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Jaechun Noy Sung-soon Parkz Jesús Carreterox Alok Choudhary{ Pang Chenk

Abstract

In this paper we present the design, implementation and eval-
uation of a runtime system based on collective I/O techniques for
irregular applications. We present two models, namely, ”Collec-
tive I/O” and ”Pipelined Collective I/O”. In the first scheme, all
processors participate in the I/O simultaneously, making schedul-
ing of I/O requests simpler but creating a possibility of contention
at the I/O nodes. In the second approach, processors are grouped
into several groups, so that only one group performs I/O simul-
taneously, while the next group performs communication to re-
arrange data, and this entire process is pipelined to reduce I/O
node contention dynamically. Both models have been optimized by
using software caching, chunking and on-line compression mech-
anisms. We demonstrate that we can obtain significantly high-
performance for I/O above what has been possible so far. The
performance results are presented on an Intel Paragon and on the
ASCI/Red teraflops machine at Sandia National Labs.

1 Introduction

Parallel computers are being used increasingly to solve
large irregular applications with huge I/O requirements [5].
A typical computational science analysis cycle requires
storing visualization and checkpoint data (which can run
into 100s of MBs to TBs range) in a canonical form so that
other tools can use them easily without having to reorganize
the data and data storage can be independent of the number
of processors that produced it. Such requirements present
challenging I/O problems that may overwhelm application
programmers. As the number of processors scales (e.g., to
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Politécnica de Madrid
{Dept of Electrical and Computer Engineering, Northwestern

University
kSandia National Laboratories, Albuquerque, NM 87185

more than 4500 on the ASCI/Red Teraflops machine at San-
dia National Labs), sequential re-combination of the antici-
pated terabytes of data simply becomes infeasible.

In this paper we present the design and implementa-
tion of a high-performance runtime system which can sup-
port all of the types of I/O listed above on large-scale sys-
tems. In particular, the system enables accessing irregular
data sets, does data reorganization (sorting) on the fly, en-
hances I/O operations by using collective I/O [2], and bal-
ances I/O workload among processors dynamically. First,
we present a collective I/O technique that handles irregu-
lar accesses to large data sets by reorganizing the data on-
the-fly. Second, we enhance this technique and introduce
the notion of “pipelined collective I/O” to manage I/O node
contention dynamically. Third, we present software caching
techniques where data from different nodes may be reused,
thereby avoiding or reducing I/O. Fourth, we incorporate
compression mechanisms in the runtime system to reduce
the amount of I/O required at the expense of additional
computations. Finally, we present performance results on
large-scale parallel systems including the teraflop machine
at Sandia National Labs. These runtime functions are being
incorporated in teraflop applications. We demonstrate that
we can obtain significantly high-performance for I/O above
what has been possible so far.

2 Design of the Collective I/O Operations

There are several characteristics to be considered to de-
velop an I/O library in order to support irregular prob-
lems. One of them is that irregular problems often gener-
ate fine-grained data distributions requiring access to non-
contiguous locations in a global array. Our library uses the
two-phase I/O strategies [1] to convert a large number of
small and disjoint I/O requests into a small number of large
contiguous requests. Several factors must be considered in
the design of a library based on this technique: buffer size
used by the library, communication schedule construction
and reorganization, the number of processors participating
in I/O at any time, and scheduling of I/O requests. In ad-
dition, since data accesses are performed using a level of
indirection in irregular computations, the number of passes
through the data sets to compute schedule and reorganize



data also are important. In this section we present the de-
sign of two alternative schemes for collective I/O. The first
scheme is called“Collective I/O” and the second scheme is
called“Pipelined Collective I/O”.

2.1 Collective I/O and Pipelined Collective I/O

These designs involve three basic steps. 1) Schedule con-
struction, 2) reading data from files; and 3) redistributing
data into appropriate locations of each processor. In the
write operation, redistribution step precedes the file write
step. Schedule describes the communication and I/O pat-
tern required for each node participating in the I/O opera-
tion. The indirection arrays, used to reference the data ar-
ray, must be scanned to consider each element of the array
individually to determine its place in the global canonical
representation as well as its destination processor for com-
munication.

Several factors affect the schedule construction in partic-
ular, and the overall I/O library design and performance in
general. These include the following. 1)Chunk Size, which
is the amount of buffer space available to the runtime li-
brary for the I/O operations. For example, if the total size
of the data per processor to be read/written is 8 MB and the
chunk size is 2MB, then the I/O operation will require four
iterations to complete. A schedule must be built for each of
these iterations. 2)Number of processors involved in I/O,
which determines the communication among processors to
redistribute data. The steps involved in computing schedule
information are briefly described below:

� Based on the chunk size, each processor is assigned
a data domain for which it is responsible for read-
ing or writing. Next, with each index value in its lo-
cal memory, processor first decides from which chunk
the appropriate data must be accessed and then deter-
mines which processor is responsible for reading the
data from or writing the data to the chunk.

� Index values in the local memory are rearranged into
the reordered-indirection arraybased on the order of
destination processors to receive them. Therefore, we
can communicate consecutive data between proces-
sors(communication coalescing).

Note that once it is constructed, the scheduling informa-
tion can be used repeatedly in the irregular problems whose
access pattern does not change during computation, and
thereby amortizing its cost. For collective I/O, each pro-
cessor involved in the computation is also responsible for
reading data from files or writing data into files. LetD bytes
be the total size of data andP be the number of processors.
If the size of data chunk is the same as the total size of data,
each processor then readsD/P bytes of data from the file
and distributes it among processors based on schedule in-
formation. In case of writing, each processor collectsD/P

bytes of data from other processors and then writes it to
the file. By performing I/O this way, the workload can be
evenly spread among processors. However, with collective
I/O, all processors issue I/O requests to the I/O system si-
multaneously. As a result, contention at the I/O system may
occur if there are large number of compute nodes compared
to the number of I/O nodes. In the pipelined collective I/O,
we divide processors into multiple processor groups so that
contention may be managed dynamically. Only processors
in a group issue I/O request simultaneously to reduce I/O
node contention. The expectation is that while one group of
processors is performing I/O operations, another group per-
forms communication in order to collect(redistribute) data
for write(read) operations. Thus, withG groups, there will
be G interleaved communication and I/O steps, where in
stepg, 0 � g < G, groupg is responsible for the I/O oper-
ations.

3 Software Caching and Data Reuse

In irregular applications, same data may be accessed re-
peatedly during the execution of irregular loops. In global
data area, overlap data area between two loops may exist.
Re-referenced datais that data which has been accessed in
a prior loop and will be accessed in a subsequent loop.Re-
leased datais defined to be the one which once accessed in
a prior loop will not be accessed again. Therefore, it should
be written back to the file if modified.New datais defined
to be data referred in a loop but has never been accessed
in a prior loop. We have used a software caching scheme
to reduce I/O cost by reusing the data. With this method,
the communication and I/O patterns required for each pro-
cessor are determined in theschedule phase. I/O phases
to execute irregular loops are inserted before and after each
loop. There-referenced dataneed not be written back to
file in the first write phase because it will be needed again
in further read phases. The basic goals and design of the
software caching scheme are as follows. First and fore-
most, it is to reduce I/O to the maximum extent possible. To
achieve this, a read and write I/O phases is divided into two
read and write I/O phases, where the second read and write
phase only access data that is ”new-data”. Second goal is
to utilize the schedule information which is constructed at
the beginning and to build only the incremental schedule for
”new-data” needed. The execution phases include two read
and write steps,read1 andwrite1 , which are almost the
same as for the I/O operations without software caching.
A second phase of the algorithm executes partially reading
and writing of data,read2 andwrite2 , based upon the
overlap area. In this phase, data which will not be used in a
subsequent loop is written to file. Similarly, data which has
never been read but will be referred in a subsequent loop is
read from the file in this phase. Since only some part of data
is written to file or read from file, I/O cost for the second
phase is expected to be smaller than for the first one. Be-
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Figure 1. Data access pattern before and after

executing s/w caching phase

tween both phases, schedule information for the new loop
is reconstructed in thes/w caching step. Some details
are omitted due to lack of space.

Figure 1 shows the data domain of each processor for an
irregular loop before and after executings/w caching
step with 3 processors and 2 data chunks, whereX is global
data. Before executings/w caching step,writing back
area is that which it is referred in only the prior loop and
new readingarea is one which is referred in only later loop.
Dark area ofX represents data referred in both loops. In first
phase,read1 , each processor reads data from file using 2
data chunks. For example, processorP0 readsX(2)� X(5)
and distributesX(3) andX(4) to P1 andP2 by using col-
lective I/O method. After finishing the first loop,write2
is executed to write only data inwriting backarea back to
the file. The range ofwriting backarea is determined in
write2 . S/w caching step modifies schedule informa-
tion for executing the second loop. Also, Figure 1 shows the
change in the data domain of each processor after executing
s/w caching step. In second phase,read2 , only data
in new readingarea is read from file. Finally, all data which
is referred in the second loop is written back to the file in
write1 .

4 Collective I/O Operations with Chunking
and Compression

To further improve performance by reducing both exe-
cution time and storage space, our library provides chunk-
ing and in-memory compression. To provide a chunked
scheme, the global array is organized as an array of chunks

[3]. As the collective I/O library reorders the data to achieve
a row major order, our chunking scheme follows this ac-
cess pattern to describe the data. The correspondence be-
tween chunks and data array is established using achunk
index, composed of fixed-length records, each including
a chunk identification, length, file offset, compression al-
gorithm used, compressed length of the chunk, and por-
tion of the array corresponding to the chunk. Even when
several publicly available lossless compression algorithms
were studied,lzrw3 was chosen because it had the better
time results.

Compression and I/O part are clearly decoupled in our
library, so that compression, communication, and I/O op-
erations can be overlapped using non-blocking operations.
Decoupling both phases is important, because when writing
a global array using compressed chunks, each processor can
not compute in advance the offset of each chunk, needing
communication with the previous writer to know the offset
of the previous chunk. In the Parallel Collective Write oper-
ations, a non-blocking receive operation is set to get the new
offset before compressing the data collected. Then the new
offset is actually received and the compressed buffer is writ-
ten to the file, setting a new entry in the local index vector to
store the chunk features. As a compressed chunk does not
fit exactly on file system blocks, the new offset is aligned to
the next file system block. When all processors have written
their portion of data, they asynchronously send the local in-
dexes to the first processor, which generates a global index
and writes it to the index file in a single write operation. In
case of reading when the data file is opened, the associated
index file is opened and read by the first processor, which
generates the global index and distributes it to the other pro-
cessors. Then each processor can get the offset into the file
and the compression algorithm used for each chunk, read
the compressed chunk, uncompress it, and distribute it to
other processors. In the Parallel Pipelined Collective I/O
the communication to get the offset is executed on a per-
group basis, so that each processor waits for the offset only
in its own group. It should be noted that several values asso-
ciated with the compression operations are very small (the
file offset are only 4 bytes and the local index are 48 bytes)
to influence significantly the total execution time.

5 Performance Evaluation

The evaluation tests of the runtime system, with and
without compression, were executed on TREX, an In-
tel PARAGON machine located at Caltech, and on the
ASCI/Red machine, located at Sandia National Labs. The
Intel Paragon TREX is a 550 node Paragon XP/S with 448
GP (with 32 MB memory), 86 MP (with 64 MB memory)
nodes, and 16 or 64 I/O nodes with 64 MB memory and a
4 GB Seagate disk. Intel’s TFLOPS (ASCI/Red) is a 4500+
compute nodes and 19 I/O nodes machine [4]. Each I/O
node also has two 200 MHz Pentium Pro and 256 MB, hav-
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Figure 2. Application B/W for Collective and

Pipelined Collective I/O on the Intel Paragon.

ing access to two 32 GB RAIDs. The filesystem used in
both machines is Intel PFS.

First set of results show the overall I/O bandwidth with-
out using compression which is observed at the application
level, and take into account communication, computation
overhead and I/O operations. Figure 2 shows performance
results by varying the total size of data and number of pro-
cessors on a 64 I/O node partition with a 512 KB stripe
unit. To extend data size from 256MB to 512MB, we in-
creased the number of processors from 64 to 128 with a
data domain size of 4MB per processor. As the data size
is increased from 256MB to 512MB, we noticed slight per-
formance improvement in most cases because as the num-
ber of processors increases, it requires more communication
steps to distribute/collect data to/from other processors even
though the size of index and data values to be communi-
cated becomes smaller, degrading the overall performance.
Also, with the same number of processors, we increased
the size of data from 512MB to 1024MB by using multiple
data set (32bytes in this experiment) referenced by each in-
dex value. This extends the data domain of each processor
from 4MB to 8MB, increasing the I/O cost of each proces-
sor. The performance obtained was better because the index
propagation and other overheads are amortized over larger
data elements. Figure 3 shows the performance results ob-
tained on the ASCI/Red machine by varying the size of data
and number of processors. We were able to obtain up to 90
MByte/sec application level I/O bandwidth, which is 50%
of the peak performance. In both tests, the number of pro-
cessor groups in the Pipelined Collective I/O was 2 for writ-
ing and 8 for reading.

To evaluate software caching performance, we compared
thesoftware caching method(S/W) to the basic read/write
collective I/O (NC) implementation, callednon-caching
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Figure 3. Application B/W for Collective and

Pipelined Collective I/O on the ASCI/Red.

method. Figure 4 represents the execution time for the two
implementations when we increase the size of indirection
array in each processor’s local memory from 4KB to 1MB,
which results in the increment in data size from 256KB to
64MB. These results show that total execution time is re-
duced when software caching is applied, assuming 32 pro-
cessors, 16 I/O nodes partition, and 7/8 of overlap range
between irregular loops. The time forREAD1andWRITE1
phases involving read and write operations for data refer-
enced from total data domain is almost the same in both
implementations. However, since software caching method
does not access overlapped data, the time for partially read-
ing and writing data is much smaller than the time for read-
ing and writing all data including overlapped area. As a re-
sult, the overall execution time in software caching method
is much smaller than in non-caching method, although the
additional time to modify schedule information is required
in S/W CACHINGphase.

To evaluate the compression optimizations, besides the
parameters used to evaluate the two models, the compres-
sion ratio and the compression time were considered. Fig-
ures 5 shows the overall bandwidth of the write operation
of the compression library for both the collective (a) and
pipelined collective (b) I/Os, using different compression
ratios and data sizes. They were obtained by varying the
compression ratio, total size of data, and number of proces-
sors with a 4 MB buffer each on a 16 I/O nodes partition
with a stripe unit of 64 KBytes. The bandwidth of the com-
pressed version is always higher than the original one (ra-
tio 1:1). For a data size of 1 GBytes with a compression
ratio of 8:1, the overall bandwidth has been enhanced by
almost 200% in both models. Considering the reduction of
disk space associated with compression, it can be concluded
that it is always beneficial to use compression. As expected,
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method.

there are few differences between both models, although the
pipelined collective I/O provides better results for low com-
pression ratios. The higher the compression ratio, the lower
the I/O time, and the lower the benefits derived from stag-
gering I/O. The overhead such as local index management,
global index management, and index file writing, is lower
than 200 msec.

6 Summary and Conclusions

In this paper we presented a design of a runtime I/O li-
brary for large-scale irregular problems. The main idea is
to reorder data on the fly so that it is sorted before it is
stored and reorganized before it is provided to processors
for read operations. This eliminates expensive post pro-
cessing for both visualization as well as enables restarts on
different number of processors by eliminating dependence
of the checkpointed data on the number of processors that
create it. We presented two designs for collective I/O for
read/write operations. First design involves all processors
simultaneously in an I/O operation, while in the second
case, I/O is pipelined with communication. Experimental
results show that good performance can be obtained on a
large number of processors. Both models have been opti-
mized with a software caching method, chunking, and com-
pression techniques. The performance results obtained on
both Intel Paragon at Caltech and Sandia National Lab’s
ASCI/Red machine show that we were able to obtain ap-
plication level bandwidth of up to 110MB/sec, even when
clear tradeoffs exist for different parameters such as buffer
space, number of processor groups, stripe unit, etc. On
the Intel Paragon, we were able to duplicate the application
level bandwidth for a 8:1 compression ratio using thelzrw3
compression algorithm, reducing the communication time
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on the Intel Paragon.

by almost 50%. There are many performance improvements
possible, such as enhancing prefetching using the chunking
meta-data, using different file models, or using alternative
file layouts, that we intend to develop in the future.
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