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Abstract

Many scientific applications have large I/O requirements, in terms of both the size of data and the
number of files or data sets. Management, storage, efficient access, and analysis of this data present an
extremely challenging task. Traditionally, two different solutions are used for this problem: file I/O or
databases. File I/O can provide high performance but is tedious to use with large numbers of files and
large and complex data sets. Databases can be convenient, flexible, and powerful but do not perform
and scale well for parallel supercomputing applications. We have developed a software system, called
Scientific Data Manager (SDM), that aims to combine the good features of both file I/O and databases.
SDM provides a high-level API to the user and, internally, uses a parallel file system to store real data
and a database to store application-related metadata. SDM takes advantage of various I/O optimizations
available in MPI-IO, such as collective I/O and noncontiguous requests, in a manner that is transparent
to the user. As a result, users can write and retrieve data with the performance of parallel file I/O, without
having to bother with the details of actually performing file I/O.

In this paper, we describe the design and implementation of SDM. With the help of two parallel
application templates, ASTRO3D and an Euler solver, we illustrate how some of the design criteria
affect performance.
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1 Introduction

Many large-scale scientific experiments and simulations generate very large amounts of data [8, 1] (on the
order of several hundred gigabytes to terabytes), spanning thousands of “files” or data sets. Management,
storage, efficient access, and analysis of this data present an extremely challenging task. Currently avail-
able techniques for this purpose are either raw file-I/O interfaces, such as MPI-IO [11, 19], or full-fledged
databases. File-I/O interfaces provide high performance but are too cumbersome to use with large, complex
data sets and large numbers of files. For example, the user must remember file names and the organization
of data in a file and must specify the exact location in the file from which data must be accessed. Databases,
on the other hand, provide a convenient, high-level interface and powerful data-retrieval capability, but they
do not measure up to the performance requirements of large-scale scientific applications running on super-
computers.

We have developed a software system, called Scientific Data Manager (SDM), that aims to combine the
good features of both file I/O and databases. SDM provides a high-level, user-friendly interface. Internally,
SDM interacts with a database to store application-related metadata and uses MPI-IO to store the real data
on a high-performance parallel file system. SDM takes advantage of various I/O optimizations available in
MPI-IO, such as collective I/O and noncontiguous requests, in a manner that is transparent to the user. As
a result, users can access data with the performance of parallel file I/O, without having to bother with the
details of file I/O. Figure 1 illustrates the basic idea.

In this paper, we describe the design and implementation of SDM. SDM is currently implemented to use
either MySQL [20] or PostgreSQL [24] as the database for metadata and MPI-IO for file I/O. In designing
such a system, we have a wide choice of how to organize the data in files. We have implemented three
different approaches. At one extreme, level 1, we store all data sets in separate files as they are generated.
At the other extreme, level 3, we store data sets in a very small number of files and, using a database table,
keep track of where in the files each data set is stored. We also have an intermediate approach, called level 2.
We examine the performance implications of using each of these approaches by studying the performance
results obtained for two application templates, ASTRO3D and an Euler solver, on an IBM SP and SGI
Origin2000.

The rest of this paper is organized as follows. In Section 2 we discuss our goals in developing SDM.
In Section 3 we describe how SDM is implemented. Performance results are presented in Section 4. We
discuss related work in Section 5. We conclude and outline our plans for future work in Section 6.

2 Design Objectives

We had three major goals in developing SDM: provide high-performance parallel I/O, provide a high-level
application programming interface (API) that eliminates the need for the user to bother with the details of
low-level file I/O or databases, and store enough metadata in a database so that the user can easily retrieve
previously stored data.

High-Performance I/O. To achieve high-performance I/O, we decided to use a parallel file-I/O sys-
tem to store real data and use MPI-IO to access this data. MPI-IO, the I/O interface defined as part
of the MPI-2 standard [11, 19], is rapidly emerging as the standard, portable API for I/O in parallel
applications. High-performance implementations of MPI-IO, both vendor and public-domain imple-
mentations, are available for most platforms [9, 15, 25, 26, 34]. MPI-IO is specifically designed to
enable the optimizations that are critical for high-performance parallel I/O. Examples of these opti-
mizations include collective I/O, the ability to access noncontiguous data sets with a single function,
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Figure 1: SDM architecture

and the ability to pass hints to the implementation about access patterns, file-striping parameters, and
so forth.

High-Level API. Our goal was to provide an API that did not require the user to know either MPI-IO
or databases. The user can specify the data with a high-level description, together with annotations,
and use a similar API for data retrieval. SDM internally translates the user’s request into appropri-
ate MPI-IO calls, including creating MPI derived datatypes for noncontiguous data [33]. SDM also
interacts with the database when necessary, by using embedded SQL functions.

Convenient Data-Retrieval Capability. SDM allows the user to specify names and other attributes
to be associated with a data set. SDM internally selects a file name into which the data will be stored;
the mapping between data sets and file names is stored in the database. The user can retrieve a data
set by specifying a unique set of attributes for the desired data.

3 Implementation

To describe the metadata storage in the database, the SDM API, and the organization of data in files, we
use an example, ASTRO3D, an astrophysics application developed at the University of Chicago. For sim-
plicity of explanation, we consider the two-dimensional version of this three-dimensional application. (The
performance results presented in this paper are for the full three-dimensional version.) In this application,
data is stored in several arrays that are block-distributed in each dimension. At various time steps, several
of these arrays are written to files for data analysis, restart, and visualization. Six floating-point arrays are
written for data analysis and another six for restart; seven character arrays are written for visualization. The
frequencies of the writes can be varied.

We use the term data set to refer to each array being written and data group to refer to all the arrays
written at a time step for a particular purpose such as data analysis. For simplicity of explanation, let us
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Figure 2: Database tables used in SDM

assume that three arrays are written for data analysis, another three for restart, and four for visualization.
(Note that all arrays—six, six, and seven—were used in the performance experiments reported in this paper.)
Let us further assume that the data-analysis and restart dumps are performed every six time steps and the
visualization dumps are performed every four time steps. Let be the three data sets for data
analysis and be the data group for data analysis. Similarly, we have for
visualization and for restart.

3.1 Database Tables to Store Metadata

SDM uses three database tables for storing metadata: run table, access pattern table, and execution table
(see Figure 2). These tables are made for each application. Each time an application writes data sets, SDM
enters the problem size, dimension, current date, and a unique identification number (runid) to the run table.
The access pattern table includes the properties of each data set, such as data type, storage order, data access
pattern, and global size. SDM uses this information to make appropriate MPI-IO calls to access the real data.
The execution table stores a globally determined file offset denoting the starting offset in the file of each
data set.
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SDM_finalize(3, handleA);

SDM_finalizeH(3, headerA);

A = SDM_make_datalist(3, { });

write call

initialize(&date);

date.year = 1999;

date.month = 10;

date.day = 10;

handleA = SDM_select_attributes(3, A);

a , a , a 2

read call

0 1

headerA = SDM_select_attributesH(3, A);

SDM_subarray(handleA, 3, 0, StartingPoints, SubArraySizes, NULL);

SDM_initialize(App);

handleA = SDM_set_attributes(3, A);

headerA = SDM_make_header(3, A, FLOAT, 6); 

SDM_subarray(handleA, 3, 0, StartingPoints, SubArraySizes, NULL);

A[0].data_type = FLOAT;

A[0].access_pattern[0] = BLOCK;

A[0].access_pattern[1] = BLOCK;

SDM_associate_attributes(3, &A[0]);

for (i=0; i<lastTimestep; i++) {

}

Computation
...

...

, i, headerBuf);0aSDM_writeH(headerA, 

, i, headerBuf);1aSDM_writeH(headerA, 

, i, headerBuf);2aSDM_writeH(headerA, 

SDM_write(handleA, a 0, i, buf);

SDM_write(handleA, a , i, buf);1

SDM_write(handleA, a , i, buf);2

for (i=0; i<lastTimestep; i++) {

a 0

a 1

a 2

SDM_read(handleA, 

SDM_read(handleA, 

SDM_read(handleA, 

SDM_readH(headerA, 

SDM_readH(headerA, 

SDM_readH(headerA, 

, i, headerBuf);

, i, headerBuf);

, i, headerBuf);

Computation
...

...

}

a 0, i, buf);

a , i, buf);1

a , i, buf);2

Figure 3: Example of using the SDM API to perform I/O in ASTRO3D

3.2 Application Programming Interface

Figure 3 shows how the SDM API is used to perform I/O for data analysis (data group A) in a two-
dimensional version of ASTRO3D

To use SDM, the user must first call the function SDM initialize. This function initializes the
SDM environment and establishes a connection to the database. Next, to specify groups of data sets,
the user must call the function SDM make datalist. This function assigns properties to the first data
set in a group. The same properties can be assigned to other data sets in the same group by calling
SDM associate attributes.

The main reason for making groups of data sets is that SDM can then use different ways of organizing
data in files, with different performance implications. For example, each data set can be written in a separate
file, or the data sets of a group can be written to a single file.

In the case of write operations, the user must call SDM set attributes to set the attributes associ-
ated with a group and to return a set of handles to be used for further I/O operations. If an application writes
header information along with the data, SDM make header must be used to return an array of handles
for writing the header information. In ASTRO3D, each data set in group A has a header consisting of six
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floating-point variables. The function SDM writeH is used to write the header.
In the case of read operations, data from a specific run can be retrieved by specifying attributes of the

data, such as the date of the run. If the date is not specified, data from the last run will be read. Also, the
properties of the data sets need not be specified because SDM retrieves this information from the database.
Data can be selected using the SDM select attributes function. To retrieve header information,
SDM select attributesH must be called.

The main SDM functions for writing and reading data are SDM write and SDM read. Before calling
these functions, the user must provide the information necessary for SDM to perform I/O, such as the starting
points and sizes of the subarray in each dimension in the case of block distribution, or the size of process
grids and distribution arguments in each dimension in the case of cyclic distribution. To perform I/O, the
handle of a group, position of a data set within the handle (group), current time step, and pointer to the
application buffer are passed to the SDM I/O function. Note that the user does not have to provide file
names. SDM generates the file name and records the name in the database.

Finally, the user must call SDM finalize and SDM finalizeH to close all files, close the connec-
tion to the database server, and free all memory allocated by SDM.

3.3 File Organization

SDM supports three different ways of organizing data in files. In level 1, each data set generated at each
time step is written to a separate file, as shown in Figure 4. This file organization is simple, but it incurs the
cost of a file open and close at each time step, which on some file systems can be quite high, as we shall
see in the performance results. For a large number of data sets and time steps, this method can be expensive
because of the large number of file opens.

In level 2, each data set (within a group) is written to a separate file, but different iterations of the same
data set are appended to the same file, as illustrated in Figure 5. This method results in a smaller number of
files and smaller file-open costs. The offset in the file where data is appended is stored in the execution table.

In level 3, all iterations of all data sets belonging to a group are stored in a single file, as shown in
Figure 6. As in level 2, the file offset for each data set is stored in the execution table by process 0 in
the SDM write function. If a file system has high open and close costs, SDM can generate a very small
number of files by choosing the level-3 file organization. On the other hand, if an application produces a
large number of data sets of large size, level 3 would result in very large files, which may affect performance.

We study the performance implications of the three file-organization levels in the next section.

4 Performance Results

We obtained all performance results on the IBM SP and SGI Origin2000 at Argonne National Laboratory.
The IBM SP has 80 compute nodes and 4 I/O nodes. Each I/O node controls four SSA disks, each of
9 Gbyte capacity. The parallel file system on the machine is IBM’s PIOFS [14]. The SGI Origin2000 has
128 processors and 10 Fibre Channel controllers connected to a total of 110 disks, each of 9 Gbyte capacity.
The file system on the Origin2000 is SGI’s XFS [12, 30]. XFS supports an optimization called direct I/O,
which we used in our experiments. When certain alignment restrictions are met, the user can choose the
direct-I/O option, in which the file system moves data directly between the user’s buffer and the storage
device, bypassing the file-system cache. Direct I/O thus eliminates an extra memory copy into the cache
and can perform well if the I/O size is large and the machine has a high-bandwidth I/O system. Direct I/O
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Figure 4: Level-1 file organization at 6th time step in ASTRO3D. The superscript on a data set denotes
the time step at which the data set has been written to a file, RId denotes the current identification number
(runid), and each shadowed box (along with the name beside it) shows the SDM-generated file for storing
the corresponding data set.

can be used from an MPI-IO program—the ROMIO implementation of MPI-IO that we used supports direct
I/O [35]. We present performance results with both direct I/O and regular (buffered) I/O.

We used two application templates, ASTRO3D and a three-dimensional Euler solver, in our performance
experiments. For ASTRO3D, we used a problem size of . We ran the program for one time
step and performed the data analysis, restart, and visualization dumps at that time step. This resulted in a
total of around 880 Mbytes of data.

The second application is a three-dimensional Euler solver for the problem of three-dimensional tran-
sonic flow about an M6 wing [10]. This application is a mesh-structured code that writes the physical values
and residual of each node at certain iterations. The structure of these values is a distributed global vector,
and each value has five components (density, energy, and three coordinates of momentum). In addition, the
application writes the physical coordinates and pressure at each mesh point. In our experiments, we ran the
code for 50 iterations and wrote data at every 5 iterations. The problem size was .

4.1 Costs of Database Access

SDM uses TCP/IP to connect to the database servers. We performed our experiments with two different
databases, MySQL [20] and PostgreSQL [24]. Figure 7 shows the database-access cost in the SDM write
operation on the Origin2000. As mentioned in Section 3.2, the connection to and disconnection from the
database server occur once in SDM initialize and SDM finalize, respectively. In SDM set attributes,
process 0 accesses the run table and access pattern table to store attributes, and in the write operation,
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Figure 5: Level-2 file organization at 6th time step in ASTRO3D. The superscript on a data set denotes
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(runid), and each shadowed box (along with the name beside it) shows the SDM-generated file for storing
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it stores the file offset into the execution table. In ASTRO3D the access to the execution table occurred
19 times, and in the Euler solver the access to the execution table occurred 60 times. As can be seen in
Figure 7, the database-access cost using both the database servers was less than 0.6 sec. This cost, however,
will change according to the number of I/O operations occurring in the applications.

We observed that MySQL performs better than PostgreSQL. Therefore, we used only MySQL for the
rest of the performance experiments.

4.2 Results for ASTRO3D

Figure 8 shows the write and read bandwidths for ASTRO3D on the IBM SP using 32 processors for the
three levels of file organization. Since we ran only one iteration of the program, levels 1 and 2 resulted
in the same file organization. Level 3 achieved much higher bandwidth because only three different files
were created, and, therefore, only three file opens occurred. The high cost of file opens on the PIOFS file
system [32] resulted in lower performance for levels 1 and 2, where 19 separate files were created. The
impact of file-open time can indeed be quite large.

Figures 9 and 10 show the write and read bandwidths for ASTRO3D on the SGI using 16 processors.
We measured performance for both direct I/O and buffered I/O. For writing data, direct I/O performed better
than buffered I/O. There are two reasons for this. First, with buffered I/O, XFS serializes concurrent writes
to the same file, whereas with direct I/O, concurrent writes are allowed to proceed in parallel. Second, direct
I/O eliminates a copy into the file-system cache. For reading data, buffered I/O performed better. Again,
there are two reasons for this. One reason is that XFS does not serialize buffered reads; therefore, direct
reads do not have any extra advantage in the area of parallelism. The second reason is that XFS performs
a read-ahead (prefetch) in the case of buffered reads, but not in case of direct reads. The read-ahead policy
works well for this application, and buffered reads therefore perform better. Since the cost of file opens is
small on XFS, the three levels of file organization performed nearly the same.
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4.3 Results for the Euler Solver

Figures 11 and 12 show the write and read bandwidths for the Euler solver on the IBM SP using 32 pro-
cessors. The total data written was around 240 Mbytes. In level 3, only two files were generated, one for
writing the coordinates and pressure at each mesh node and the other for writing the physical values and
residual at each node. In level 2, six vectors (that is, the three coordinates, pressure, physical values of each
node, and nodal residual) were written separately, resulting in a total of six files. In level 1, the six vectors
generated every five iterations were written separately, resulting in a total of 60 files. As Figures 11 and 12
show, level 3 performed the best because of the high open cost on PIOFS. In level 1, the file-open cost took
around 80% of the total execution time; in level 2, it took around 30%; and in level 3, it took around 20% of
the total execution time.

Figures 13 and 14 show the write and read bandwidths for the Euler solver using 16 processors on the
SGI. For this application, we used only buffered I/O. We could not use direct I/O because the memory
allocation for distributed vectors was done inside the numerical library (PETSc [23]) that the application
uses, and thus we could not align the buffers to the cache line as required for direct I/O. For the write
operation, levels 2 and 3 performed slightly better than level 1. For the read operation, however, level 1
performed the best. The reason is that the read-ahead policy of XFS for buffered reads operates on a per-file
basis and therefore works to the application’s advantage when it has a greater number of files.

5 Related Work

The main difference between this work and other efforts is that this work aims to combine the good features
of parallel file I/O and databases, whereas other efforts focus on either parallel I/O or data management, not
both. We briefly mention related efforts below.

SRB (Storage Resource Broker) [2] provides a uniform interface to access various storage systems, such
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as file systems, Unitree, HPSS, and database objects. However, it does not support optimizations such as
collective I/O that MPI-IO provides. Shoshani et al. [28, 29] describe an architecture for optimizing access
to large volumes of scientific data stored on tapes. Chervenak et al. [5] describe a general architecture for
managing distributed scientific data sets in a grid environment. An architecture for data-intensive distributed
computing using DPSS is described in [37, 38]. The Active Data Repository [17] optimizes storage, retrieval
and processing of very large multi-dimensional datasets. An initial discussion of a framework for scientific
data management similar to the one described in this paper is given in [6].

Several efforts have involved optimizing I/O in parallel file systems and runtime libraries [3, 4, 7, 13,
16, 18, 22, 27, 31]. However, file systems and libraries have a lower-level interface than SDM, requiring
more work from the user.

6 Conclusions and Future Work

We have presented the design and implementation of an environment for high-performance scientific data
management, called Scientific Data Manager (SDM), that is built on top of MPI-IO and also interacts with a
database for storing metadata. SDM provides a simple, high-level interface and performs all necessary I/O
optimizations transparently to the user. We also experimented with different ways of organizing data in files,
called level 1–level 3. In general, when file-open cost on a particular file system is high, level 3 performs
well because it minimizes the number of files created. If the file-open cost is small, the performance of the
three levels depends on how the number and size of files affects performance on the particular file system.
An appropriate file-organization policy can thereby be chosen for a particular file system.

On the XFS file system, we found that the file-open cost was so small that it did not significantly affect
I/O performance. Instead, our experiment focused on the use of direct I/O and buffered I/O in the ASTRO3D
template. For writing data, we found that direct I/O performed much better than buffered I/O by avoiding
the overhead of copying the data into the XFS buffer cache and also because XFS allows direct writes to
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Figure 13: Write bandwidth for the Euler solver on the
SGI Origin2000
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Figure 14: Read bandwidth for the Euler solver on
the SGI Origin2000

proceed concurrently. For reading data, however, buffered I/O performed better because of its read-ahead
policy.

We are developing SDM further to support other types of applications such as unstructured-grid applica-
tions and to support visualization. We also plan to investigate whether an SDM-like system that stores data
in files using MPI-IO and metadata in a real database can be effectively used as a strategy for implementing
libraries such as HDF [36] and netCDF [21].
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