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A B S T R A C T

Microstructure sensitive design has a critical impact on the performance of engineering materials. The safety and performance requirements of critical components,
as well as the cost of material and machining of Titanium components, make dovetailing of the microstructure imperative. This paper addresses the optimization of
several microstructure design problems for Titanium components under specific design constraints using a feedback-aware data-driven solution methodology. In this
study, the microstructure is modeled with an orientation distribution function (ODF) that measures the volumes of different crystallographic orientations. Two
algorithms are used to sample the entire microstructure space followed by machine learning-aided identification of a minimal subset of ODF dimensions which is
subsequently explored by targeted sampling.
Conventional optimization methods lead to a unique microstructure rather than yielding a comprehensive space of optimal or near-optimal microstructures.

Multiple solutions are crucial for the deployment of materials design for manufacturing as traditional manufacturing processes can only generate a limited set of
microstructures. Our data sampling-based methodology not only outperforms or is on par with other optimization techniques in terms of the optimal property value,
but also provides numerous near-optimal solutions, 3–4 orders of magnitude more than previous methods. Consequently, the proposed framework delivers a
spectrum of optimal solutions in the microstructure space which can accelerate materials development and reduce manufacturing costs.

1. Introduction

Exploring and harnessing the association between processing, structure,
properties, and performance is a critical aspect of new materials exploration
[1–8]. Variation in microstructure leads to a wide range of materials
properties which in turn impacts the performance. The materials perfor-
mance can be significantly improved by dovetailing the microstructure
[9–12]. Titanium alloys are used for airframe panels, and optimizing the
property is necessary for the safety and performance of the aircraft [13–16].
Furthermore, both the cost of the material and machining for Titanium
panels are expensive [17,18]. Titanium airframe panels are modeled as thin,
rectangular, anisotropic plates. However, the panels are exposed to elevated
temperatures in moving devices. Titanium is a lightweight, yet strong, un-
iquely versatile metal with properties such as high tensile strength to den-
sity ratio, high corrosion resistance and ability to withstand high tempera-
tures without creeping. In addition, Titanium is a very ductile material that
can be worked into many shapes. Titanium [19] has a very high melting
point cap (3000 degrees Fahrenheit) which makes it able to bear high-heat
environments. Combination of all these properties make Titanium alloys
ideal for use in aircraft applications.

One of the major goals of materials design optimization is the trade-
off of properties based on prioritizing one design goal over others
[20,21]. For microstructure optimization, it can involve enhancing
properties in one direction while sacrificing other properties which are
not as important for the design problem [22]. Techniques that allow
tailoring of properties of polycrystalline alloys involves selection of
preferred orientations of various crystals constituting the polycrystal-
line alloy. This paper addresses the problem by tailoring crystallite
distribution for specific optimization design problems. The orientation
distribution function (ODF) is used to quantify the microstructure
[23,3,24,25] which represents the volume fractions of crystals of dif-
ferent orientations of the microstructure.
In this paper, we aim to explore the microstructure optimization of

multiple design problems for a Titanium panel. Two different mesh
sizes to represent ODFs are explored in this work: 50 and 388. Three
different properties: coefficient of expansion , stiffness coefficient C11
and yield stress are optimized. We use two algorithms - allocation and
partition to sample the entire microstructure space. There has been
several works on application of machine-learning for accelerated ma-
terials discovery and design of new materials with select engineering
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properties [26–37]. In this work, we harness machine learning for mi-
crostructure search space reduction for identification of a minimal
subset of ODF dimensions which is subsequently explored by targeted
sampling. Our data sampling-based methodology not only outperforms
or is on par with other optimization techniques in terms of the optimal
property value, but also provides numerous near-optimal solutions up
to 3–4 orders of magnitude more than previous methods.

2. Background and related works

The alloy microstructure is composed of multiple crystals with each
crystal having its distinct orientation. The orientation distribution
function (ODF) is one representation for depicting the volume fractions
of the crystals for different orientations in the microstructure. In this
work, the microstructure of Titanium panels is modeled using ODFs
[38,23,25,24]. The ODF is a critical concept in texture analysis and
anisotropy. The ODFs are represented by axis-angle parameterization of
the crystal lattice rotation in the orientation space, as proposed by
Rodrigues [39]. The Rodrigues’ parameterization is generated by
scaling the axis of rotation n as =r ntan 2 , where is the rotation angle.
Orientation distributions can be described mathematically in any space
appropriate to a continuous description of rotations [38,23,39].
The orientation space can be scaled down to a subset called the

fundamental region. Each crystal orientation is depicted uniquely inside
the fundamental region by a parameterization coordinate for the rota-
tion r. The ODF, represented by A r( ), is the volume density of crystals
of orientation r. Each microstructural orientation is associated with a
nodal point ODF. The local scheme developed with the finite element
discretization is advantageous since it can represent sharp textures,
including extreme cases such as single crystals. The fundamental region
is discretized into N independent nodes with Nelem finite elements and
Nint integration points per element. A detailed explanation of the ODF
discretization and volume averaged equations has been provided in
[9,40–42]. A single particular orientation or texture component is re-
presented by each point in the orientation distribution. The orientation
distribution information can be used to determine the presence of
components, volume fractions and predict anisotropic properties of
polycrystals.

3. Problem statement

We aim to explore the microstructure optimization of multiple de-
sign problems for a Titanium panel. Two different mesh sizes to re-
present ODFs are investigated in this work: 50 and 388. Three separate
properties: coefficient of thermal expansion , stiffness coefficient C11
and yield stress are optimized. There are four different design pro-
blems explored, and both the upper and lower bounds are solved. Fig. 1
illustrates a section of Titanium aircraft panel and the corresponding
microstructure cross-section.

The ODF values are associated with an orientation of the micro-
structure. Using the ODF approach is advantageous since the averaged
material properties over a microstructural domain can be computed
using the homogenization (averaging) equations which are linear with
respect to the ODF values. This is true when the effects of crystal size
and shape are ignored, and homogenous deformity is assumed in the
volume element. Using the homogenization relation, the orientation-
dependent averaged material property, , can be computed using the
material property values at different orientations, r( ), and the ODF
values, A.

= r A r dv( ) ( ) ,
R

where the orientation is denoted by r. The ODF representation should
satisfy the following volume normalization constraint in the micro-
structural domain.

=A r dv( ) 1
R

The optimization problems of interest aim to identify the best mi-
crostructure design to enhance the material properties. Since the ODF
values quantify the microstructural texture, the goal is to identify the
optimum ODF values for each problem. However, the ODF solution
space is high-dimensional, and it leads to an optimization problem with
numerous design variables. Here, one favorable approach would be
generating a new solution space, which is called as property closure,
which includes the complete range of properties obtainable from the
space of the ODFs. In property closure approach, the material properties
can be calculated with either upper or lower bound averaging as-
sumption [40]. An example computation of property closure with upper
and lower bounds approaches is shown in Fig. 2 for stiffness (C C,11 12
and C22) and compliance (S S,11 12 and S22) properties. The example
computations for the averaged stiffness, C , and compliance,

=S C 1 , are given next for the upper and lower bound approaches
respectively.

=C CAdv
R

Nomenclature

volume averaged stress (in MPa)
volume averaged strain
constant

q volume normalization vector
r orientation
V null space vector

S compliance (in 1/GPa)
C stiffness (in GPa)
Ceff effective stiffness (in GPa)
A orientation distribution function

orientation dependent property
D total number of dimensions of ODF vector
k intended number of non-zero dimensions of ODF vector

Fig. 1. Geometric representation of Titanium panel. E and G indicate the
Young’s modulus and shear modulus values around the corresponding direc-
tions, J is the torsion constant, m is the unit mass, L is the length of the beam,
and I1 is the moment of inertia along axis 1.
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= =S C C A dv
R

1 1 1

=S SAdv
R

In the present work, we will utilize both upper and lower bound
averaging techniques to identify the optimum microstructure solutions.
The material of interest is polycrystalline -Titanium as shown in
Fig. 3(a), red color shows independent orientations, blue color shows
dependent orientations resulting from the crystallographic symmetries.
We will model this hexagonal close-packed (HCP) structure using 111
ODF values defined in the Rodrigues fundamental region as shown in
Fig. 3(a). However, we will only use 50 independent ODF values for
modeling purpose since the remaining ODF values can be determined
using the crystallographic symmetries. In Fig. 3(b), a finer finite ele-
ment mesh, that can improve the numerical resolution of micro-
structural texture representation, having 388 independent ODF values
is illustrated.
In this work we solve for the best microstructure design that max-

imizes desired properties which are coefficient of thermal expansion x ,
stiffness coefficient C11 and yield stress y and satisfies the design con-
straints. The material properties of the objective function are computed
using the upper bound averaging approach. For design constraints both
upper and lower bound averaging approaches are utilized.
Four design problems are presented in this work, and each of them

is solved using both upper and lower bound approach. Upper bound

Fig. 2. Property closures in C and S (C 1) space for HCP Titanium. The color scale are represented in C space in both plots.

Fig. 3. Finite element discretization of the orientation space of HCP Titanium.

Fig. 4. Flow diagram of our methodology. The orange arrows depict the data
generation process, and the green arrow signifies the feedback-aware sampling.

Table 1
Number of solutions within 0.01%, 0.02%, 0.05% and 1% of the optimal so-
lutions for the fourth set of constraints.

Bound Mesh Size ML-Guided Sampling

within 0.01% within 0.02% within 0.05% within 1%

Upper 388 140 280 759 1.255×103

Lower 388 0 6.223×103 1.078×105 1.084×105
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sub-problems for design Problems 1 and 2 are solved in mesh sizes of
both 50 and 388, while the lower bound sub-problems are solved in 50
dimensions. Both the upper and lower bound design sub-Problems 3
and 4 are solved in mesh size of 388. The finer mesh with the 388 ODF
values is expected to provide a more accurate representation as the

Rodrigues domain is discretized with more variables. The design con-
straints of the optimization problems reflect certain stiffness needs of
engineering designs.
Problem 1:

Problem 2:

Problem 3: (mesh dimension 388).
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Problem 4: (mesh dimension 388).

It is important to note that the set of constraints are representative ex-
amples, and actual constraints may differ from them in the real design.
However, it was ensured that the design constraints resembled real-world
problems. Apart from the specific set of design constraints for the problem,
they should also obey the following generic constraints.

A 0

=Adv 1

4. Method

The proposed methodology is divided into two phases. In the first
phase, a data repository is created using two sampling algorithms. In
the second phase, we evaluate which combinations of ODF dimensions
lead to optimal solutions by machine learning. The following flow-
diagram illustrates the overall methodology (see Fig. 4).

4.1. Data generation

Two data generation algorithms are explored for dataset creation,
namely partition and allocation [22]. In the first step, we run our data-
generation algorithms to generate around 5 million valid solutions for
each set of constraint.

4.1.1. Partition
In this method, a unit length is partitioned into k small segments,

where >k 1 and can vary between 2 to D. D is the total number of

dimensions for the ODF and k is the intended number of non-zero di-
mensions. For HCP Titanium structure, D is 50 for coarse mesh and 388
for finer mesh. We consider the unit length 1 divided into k random
intervals or making k-1 random cuts between the interval [0,1]. For
k=2, there is one random cut possible but that cut can be anywhere
between [0,1] and we would have an ODF with 2 non-zero dimensions.
Similarly for k=3, there be 2 random cuts and so on till k= D. We run
the sampling for each value of k, and then for each k, we run it several
times so as to generate multiple ODFs for the given number of cuts/
dimensions.

4.1.2. Allocation
This randomly generates k values at a time, where k can vary be-

tween 1 to D, where D is the number of dimensions for the ODF vector.
In this algorithm, k is the intended number of non-zero dimensions for
the ODF, and D k dimensions are set to 0 for the given density
function (df) vector. The sum of the product of the volume fraction (vf)
and df across each dimension must add up to 1. Therefore, we continue
selecting a value until k values are selected, or the remainder is suffi-
ciently small. k=1 is the trivial case in which the product of the vf and
df equal to 1.
The idea behind all the data generation algorithms is based on the

heuristic that in a valid microstructure obeying all the constraints, only
a few dimensions in the ODF vector are non-zero. However, these
methods are complementary to each other and try to sample the entire
feature space. While the allocation method tries to find a minimal
subset of ODF dimensions that would be non-zero generating a poly-
crystal solution, the partition method seeks to widen the search across
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all the dimensions – 50 for Problems 1 and 2, and, 388 for Problems 3
and 4.

4.2. Feedback aware sampling

In the first phase of our methodology, we had generated a dataset
using two sampling algorithms. In the second phase, we attempt to
investigate which combination of non-zero ODF dimensions lead to

optimal or near-optimal solutions. For this purpose, we select the top
10% and bottom 10% based on the desired design objective and label
them as ‘High’ and ‘Low’, and perform random forest-based [43] ma-
chine learning models on this data subset, where the ODFs become the
feature vector. For instance, in design Problem 1, as the objective was
maximizing the coefficient of expansion x , ODF vectors yielding the
highest 10% and bottom 10% of x are labeled as ‘High’ and ‘Low’.
Random Forests are ensemble learning methods that construct multiple
decision trees [44] to predict the output, and the prediction is decided
by a vote across the ensemble of decision trees.
The motivation behind this step is to evaluate ODF dimensions

which are important for generating optimal solutions. This step extracts
the features that are most important for generating ‘High’ values.
However, as the target is to generate a polycrystalline solution, we
proceed to the second iteration of sampling. However, during this step,
instead of sampling across all ODF dimensions, we select only those
dimensions that are advantageous in providing near-optimal solutions.

5. Results

In this section, we evaluate the data-driven approach proposed in
this paper for generating optimal and near-optimal solutions. The

Table 5
Comparison of yield stress y, stiffness parameters (C C,11 12), and compliance parameters (S11 and S22) between traditional optimization approaches and ML-Guided
Sampling for design Problem 4 (Eqs. (6) and (7)).

Bound Approach Mesh Size Linear Programming and Genetic Algorithm

y (in MPa) C11 (in GPa) C12 (in GPa) S11 (in 1/GPa) S22 (in 1/GPa)

Upper LP 388 421.8096 175.0000 69.6976 0.0075 0.0095
Upper ML 388 421.8094 174.9997 69.6976 0.0074 0.0094
Lower GA 388 423.6050 124.8043 78.3030 0.01612 5.8017×10 8

Lower ML 388 422.8341 119.8148 80.7035 0.0200 0.0999

Table 4
Comparison of yield stress ( y) and compliance parameters (S11 and S12) between traditional optimization approaches and ML-Guided Sampling for design Problem 3
(Eq. (5)).

Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling

y (in MPa) S22 (in 1/GPa) S12 (in 1/GPa) y (in MPa) S22 (in 1/GPa) S12 (in 1/GPa)

Upper 388 423.9396 0.0071 0.0098 423.9396 0.0071 0.0097
Lower 388 423.8462 0.0150 0.1073 422.8327 0.0200 0.0999

Table 2
Comparison of coefficient of expansion x , and stiffness parameters (C11 and C12) between traditional optimization approaches and ML-Guided Sampling for design
Problem 1 (Eqs. (1) and (2)).

Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling

x (in 1/K) C11 (in GPa) C12 (in GPa) x (in 1/K) C11 (in GPa) C12 (in GPa)

Upper 50 8.5506×10 6 161.0000 75.0000 8.4903×10 6 161.0631 75.0450
Upper 388 8.8560×10 6 161.0000 75.0000 8.8392×10 6 161.0519 75.0486
Lower 50 9.3682×10 6 126.6925 90.0000 9.3790×10 6 129.9803 91.6693

Table 3
Comparison of stiffness parameters (C11 and C12) between traditional optimi-
zation approaches and ML-Guided Sampling for design Problem 2 (Eqs. (3) and
(4)).

Bound Mesh Size Linear Programming and
Genetic Algorithm

ML-Guided Sampling

C11 (in GPa) C12 (in GPa) C11 (in GPa) C12 (in GPa)

Upper 50 167.8562 75.0000 167.8538 75.0013
Upper 388 170.2609 75.0000 169.8015 75.0049
Lower 50 144.2199 95.0000 144.1442 94.9546
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proposed method is comparable to solutions produced by prior state-of-
the-art techniques and delivers numerous optimal or near-optimal so-
lutions with distinct microstructure designs. The near-optimal solutions

for this problem correspond to different microstructure configurations
having same or similar values for yield stress. Furthermore, in our
study, several different objectives are solved, and the proposed

Fig. 5. Frequency distribution of coefficient of expansion for upper (mesh sizes
50 and 388) and lower bounds (mesh size 50) for first set of constraints (Eqs. (1)
and (2)) for ML-Guided sampling. The overall frequency distribution of entire
sampling process is presented inset.

Fig. 6. Frequency distribution of C11 for upper (mesh sizes 50 and 388) and
lower bounds (mesh size 50) for second set of constraints (Eqs. (3) and (4)) for
ML-Guided sampling. The overall frequency distribution of entire sampling
process is presented inset.
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approach is successful for both coarse (50 dimensions) and fine (388
dimensions) meshes for HCP Titanium. Table 1 presents the total
number of near-optimal solutions, or in other words, solutions that are
proximal to the optimal solutions (see Table 2).
Acar et al. in their previous works [40,41] used a genetic algorithm

based scheme to solve the upper bound problem. In [42], the upper
bound approach was transformed to a lower bound approach by

converting the problem from stiffness domain to compliance (reciprocal
of stiffness) domain and thereby transforming a non-linear problem into
a linear problem that is LP-solvable. In [22], a data-driven approach for
arriving at a near-optimal solution was expounded for upper and lower
bound problems for optimization of the yield stress of cantilevered
Galfenol beam under vibrational constraints. The proposed work im-
proves on the previous methodology by identifying a minimal subset of

Fig. 7. Finite element discretized sensitivity ODF cross-sections (mean and
standard deviation) and frequency distribution (inset) of the highest 1% yield
stress values across ODF dimensions for design problem 1.

Fig. 8. Finite element discretized sensitivity ODF cross-sections (mean and
standard deviation) and frequency distribution (inset) of the highest 1% yield
stress values across ODF dimensions for design problem 2.
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ODF dimensions using machine learning (see Tables 3–5).
For the upper and lower bound approaches, our solutions are

compared against the genetic algorithm based scheme and LP-based
methods respectively. The proposed data sampling approach based on
the sampling algorithms surpassed the yield stress obtained from ge-
netic algorithm based solver for the upper bound approach.
Additionally, the results for the lower bound are comparable to the
optimal values achieved by the LP method. It is important to note that
only the LP solution (used for the lower restricted approach by Acar
et al. [42]) yields the theoretical maximum value in contrast to the
genetic algorithm solver scheme used by them for the upper bound
approach [40].
Figs. 5 and 6 represent the frequency distribution for the feed-

back-driven data-generation of coefficient of expansion and C11 for
upper (mesh sizes 50 and 388) and lower bounds (mesh size 50) for
first set of constraints (Eqs. (1) and (2)) for ML-Guided sampling. A
comparison of the frequency distribution of the ML-agnostic overall
sampling process with the ML-guided sampling indicates the efficacy
of the ML-guided approach to effectively extract the non-zero ODF
dimensions suitable for more optimal solution. Without an ML-guided
approach, it would become increasingly intractable to identify which
combinations of ODF dimensions should be non-zero for generating
optimal solutions.
Figs. 7 and 8 illustrate finite element discretized sensitivity ODF

cross-sections (mean and standard deviation) and frequency dis-
tribution of the maximal desired values across ODF dimensions for
design Problem 1 and 2. The frequency plots of the ODF dimensions
for the top 1% values indicate that there are certain dimensions that
are more likely to be non-negative for producing near-optimal solu-
tions as compared to most other dimensions. Thus, ML-guided sam-
pling helps to isolate those dimensions and in particular, isolate those
combinations of dimensions that are non-zero for generating near-
optimal solutions.
The frequency distribution and sensitivity plots for design

Problems 3 and 4 are presented in the Appendix. Examples of finite
element microstructure (FEM) cross-sections of near-optimal ODF
solutions for all four objective problems are presented in the
Appendix. The potential of our methodology to produce many op-
timal solutions for the upper bound sub-problem in the neighborhood
of the LP solution for design Problem 1 and 2 for both mesh sizes
demonstrate that our method can be advantageous for any mesh size.
Nonetheless, more finer the mesh or more the number of dimensions
in an ODF, an ML-guided approach becomes more imperative to
generate many near-optimal solutions.

6. Conclusion and future work

The selection of materials and geometry to optimize desired
properties has been a cardinal problem in materials science. The
proposed strategy expounds the potential of data-driven approaches
for solving a constrained microstructure design objective for both
upper and lower bound problems. It outperforms the maximum so-
lutions obtained using Genetic algorithms and is close to the theo-
retical maximum solution obtained using LP. The proposed targeted
sampling approach first explores the entire sample space and then

selectively generates solutions that optimize the given design objec-
tive. It generates numerous near-optimal solutions, 3–4 orders of
magnitude higher than prior methods. Past methodologies including
LP techniques lead to a unique or handful of optimal solutions. One of
the challenges of inverse materials problems is establishing produc-
tion feasibility of proposed microstructure design. Many cost-aware
manufacturing processes can generate specific microstructures and
thus, discovering hundreds of thousands of optimal microstructures
can help identify more cost-effective candidates for design, thereby
accelerating the design to deployment step.
The analysis of constrained microstructure optimization problems

depicts that certain combinations of ODF dimensions are non-zero
more often in the ODF vector of the near-optimal solutions. Further, a
subset of these combinations usually generate ODFs that pre-
ferentially produces more near-optimal solutions compared to other
combinations. The success of this and similar works reveal the po-
tential of data-driven methods for property predictions of different
materials and different design constraints, and for both upper and
lower bound problems. Leveraging data-driven techniques can play
an essential role in the expedition of precise design of materials with
process constraints. This study demonstrates the power of carefully
designed sampling approaches to identify numerous near-optimal
solutions for a constrained non-linear optimization problem and can
prompt the development of alternative sampling schemes that can
reach optimal solutions faster and deliver numerous near-optimal
solutions. The sampling schemes are generalizable and agnostic
of the problem domain and can be used in other scientific domains as
well.

Data availability

The raw data required to reproduce these findings can be generated
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problems and performing random-forest regression as outlined in the
manuscript.
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Appendix A

Figs. 9–16.

Fig. 9. Frequency distribution of yield stress for upper and lower bounds for third set of constraints (Eq. (5)) for ML-Guided sampling. The overall frequency
distribution of entire sampling process is presented inset.
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Fig. 10. Frequency distribution of yield stress for upper and lower bounds for fourth set of constraints (Eqs. (6) and (7)) for ML-Guided sampling. The overall
frequency distribution of entire sampling process is presented inset.
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Fig. 11. Finite element discretized sensitivity ODF cross-sections (mean and standard deviation) and frequency distribution (inset) of the highest 1% yield stress
values across ODF dimensions for design Problem 3.
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Fig. 12. Finite element discretized sensitivity ODF cross-sections (mean and standard deviation) and frequency distribution (inset) of the highest 1% yield stress
values across ODF dimensions for design Problem 4.
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Fig. 13. Finite element microstructure cross-sections for examples of near-optimal ODF solutions for design problem 1 (Eqs. (1) and (2)).
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Fig. 14. Finite element microstructure cross-sections for examples of near-optimal ODF solutions for design problem 2 (Eqs. (3) and (4)).
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Fig. 15. Finite element microstructure cross-sections for examples of near-optimal ODF solutions for design Problem 3 (Eq. (5)).
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