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ABSTRACT

We present a compiler that takes high level signal and image processing
algorithms described in MATLAB and generates an optimized hardware for
an FPGA with external memory. We propose a precision analysis algorithm
to determine the minimum number of bits required by an integer variable
and a combined precision and error analysis algorithm to infer the mini-
mum number of bits required by a floating point variable. Our results show
that on an average, our algorithms generate hardware requiring a factor of
5 less FPGA resources in terms of the Configurable Logic Blocks (CLBs)
consumed as compared to the hardware generated without these optimiza-
tions. We show that our analysis results in the reduction in the size of lookup
tables for functions like sin, cos, sqrt, exp etc. Our precision analysis also
enables us to pack various array elements into a single memory location to
reduce the number of external memory accesses. We show that such a tech-
nique improves the performance of the generated hardware by an average
of 35%.

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have been recently used
as an effective platform for implementing many image/signal pro-
cessing applications. Though the concept of using FPGAs for cus-
tom computing evolved in the late 1980’s, certain recent advance-
ments in FPGA technology has made reconfigurable computing
more feasible. Current trends indicate that FPGAs have a faster
growth of transistor density than even general processors. The
implication of this is that there will be sufficient transistor bud-
get for larger and more complex applications to be implemented
on FPGAs. Most hardware designers today use hardware descrip-
tion languages like VHDL/Verilog or low level CAD tools to im-
plement designs on FPGAs. This involves directly dealing with
the complexities of the hardware and understanding the cycle-by-
cycle behavior of millions of gates, which can be very tedious and
time consuming. Clearly, there is a need for system level design
tools that would provide designers a higher level of abstraction en-
abling the next generation of complex applications of FPGAs with
reduced time-to-market.

Many researchers have focused on the use of general purpose
languages as a target for hardware synthesis. C/C++ is the most
popular target language [19-24]. Some other researchers have at-
tempted to use Java as the target language too [25-27]. Our choice
of the MATLAB language is guided by the following facts - (1)
MATLAB is extremely popular with the signal/image processing
community and is easier and more intuitive to use than C/C++
(2) MATLAB has a rich set of libraries for signal/image process-
ing functions which can be directly mapped to efficient libraries,
thus making MATLAB very conducive to design reuse. (3) Large
amounts of parallelism can be extracted from MATLAB programs

with little or no dependency analysis, as opposed to complex de-
pendency analysis required by languages like C/C++.

Some of the major issues in compilation from a high level lan-
guage for FPGAs is in generating hardware that will not only fit
within the FPGAs, but which will also provide high performance.
Since controlling the bitwidth of the variables will result in instanti-
ation of lesser precision operators in hardware leading to FPGA re-
source savings, there is a need to assign bits in an optimal manner.
The need to conserve bits has been investigated for architectures
like Intel’s MMX [2], HP MAX-2 [3] and SUN VIS [4], which
allow data paths to operate on subwords. Also, with the current in-
terest in generating low power systems, researchers have proposed
turning off bit slices [1]. Stephenson et. al. [5] have proposed a
precision analysis scheme to determine the required bit level pre-
cision for various target architectures. All of the above work in
subword control have focussed entirely in trying to optimize the
bits for integer programs. Since most real applications have float-
ing point operations, our work presents a unified scheme to de-
termine the minimum number of bits for both integer and floating
point applications. We also present a scheme to use the precision
information to pack several array elements to a memory location,
so that the total number of memory accesses is reduced, thereby
improving performance.

The contribution of the paper can be summarized as follows:

e We present a value range propagation algorithm to determine
the minimum number of bits required for the integral part of
floating point representation and for integers

e We present an error analysis algorithm to determine the min-
imum number of bits required to represent the fractional part
of our floating point representation

e We present a memory packing algorithm to pack more than
one array elements into a single memory location to improve
the performance of the hardware generated

This work presents an automated way of improving the hard-
ware generated by the MATCH compiler [15]. The rest of the
paper is organized as follows. Section 2 presents an overview of
the MATCH compiler. Section 3 motivates the need for a bitwidth
analysis phase and presents our representation of integer and real
variables in the VHDL description of the hardware. Section 4 and
Section 5 describe our algorithm for precision and error analysis to
optimize the FPGA resources consumed. Section 6 describes our
memory packing algorithm to improve the performance of the gen-
erated hardware. We present some experimental results in Section
7 and conclude in Section 8.

2. OVERVIEW OF THE MATCH PROJECT

The work presented in this paper is part of the MATCH compiler
[13]. The MATCH compiler takes in the description of an appli-
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cation in MATLAB and partitions it into software to be executed
on general purpose and embedded processors and hardware to be
mapped to FPGAs. The hardware generated are targeted for the
Xilinx FPGAs on the Wildchild™™ board from Annapolis Micro
Systems. In this paper, we address the issues involved in generating
an efficient hardware once the frontend of the compiler has parti-
tioned the system into hardware and software [27]. In particular,
we focus on optimizing the FPGA resources in terms of number of
Configurable Logic Blocks (CLBs) used up by the instantiation of
various operators and registers and in improving the performance
of the system by reducing the total number of clock cycles required
for external memory accesses. Figure 1 shows an overview of
the MATCH compiler. The input MATLAB code is parsed in to
develop a MATLAB AST based on a grammer developed by us
[14]. Since MATLAB is a dynamically typed language, the type
and shape of the variables are unknown at compile time. Hence, a
compiler phase infers the type of the variables and dimensions of
the matrices and uses this information to scalarize the MATLAB
AST. The AST is then levelized wherein complex expressions are
broken down into simple expressions with at most three operands.
A dependancy analysis phase infers the control and data dependan-
cies present in the AST. A precision and error analysis phase infers
the optimum number of bits required for representing the variables
in the MATLAB AST and generates a resource optimized VHDL
AST. Finally, a memory packing phase packs more than one ar-
ray element into a single memory location depending on the array
precision and optimizes on the number of memory accesses. The
output VHDL code is then passed through commercial synthesis
and place and route tools to generate a netlist and bit-stream for
the FPGAs.

Scalarization Levelization

Type-Shape Analysis Dependence Analysis

MATLAB AST Precision and Error

Analysis

Input
MATLAB Code

Memory Packing

Output
VHDL Code

Figure 1. Overview of the Synthesis Framework

3. BITWIDTH ANALYSIS FOR HARDWARE
GENERATION

It is well known that when a hardware designer manually converts
a high level specification of an application into hardware, he can
take advantage of detailed knowledge of the bit level precision of
various variables in the application in order to implement an op-
timum hardware. In order to motivate the need for sophisticated
algorithms to synthesize hardware, we performed an experiment
on five MATLAB applications namely, Sobel transform, Motion
Estimation, Homogeneous Region Testing, IIR Filter and Matrix
Multiplication. We took each application and tried to hand map it
to FPGAs by writing an RTL VHDL code with the exact precision
needed for each variable. We next had our MATCH compiler with-
out the bitwidth analysis take the application and generate RTL
VHDL code automatically. This resulted in all variables in the
VHDL code being defined as 32 bit wide operands. This is because
high level languages used for system level design like MATLAB,
C, C++ and Java do not have the notion of bit level precision. In
the rest of the paper, we define such a hardware wherein all vari-
ables are mapped to 32 bit vectors as unoptimized. The VHDL
code generated is then input to the logic synthesis tool from Syn-
plicity and the place and route tool from Xilinx to generate the bit
stream for the WildChild board. Figure 2 shows the ratio of FPGA

1

o
Sobel  Motion Est. Homogeneous IR Filter  Matrix Mul
Region

Figure 2. Ratio of FPGA Resources Required for Compiler
generated hardware without our optimizations to hand opti-
mized hardware

resources in terms of Configurable Logic Blocks (CLBs) for com-
piler generated hardware [15] to hand generated optimized hard-
ware. As can be seen, the unoptimized hardware generated by the
compiler takes about a factor of 4 more resources than the hand
generated hardware. Table 1 shows the total number of CLB’s re-
quired by the benchmark designs on the Xilinx 4028 FPGA. For
the integer matrix multiplication, the unoptimized design required
591 CLB’s while a hand generated optimized hardware required
only 133 CLB’s. This is because the hand generated designs in-
stantiated exact precision operators as compared to the compiled
design. Hence, we require a bitwidth analysis phase to determine
the minimum number of bits required to represent a integer or a real
variable. Further, since MATLAB does not have a representation
for variables of different bitwidths, we require a representation for
integer and real variables of different precision in the output VHDL
code.

Table 1. Total number of CLB’s required by Hand optimized
and Compiler generated designs

Sobel | Motion | Homogeneous IR Matrix
Est. Region Test Filter | Mult.
Hand 199 205 39 220 304
Compiled 856 368 215 1071 591

3.1. Representation of Integer and Real Variables

All variables in the output RTL VHDL code are mapped to bit vec-
tors of type std_logic_vector of width as decided by the bitwidth
analysis phase. The most significant bit of the bit vector is reserved
for the sign bit for both integer and real variables. For integer vari-
ables, the value of the variable is converted to binary and directly
mapped to the bit vector. For real variables, the most widely used
representation is the IEEE floating point representation. Fig 3(a)
shows the MATLAB code for the multiplication of two real num-
bers. Figure 3(b) shows the variables represented in the IEEE
format where all variables are represented by 32 bits. Such a repre-
sentation is often avoided for reconfigurable computing platforms
because the floating point operators typically require too much area
to be practical. One of the accepted methods of performing frac-
tional operations is to compute the three components of floating
point result, sign, exponent and mantissa independently [9, 10].
But such systems do not have high clock rates and are also limited
by area [9]. One alternative representation is to use fixed point rep-
resentations. The main advantage of such a representation is that
all operations can be performed using integer operators resulting in
much less usage of FPGA resources.

We use a fixed point scheme in which real numbers are repre-
sented by both a integer part and a fractional part. The advantage
of such an approach can be seen from Figure 3(b) and (c) where
we require 32 bits to represent both 5.5 and 1399.75 with a floating
point representation while it takes only 4 bits to represent 5.5 and
13 bits to represent 1399.75 with a fixed point representation. This
will result in the instantiation of a 17 bit multiplier for the multipli-
cation in Figure 3 (c) as compared to a 64 bit multiplier if floating
point representation is used. Hence, the FPGA resources are opti-
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mally used. The main disadvantage of such a representation is that
the number of bits required for the integral part would be high if
the value range of the variable is high. This is acceptable for our
study since the dynamic range of all variables in almost all image
and signal processing applications is small. Another disadvantage
of such a representation is that since both the number of bits re-
quired for the integer part and the number of bits required for the
fractional part would vary for different variables, integer operators
would not give correct results as they require the decimal bits to be
perfectly alligned. One solution to this is to remember the number
of bits for the fractional part for each real variable and generate
conditional code so that integer operators could be used. We have
made an assumption that the number of bits required to represent
the fractional part is constant for all real variables while the num-
ber of bits required to represent the integer part can vary. Figure
4 shows that the multiplication of the two numbers using this as-
sumption requires integer operators. The middle column shows
that the multiplication involves a Xor operation on the sign bits and
a normal integer operation on the other bits. The last column of
Figure 4 shows the actual integer multiplication. Our algorithms
in the next section can accurately determine the number of bits re-
quired for the integer part of the real variable. Hence, the output of
the multiplication in the last column of Figure 4 is sampled so that
the first 5 bits is for the integer part of the result ¢ (since decimal
13 requires 5 bits) and the next 4 bits is sampled for the fractional
part (since both the variables a and b have 4 bits for the fractional
part). The main advantage of this representation is that different
variables will have different number of bits as required for their
representation unlike the floating point representation so that inte-
ger operators of the optimal precision would be instantiated leading
to resource savings.

‘We next present a precision analysis algorithm to determine the
minimum number of bits required to represent integer variables and
the integer part of real variables.

MATLAB Code Floating Point representation Fixed Point Representation
a=35.5;
> a=010000011 01100...
b=2545; |b=010000110 111117 | | ot Fract
c=atb: ¢=010001001 01011... bzll(l)%(l)llllllgull I
=1399.75; €=
(b) ©

Figure 3. Representation of Real Variables

s
a=5375 a=01010110 0000000
b=25 . 0000000x
c=a*b; 0000000
~13.4375 b =010 1000 1010110xxx
s 75 0000000xxxx
o 1010110xxxxx

¢ =0 01101 0111 —_—
S T3 s T 0110101110000

Figure 4. Example showing that Multiplication using our rep-
resentation uses integer operators

4. PRECISION ANALYSIS

In our representation of variables, the minimum number of bits re-
quired to represent integer variables and the integer part of real
variables is directly related to the maximum value that the vari-
able attains throughout the program run. Hence, precision analysis
or the minimum number of bits required to represent the integer
part of the variables can be inferred by value range propagation
[28]. We next discuss the value range propagation algorithm to ac-
curately determine the minimum number of bits required for the
integer part of the variables.

Proceedings of Design, Automation, and Test in Europe (DATE '01)
1530-1591/01 $10.00 © 2001 IEEE

Algorithm 1 Precision Analysis for Integer Benchmarks

Input: MATLAB AST with all variables defined as either Integer or Real
Output: VHDL AST with all variables defined as a bit vector with opti-
mum number of bits

Algorithm :

1. Levelize the MATLAB AST

2. Introduce temporaries so that integer x float are converted into

Sfloat x float.

ie. floatf=1 x 3.147

becomes float i’ = (float) i; float f =1i* x 3.147,

3. Create a data flow graph with a single static assignment prop-

erty.

4. Associate 3 structures with each variable in the AST :
oUp: represents the data range during backward propagation
eDown: represents the data range during forward propagation
e Actual: represents the actual data range = Up " Down.

S.Initialize each of these structures for each variable to <
—INTmaz, INTmae >
6. Read in target architecture features from a file so that memory
width and address width can be used to optimize on the precision
of the array elements.
7. do {
8.
Traverse the SSA data flow graph in the forward direction
and infer the value range of variables in the lhs of an assign-
ment expression

Calculate the data ranges for the variable being calcu-

lated

Note: Data ranges is to be calculated even for real vari-

ables

oFind the data range of the result if the transformation
is known, else, if the transformation is unknown, as
in library and function calls, leave the data values at
the maximum

eFor loop constructs, the data ranges for variables in
the body of the loop can be calculated by actually
traversing the loop. If loop bounds are unknown at
compile time, then all variables modified inside the
loop are assigned the maximum data range to ensure
program correctness

o A simple optimization which can be applied when the
loop body computations are linear is to find a closed
form expression in terms of the loop trip count and
the growth factor [7].

10.
Perform error Analysis by finding out the error of the lhs of
an assignment expression according to the transformations
given in Figure 5

11.
Traverse the SSA data flow graph in the backward direction
and infer the value range of variables in the rhs of an assign-
ment expression from similar transformations as in Step 9.

12.

}while (none of the data ranges change or for a fixed number of
iterations);
13. Change the symbol Table to reflect precision information.
14. Perform other Optimizations like Constant Propagation and Dead
Code Elimination.
15. Reflect changes in the VHDL AST so that all variables are repre-
sented as bit vectors.
16. Make modifications to the VHDL AST to account for commercial
High Level Synthesis Tool peculiarities
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4.1. Algorithm for Precision Analysis

Algorithm 1 determines the minimum number of bits required to
represent a variable. Step 1 of the algorithm levelizes the MAT-
LAB AST so that all assignment operations are converted to a three
operand format. This helps in formulating a series of transforma-
tions as shown in [5] which can now be applied on these state-
ments to infer the value range. To avoid converting induction vari-
ables used inside loops to be type promoted to real numbers, it is
necessary to use temporaries as shown in Step 2. Value range prop-
agation is simplified by the assumption that every use of a variable
has only one reaching definition. Hence, a dataflow graph with a
static single assignment (SSA) property is generated. Step 3 uses a
Array based SSA representation [8] wherein each array element is
renamed so that precision inferencing becomes more accurate.We
have implemented a forward and backward propagation algorithm
to determine the maximum value of each variable. The precision
analysis phase ends once the value range of all variables stabilizes.
Certain precision information can be derived from the target archi-
tecture for which VHDL is generated. For example, the memory
of the slave FPGA’s on the WildChild board is 16 bits wide and the
external memory has 2'® locations. Step 6 reads in this informa-
tion from an architecture file and uses it for inferring the precision
of address variables and array elements. An added benefit of Value
Range Propagation is in optimizations like Constant Propagation
[16] and Dead Code Elimination.

5. ERROR ANALYSIS

Though the value range propagation algorithm in the previous sec-
tion can determine the minimum number of bits required for the
integer part of the real variable, this is not true for the fractional
part of the real variable. This is because a floating point variable
can attain innumerable values between two integers. If we use less
number of bits to represent the fractional part, then we will be de-
creasing the resolution of the variable, thereby introducing an error
in computations. Hence, we require an error analysis phase to de-
termine the tolerable error.

5.1. Algorithm for Error Analysis

Step 10 of Algorithm 1 finds the error in the fixed point represen-
tation of each variable based on transformations outlined in Fig-
ure 5. Most image processing applications take as input an image
and output another modified image. The actual algorithm performs
some floating point operations on these input images to give us the
final output image. Hence, the error tolerance in such applications
is very high. We can infer the number of resolution bits for real
numbers when :

e The compiler assumes that since the intermediate value of
254.99 and 254.01 would result in the same value of 254 for
the output data (since output image is an integer), we can have
a tolerable error of 1 in the intermediate values

e The user specifies the tolerable error in the pixels of the output
image

e The user uses printf statements in the MATLAB code and de-
fines the output resolution

e The compiler assumes that since the code was to be executed
as a sequential MATLAB code which has a default resolution
of 4, all output variables have a resolution of 4 and back prop-
agate this information in the error analysis phase to determine
the resolution of intermediate real variables

Hence, the tolerable error for the intermediate real variable used in
calculating the output pixel is determined. The forward propaga-
tion algorithm 1 uses the transformations outlined in Figure 5 to

find out the error in the calculation of the intermediate real vari-
ables, both because of its representation using lesser number of
bits and also because of its computation from other real variables
which have errors in their representation. This error is in terms
of the number of bits ¢ used in representing the fractional part of
the variable. Both the information, namely the tolerable error and
the error due to computation using less number of bits is used to
determine the minimum number of bits required to represent the
variable. Hence, an error analysis will give us the minimum num-
ber of bits required to represent the fractional part of the real num-
bers while the precision analysis algorithm in the previous section
will give us the minimum number of bits required to represent the
integer part of the real number.

Further, since most image processing applications have calls to
sin, cos, exp and sqrt functions, it is necessary to instantiate lookup
tables for these functions in the FPGA core, else, the time taken to
transfer data out of the FPGA, execute these functions on the gen-
eral purpose processor and bring back the data would result in a
performance bottleneck. To instantiate a lookup table for the func-
tion y = cos(x), it can be seen that if the precision of variable x
is p bits, then, the maximum number of points in the X axis that
variable x can take is 2P. Hence, the lookup table would have 27
rows. Also, if the resolution of all floating point variables is found
out by the error analysis stage to be r bits, then, since cos(x) attains
values between -1 and +1, all rows in the lookup table would be r
bits wide. Hence, for the unoptimized hardware without error anal-
ysis, the lookup table would have 232 rows of 32 bits width. On the
other hand, after our error analysis phase has decided the optimum
resolution to be r bits, the size of the table would be reduced to 2"
rows of r bits wide resulting in savings in FPGA resources.

6. MEMORY PACKING

It is well known that most of the computations in image processing
applications involve memory accesses. When such applications are
compiled for a system with an external memory as is true for most
commercially available FPGA boards, memory access becomes a
performance bottleneck. Hence, reducing the number of external
memory accesses could lead to performance gains. An example
image processing code for Region Splitting in MATLAB is given
in Figure 6. An important observation in this code is that each
iteration of the loop makes a memory access which is independent
of other loop iterations. Also, the memory access patterns are uni-
form. Most image processing applications that we considered have
characteristics which are similar to Figure 6, namely no loop car-
ried dependence and uniform memory access. If these applications
are targeted for execution on commercial FPGA boards with an
external memory as in the WildChild and the WildStar board from
Annapolis Micro Systems, then each memory access could take as
long as 3-4 clock cycles on any of these boards. One way of im-
proving the performance is pipelining the memory accesses [12].
Yet another method which can be implemented over pipelining is
by packing more than one array element into the same memory
location. For example, the WildChild architecture has an external
memory which is 32 bits wide for PEQ. In Figure 6, if we assume
that the image a and b are in a gray scale format and have a value
range of < 0,255 >, then the precision of the images is 8 bits
and we can pack upto 4 array elements in one memory location.
In the Region Splitting code shown, since the loop iterations are
independent, we can unroll the loop by a factor of 4 so that in each
loop iteration, there are 4 different array element accesses which
have the same physical memory locations. Hence, the total num-
ber of memory access is decreased by a factor of 4 reducing the
total number of clock cycles.

6.1. Algorithm for Memory Packing

Algorithm 2 finds the optimum Packing Order (PO) for each array,
where PO is defined by the maximum number of array elements
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If we use only 7 bits for decimal representation instead of /NF number of
bits, then the error would be :
—(t+1) 4 o—=(t42) 4 o—=(t43) 4 ... 4 o
—2—(t+1)(1+ 14 ZLZ 44 oo
(t+1)( )

ml»—A

=2t
rep(a) is the representation of variable a in our representation

e a=(float) b/* b is an integer */
= €4 =0

e float a =7.3245658
= rep(a) =a+€q
where €, < 271

e a=b+c
= rep(a) = rep(b) + rep(c)
=b+e€,+Cc+e€e
=(b+c)+(ep + €c)
=a+e€q
Hence, € = €5 + €¢

e a=b-c
= rep(a) = rep(b) - rep(c)
=b+e€,-Cc+ec
=((b-0)+(ep +€)
=a+e€q
Hence, € = €; + €¢

e a=bXc
= rep(a) =rep(b) X rep(c) + €
This € arises due to rounding of/truncation of the 27 bits generated on
multiplication to # bits.
Hence, rep(a) =(b+€p) X (C+€: )+ €
=bc+(bec+cep+e)
=a+eéq
Hence, ¢, < rep(b) X €. +rep(c) X €, + 27t

oaé

= (L)

= (Mreny(1 4 oyt
=<t>< - )
—%— et P
=a+e€

Hence, ea = %(eb — %ec)

Figure 5. Subset of Transformations for Error Analysis

for j=MI1:1:M2
fori=NI:1:N2
sum = sum + a[j][i] ;
sum =sum/ ((N2-N1)* (M2 -Ml));
forj=MI1:1:M2
fori=NI:1: N2
b[jl[i] = (unsigned char) sum ;

Figure 6. Example MATLAB code showing application of Re-

gion Splitting
fori=1:4:20
. a[i+2] = b[i] + c[i+1];
fori=1:1:20
- o L a[i+3] =b{i+1] + c[i+2];
enz[”z] =blil+ cli+1]; ali+4] = bli+2] + c[i+3];

a[i+5] = b[i+3] + c[i+4];
end

Figure 7. Example showing loop unrolled for Memory Packing
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that can be packed in each memory location. The minimum num-
ber of bits required by the array elements can be determined either
by : 1 parsing the input image files provided, 2 provided by the
user via directives and 3 computed by the precision analysis phase.
Since most of the images read in from MATLAB are stored in a 2-
dimensional array, the precision of the input images is inferred by
parsing the input matrices to get the maximum value of the array
elements. Figure 7 shows a typical loop described in MATLAB
and its unrolled version. As memory packing requires consecutive
array access across loops, step 8 of algorithm 2, finds out the array
access patterns accross loop iterations. Since the maximum unroll
factor of the loop can be equal to the array PO, we need to find the
array access pattern of the first PO iterations of the loop. The unroll
factor of each memory access in a loop is defined by the number of
array element accesses across loops which lie in the same physical
memory location. To minimize the number of memory accesses,
step 12 unrolls the loop by the maximum unroll factor. For the un-
rolled loop in Figure 7, both the arrays a and ¢ require two memory
accesses while array b requires one memory access in a single it-
eration of the loop. Thus, the total number of memory accesses is
reduced by 55 % due to memory packing.

Algorithm 2 Memory Packing Algorithm

Input: MATLAB AST with all array elements mapped to a different
memory address
Output: VHDL AST with certain array element packed into the same
memory location
Algorithm :
1. Parse input data files or parse in user directives or use algorithm T to
get precision of input arrays
2. Use algorithm 1 to get precision of intermediate arrays
3. Decide Array Packing Order (APO) of each array where :
array APO = floor(Memory width / array precision)
4. actual Packing Order (PO) = max(APO)
5. for all innermost loops in the application

6. Perform a simple Dependance Analysis to check for loop carried
dependancies

7. for all array accesses in a loop

8. Calculate the set (X0, X1, -+, Xpo—_1) where

X is the array element access in the ith iteration of the loop

9. Calculate the set X; % PO which is the array element access
pattern in the loop

10. Calculate maximum unroll factor of the loops so that in each

loop iteration, this particular array access when unrolled leads to only 1
packed memory access

11. end for

12. Final Unroll Factor = gcd(maximum of all the individual array
access unroll factors, loop stop value)

13. Unroll the loop in the MATLAB AST

14. Mark all array accesses in the loop which are redundant

15.  end for

16. Perform all other Optimizations in the MATLAB AST

17. In creation of the VHDL AST, all memory addresses are changed to
(memory address) % PO

18. Dead Code elimination removes all redundant address accesses in
VHDL AST

7. EXPERIMENTAL RESULTS

The experimental setup consists of the precision and error analy-
sis algorithm followed by the memory packing algorithm imple-
mented in the framework of the MATCH compiler [13]. Ex-
periments were carried out on a set of widely used image pro-
cessing applications like Transitive Closure, Sobel Edge Detec-
tor, Motion Estimation, Image Thresholding, Homogeneous Re-
gion Testing, Matrix multiplication, Vector sum, Inverse Hough
Transform, Hough Transform, IIR Filter, Gaussian Noise Gener-
ator and Laplacian Noise Generator. Of these, the first seven are

TEEE .2

COMPUTER
SOCIETY



Table 2. Experimental Results showing efficient FPGA resource usage and improvement in performance for benchmark algorithms,
* : The design could not be placed and routed on the Xilinx 4028, - : Design not available

unoptimized with precision with precision analysis manually generated
hardware analysis and memory packing hardware

Benchmarks CLBs | Freq. | Time | CLBs | Freq. | Time | CLBs | Freq. | Time | CLBs | Freq. | Time
Sobel 856 20.7 * 483 23.6 0.41 561 21.8 0.38 199 18.6 | 0.06
Image Thresholding 162 28.4 | 0.09 73 29.7 0.07 144 20.0 | 0.05 41 27.3 0.04
Homogeneous 215 25.6 | 0.11 93 31.7 0.08 149 28.2 | 0.06 39 26.4 | 0.02
Matrix Mult. 591 20.1 * 133 25.1 12.61 192 21.3 5.7 304 19.9 4.6

Closure 1177 19.3 * 164 241 | 12.71 431 21.7 0.88 - - -
Vector Sum 116 32.7 0.06 86 38.4 0.05 132 35.1 0.02 41 28.3 0.01

integer benchmarks and the last five are floating point benchmarks.
A detailed description of these algorithms can be found in [26].
For each benchmark, first a description of the algorithm in MAT-
LAB was passed through our compiler without any optimizations
to get the unoptimized hardware. Secondly, the algorithm in MAT-
LAB was passed through our compiler with the precision, error and
memory packing phases to get the optimized hardware. The output
of our compiler was the description of a hardware in VHDL. We
used the Synplify tools from Synplicity to get the netlist and the Al-
liance tools from Xilinx to get the FPGA bit stream for the Xilinx
XC4028 FPGA with an external memory on the WildChild™™
board from Annapolis Micro Systems.

Figure 8 shows that on an average, the designs consume about
a factor of 5 less FPGA resources after our precision analysis phase
as compared to the unoptimized hardware. It can be seen that for
some benchmarks like /IR Filter, the optimized hardware uses a
factor of 9.5 less resources than the unoptimized hardware. Fur-
ther, Figure 2 shows that our manually designed hardware for /IR
Filter consumes resources which are a factor of 4.7 less than the
unoptimized hardware, which implies that our automated tool gen-
erates a more resource efficient hardware, by almost a factor of 2,
as compared to even a manually designed hardware. The reason for
this is that though it is easy to determine the minimum number of
bits manually for the input and the output variables even for com-
plex designs, computing the precision for intermediate variables for
hardware spanning over a 1000 lines of VHDL code is very tedious
and error prone. This is because, the user has to mimick the pre-
cision analysis phase in propagating value ranges throughout the
code. Hence, it can be inferred from Figure 8 that for large designs,
our compiler would generate efficient hardware which would be as
good as or better than a manually designed one. Table 2 shows
the actual CLBs required and the execution time for some designs
after the optimization phases. It can be seen that the execution time
of the designs decreases by about 20 % after the precision analysis
phase. This is because the number of CLBs required for the logic
decreases after this phase so that the commercial high level syn-
thesis tools can route designs in a more efficient manner leading to
increased frequency of execution.

Figure 9 shows the average reduction in FPGA resources after
our combined precision and error analysis algorithm to be a factor
of 3.5 as compared to the unoptimized hardware for applications
with floating point operations. The reason for these savings is be-
cause we were able to use a unified approach of precision and error
analysis to determine the minimum number of bits required for real
variables. The final savings in FPGA resources would be far more
than the number shown. This is because our error analysis phase
would also determine the minimum size of the sin, cos, sqrt, log
lookup tables so that the error is minimized. For example, without
any error analysis, the user would have instantiated a cos lookup
table with 232 rows of 32 bit width for the Inverse Hough Trans-
form MATLAB code for execution on an FPGA board. Our error
analysis phase infers the minimum resolution of real variables to
be 14 for this application. Hence, our compiler would instantiate

a cos lookup table of 214 rows with width of 14 bits which would
lead to a huge savings of FPGA resources.

Figure 10 shows that on an average, our optimized hardware
after memory packing is faster by 35 %. This is because our op-
timization tries to reduce the total number of accesses to the ex-
ternal memory in the program. For most applications which are
easily parallelizable like Vector Sum, we can get almost 60 % re-
duction in the execution times. Column 4 of Table 2 shows that
the resources consumed after the memory packing phase goes up
by almost 50 %. This is because our memory packing algorithm
unrolls the MATLAB for loops to extract more parallelism. Hence,
there is clearly a resource versus performance tradeoff. For ap-
plications like Sobel Transform, the major part of the algorithm
is computed inside a loop with a huge list of statements, which
would have been quadrupled if it were unrolled for memory pack-
ing. Most high level syntheis tools like Synplify are not able to per-
form resource sharing optimally in such conditions. Hence, though
unrolling would improve the hardware performance, the packing
algorithm is selectively applied in the Sobel application resulting
in an improvement of only 8 %.

Table 2 shows the details of our experimental results includ-
ing the CLB count, clock frequency of the synthesized design and
the execution time of the design on the WildChild board for vari-
ous benchmark applications for the hardware without the optimiza-
tions, the optimized hardware afyer precision and error analysis,
for the optimized hardware generated after precision analysis and
memory packing and for the manually generated optimized hard-
ware. It can be seen from Table 2 that the manually generated hard-
ware is better than the hardware generated by the optimizing com-
piler by almost a factor of 2.7. This is because the manually gener-
ated hardware makes use of the fact that the external memory ac-
cesses on the WildChild board can be pipelined. Hence, pipelined
memory reads and writes take one clock cycle as compared to three
clock cycles for our compiler generated designs. Since a pipelin-
ing algorithm [11] can be implemented after memory packing, we
expect the designs generated by the compiler after the pipelining
phase has been integrated to the current MATCH framework to be
as good as the manually generated hardware.
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Figure 8. Ratio of the FPGA resources in terms of CLBs re-
quired by the unoptimized hardware to that required by the
optimized hardware after precision analysis for integer appli-
cations
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Figure 9. Ratio of the FPGA resources in terms of CLBs re-
quired by the unoptimized hardware to that required by the
optimized hardware after precision and error analysis for float-
ing point applications
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Figure 10. Percentage reduction in the execution time after
memory packing

8. CONCLUSION

We have presented a framework for generating an efficient hard-
ware for image/signal processing applications described in MAT-
LAB. We have proposed a representation of floating point variables
which would lead to optimal usage of FPGA resources. Also, we
have proposed a precision and error analysis algorithm to generate
hardware with an average resource requirement reduced by a factor
of 5 as compared to an unoptimized hardware before our analysis.
We have also proposed a memory packing algorithm to generate
faster hardware requiring an average of 35 % less execution time.
We have proven the strength of the optimizing compiler by syn-
thesizing hardware for certaing image processing algorithms that
are as good as the manually designed hardware in performance and
resource needs.
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