodels achieve better performance than
other methods -both tree-based as well as those based
on neural network. Further, we evaluated ERTs on the
larger dataset and it performed almost at par with CNN
or RNN-based neural networks trained on SMILES. We
also provide a web application where users can receive
the predicted HOMO values for the chemical compound
of the donor as well asVoc of the donor-acceptor combi-
nation for a given acceptor.

This work reveals the potential of integration of fea-
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TABLE 3 Comparison of extremely randomized tree models with other algorithms for the 22,179 molecule CEP
dataset

Algorithm Feature % MAE RMSE Q 2

AdaBoost MACCS 2.0349 0.1284 0.7210
AdaBoost AtomPair 2.0170 0.1272 0.7261
XGBoost MACCS 0.9430 0.0611 0.9558
XGBoost AtomPair 0.9378 0.0622 0.9523
Bagging MACCS 1.6434 0.107 0.8065
Bagging AtomPair 1.6418 0.1076 0.8551
Random Forest MACCS 1.4331 0.0946 0.8864
Random Forest AtomPair 1.4654 0.0967 0.8819
ERTs MACCS 0.8991 0.0598 0.9572
ERTs AtomPair 0.8696 0.0584 0.9604
FC MACCS 1.6444 0.1070 0.8065
FC AtomPair 1.6226 0.1058 0.8107
CNN SMILES 0.7804 0.0521 0.9673
RNN SMILES 0.7815 0.0527 0.9663
CNN-RNN SMILES 0.7786 0.0529 0.9667
ConvGraph Molecular Graphs 0.9104 0.0519 0.9619
Chemception Molecule Image 1.4681 0.0974 0.8762

F IGURE 12 Screenshot of the the web application with request page for a given donor compound, and LUMO
value of a potential acceptor
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F IGURE 13 Screenshot of the the web application with response illustrating the molecular compound of the
SMILES input with the predicted HOMO values across 4 functionals: PBE, B3LYP, BP86 and M06

ture manipulation combined with extensive grid search
on a small experiment-theory calibrated dataset of organic
photovoltaic donors. Our system allows researchers to
get an estimate of the HOMO energy values of donor
compounds used in OPV applications, and motivate the
development of an inexpensive photovoltaic solution. Di-
rected efforts are needed to standardize the collection
and representation of experimentalmanufacturing and pro-
cessing data for effective use with machine learning tech-
niques. Leveraging machine learning with computational
and experimental chemistry could play an essential role
in the expedition of systematic design of high-efficiency
OPV materials, and holds significant promise as a poten-
tial solution to future energy needs. The success of using
machine learning models on a small but well-curated cal-
ibrated dataset exposes an exciting area in materials dis-
covery, and in particular for solar cell technology. This, in
turn, can provide a path towards solving the world energy
problem in a clean and environmentally friendly way.
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