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Abstract—Millions of DNA sequences (reads) are generated
by Next Generation Sequencing machines everyday. There
is a need for high performance algorithms to map these
sequences to the reference genome to identify single nucleotide
polymorphisms or rare transcripts to fulfill the dream of per-
sonalized medicine. In this paper, we present a high-throughput
parallel sequence mapping program pFANGS. pFANGS is
designed to find all the matches of a query sequence in the
reference genome tolerating a large number of mismatches
or insertions/deletions. pFANGS partitions the computational
workload and data among all the processes and employs load-
balancing mechanisms to ensure better process efficiency. Our
experiments show that, with 512 processors, we are able to map
approximately 31 million 454/Roche queries of length 500 each
to a reference human genome per hour allowing 5 mismatches
or insertion/deletions at full sensitivity. We also report and
compare the performance results of two alternative parallel
implementations of pFANGS: a shared memory OpenMP
implementation and a MPI-OpenMP hybrid implementation.

Keywords-sequence mapping; next generation sequencers;
454 sequencers; parallel computing

I. INTRODUCTION

DNA sequencing is used in a variety of applications in
medicine, such as SNP discovery, comparative genomics,
gene expression, genotyping, metagenomics and personal
genomics. Recent developments in Next Generation Se-
quencing (NGS) technology have resulted in affordable
desktop-sized sequencers with low running costs and high
throughput. These sequencers produce small fragments
(reads) of the genome being sequenced as a result of
the sequencing process. For example, the Illumina-Solexa
system can generate 50 million sequences of length 30-50
nucleotides in just 3 days [7]. The Roche-454 system can
generate 400, 000 sequences of length 250-500 nucleotides
in a 7.5 hour run [14]. The ABI-SOLiD system can also
generate data at a similar rate [7]. NGS is a rapidly advanc-
ing field with a very high rate of increase in throughput. It is
speculated that eventually the running costs of sequencing
a genome will be as low as $1000 [16]. This will trigger
the use of such systems in laboratories around the world.
The computational demands for processing NGS data are

tremendous and far exceed current capabilities. In fact,
without substantial advances in high-performance, scalable
algorithms, very little progress would be made to extract
knowledge from such a rich set of data. Therefore, there
is a need to design powerful algorithms and systems which
can efficiently handle the computational challenges posed by
NGSs.

An important step in many of the applications mentioned
above is mapping a set of read sequences to a canonical
genomic database. A typical genomic database, for instance,
the human genome, can be 3 billion nucleotides in length.
The length of the read sequences depends on the sequencing
technology. In this article, we focus on the mapping of
the longer reads produced by Roche-454 system. A 454
sequencer was recently used for sequencing the DNA se-
quence of James D. Watson to 7.4 fold redundancy in
just two months [17]. The authors used BLAT [8] to map
the 454 reads to a reference genome, which is not at par
with the sequencing speed. Moreover, BLAT is designed for
local alignment, while sequence mapping requires the entire
length of a query to be mapped. There have been consider-
able efforts to develop faster sequence mapping tools which
can match the speed of Next Generation Sequencers, but
most of them have been for reads generated by Illumina-
Solexa machines. Even though 454 sequencers are widely
used by researchers, there has not been sufficient research
to develop faster tools for mapping 454 reads. To the best of
our knowledge, the only algorithms which are specifically
designed for 454 data are BWA [9] and FANGS [12].
BWA is a package based on Burrows-Wheeler Transform
(BWT). It supports gapped global alignment with respect
to queries and is one of the fastest short read alignment
algorithms while also finding suboptimal matches. However,
[12] demostrates that BWA suffers from low sensitivity.
FANGS dynamically reduces the search space by using q-
gram filtering and the pigeonhole principle, to rapidly map
454 reads onto a reference genome. FANGS allows a large
number of mismatches and insertion/deletions. It tries to find
all matches of a read in the reference genome and maps



nearly 100% of the reads. FANGS is shown to be upto an
order of magnitude faster than the state-of-the-art techniques
for 454 reads as long as the number of mismatches and
insertion/deletions allowed is small. However, the execution
time of FANGS increases dramatically with the increase
in number of mismatches and insertion/deletions allowed.
Therefore, there is a need to design powerful high through-
put parallel programs and systems which can efficiently and
accurately map 454 reads.

To the best of our knowledge, very little work has been
done to parallelize sequence mapping algorithms. The ap-
proaches to parallelize high throughput sequence mapping
tools typically include running a separate instance of the
tool on each compute node and dividing the queries equally
among these nodes. If the genome database occupies only
a small amount of memory, this approach can give close
to linear speedups. However, for large databases, like the
human genome, the amount of memory required may not
be available on one node. Moreover, the large memory
requirement is also prone to having cache-misses and page-
faults. While these sequential and parallel tools demonstrate
a significant performance improvement over earlier sequence
mapping tools, the throughput requirement of NGSs is also
increasing rapidly and developing faster tools is constantly
needed.

In this article, we describe our high-throughput paral-
lel sequence mapping program pFANGS, a parallel Fast
Algorithm for Next Generation Sequencers. pFANGS is
a parallel implementation of FANGS. We discuss three
parallel implementations of FANGS: (a) a shared mem-
ory task-parallel implementation using OpenMP, (b) an
MPI-OpenMP task-parallel hybrid implementation, and (c)
pFANGS: a fully data- and task-parallel MPI implementation
(Section V). The first two implementations are based on
query segmentation principle. The third implementation fully
distributes the computational workload and data among all
the processes and employs load-balancing mechanisms to
ensure better process efficiency. We present the performance
results in Section VI.

In comparison with existing tools, the most significant
features of pFANGS are:
• High flexibility. It allows a large number of mismatches

and insertions/deletions in mapping.
• High Sensitivity. It tries to find all the matches for each

query and maps nearly 100% of the queries.
• Ability to handle large datasets. Using pFANGS, we

have mapped approximately 31 Million queries of
length 500 each to a reference human genome per
hour allowing 5 mismatch or insertion/deletion at full
sensitivity.

• Nearly linear scalability. With 512 processors, pFANGS
achieves a speedup of upto 225 over the the time taken
with 2 processors.

The remainder of the paper is organized as follows. We

give a formal definition of the problem in Section II followed
by a background in Section III. Section IV describes the
sequential FANGS algorithm in detail. We describe our
parallel implementations in Section V followed by results
in Section VI and conclusion in Section VII.

II. PROBLEM DEFINITION

The sequence alignment problem has been studied in
great detail in literature. However, it has become even more
significant in the wake of the new sequencing technologies
in the form of Next Generation Sequencers. Consider, for
example, using a 454 sequencer [14] to sequence a human
genome. It produces a collection of small DNA fragments
called reads. These reads are about 250-500 bases in length.
Now, we need to search a read, Q, in the database consisting
of a reference human genome, G. The database and the reads
are from the genomes of different human beings. Moreover,
there can be sequencing errors also. Hence, we may not be
able to find an exact match of the read Q in the database.
However, since both G and Q are from the genomes of the
same species, we should be able to find a near-exact match
of Q in G. Hence, while searching for Q in G, we only
look for alignments which have less than a certain number
of mismatches and insertion/deletions.

Given a string S over a finite alphabet Σ, we use |S| to
refer to the length of S, S[i] to denote the ith character
of S and S[i, j] to denote the substring of S which starts at
position i and ends at position j. A q-gram of S is defined as
a substring of S of length q > 0. A q-hit between two strings
S1 and S2 is defined as the tuple (x, y) such that S1[x :
x + q − 1] = S2[y : y + q − 1]. The unit cost edit distance
between two strings S1 and S2 is defined as the minimum
number of substitutions, insertions and deletions required to
convert S1 to S2 [15]. We will use edist(S1, S2) to refer to
the unit cost edit distance between S1 and S2. For a string S,
we will refer to the natural decimal representation of S over
Σ as dec(S,Σ). For example, for Σ = {A,C,G, T}, the
nucleotides A,C,G, T are mapped to the numbers 0, 1, 2, 3
respectively. Therefore:

f(A) = 0, f(C) = 1, f(G) = 2, f(T ) = 3,

And, dec(S, {A,C,G, T}) =
∑|S|−1

i=0 4if(S[i])
This brings us to the formal definition of the sequence

mapping problem. We can represent every genomic sequence
as a string over the alphabet Σ = {A,C,G, T}. Given a
genomic database G of subject sequences {S1, S2, · · ·, Sl},
a query sequence (read) Q of length m and an integer n, we
are required to find all substrings from G, such that for each
substring B, edist(B,Q) ≤ n. We will denote the integer
n as the maxEditDist parameter.

III. BACKGROUND

Since the arrival of BLAST [1] in 1990, many hash-table
based sequence alignment methods have been proposed.



These include extremely popular tools like BLAT [8] and
SSAHA [13]. BLAST has been the most popular tool for
sequence alignment. However, it usually takes several hun-
dreds of days for the data generated by the latest sequencers
in just a few hours and hence is not a feasible option.

Recently, the advent of Next Generation Sequencers has
inpired the researchers to develop high-speed sequence map-
ping tools. To the best of our knowledge, the only tools
for sequence mapping of 454-Roche sequencing reads are
FANGS [12] and BWA [9].

Since BLAST is the most popular sequence alignment
tool, several attempts have been made to parallelize it. Early
attempts at parallelization have used query segmentation
approach [4], [5], where individual compute nodes inde-
pendently search disjoint sets of queries against the whole
database. This technique works well when the database can
fit in the memory of a compute node. However, this ap-
proach suffers from caching and paging overheads when the
database requires large amount of memory as the database is
randomly accessed. This led to the development of database
segmentation [2], [6], [10], [11], where the genomic database
is evenly distributed across compute nodes. This reduces
the caching and paging overheads as each compute node
uses a small amount of memory for its part of the database.
Database segmentation divides the database into mutually
exclusive parts and assigns one part to each node. Every
node searches for the query in its own part of the database
and results from all processes are merged in the end. In
particular, mpiBLAST [6] uses a master-worker paradigm
in which the master gives each worker a batch of queries
to process. Once a worker finishes its batch of queries, it
notifies the master. If there are more queries to be processed,
the master sends another batch of queries to the worker.

Six parallelization methods for short sequence mapping
algorithms are proposed in [3]. The methods are general
and should work for most hashing and indexing based
algorithms. The first three methods are: (i) Partition Read
Only (PRO) partitions the reads into equal parts and sends
each part to one processing node. Each node keeps its own
copy of the index of the whole genome. This method is
useful to match very large number of reads to a relatively
short reference genome. If the genome is large, the index
may not fit in the memory available on one node. (ii)
Partition Genome Only (PGO) partitions the genome equally
amongst all processing nodes. Each node creates the index of
only the assigned part of the genome and processes all reads
against it. PGO performs well when the genome size is large
and the number of reads is small but does not scale well if
the number of reads is large. (iii) Suffix Based Assignment
(SBA) assigns a set of suffixes to each processing node
and makes them only responsible for genome and read
sequences that end with the corresponding suffixes. The
other methods are combinations of the first three methods.
The authors compare the scalability of the proposed methods

using theoretical analysis and experimentation using SOLiD
System Color Space Mapping Tool.

IV. FANGS

All the parallelization methods mentioned above are
coarse-grained in the sense that they treat the sequential
algorithm as one application and run separate instances of
the sequential application on different parts of the queryset
and the database. Many of the hashing and indexing based
algorithms including FANGS essentially have four stages:
1) Creating the index of the database, 2) Finding hits in the
database based on the index, 3) Reducing the number of
hits to be processed using a filtering criteria, 4) Processing
the list of hits remaining to get the final mapping. In
this paper, we exploit this generic structure to achieve a
more fine-grained parallelization. We parallelize each stage
separately and perform load balancing between stages to
achieve very high throughputs. Although we demonstrate
our parallelization techniques using FANGS, they should be
applicable to most hashing and indexing based algorithms.
In this section, we describe the various stages of FANGS.

Preprocessing step: Creation of the q-gram index - We
preprocess the sequences in the database by breaking them
into non-overlapping q-grams and store the location of each
q-gram in the q-gram index. We will refer to the q-gram
index as the index-table. We refer to the size of these
non-overlapping q-grams, q, as tileSize. Each q-gram t can
be uniquely mapped to a corresponding integer dec(t,Σ)
as defined in Section II. For each q-gram t, we calculate
two values: (1) tileHead(t) = dec(t[1 : 12],Σ) and (2)
tileTail(t) = dec(t[13 : q],Σ). The index-table consists
of two arrays. The first array occurrenceTable stores (i) the
location of t[1 : 12] in the database G and (ii) tileTail(t)
for each q-gram. Hence, occurrenceTable contains the con-
catenation of lists L(t[1 : 12]) = {i, tileTail(G[i : i + q −
1])|G[i : i + 11] = t[1 : 12]}, where t is a q-gram, that is
t ∈ Σq . For each q-gram t ∈ Σq , the position tileHead(t)
in the second array lookupTable contains the pointer p(t),
which points to the beginning of the correponding list
L(t[1 : 12]) in the occurrenceTable; and the count c(t) of the
number of occurences of t[1 : 12] in G. Hence the length
of the lookupTable is |Σ|12. In order to find hits for a q-
gram t, it first indexes the lookupTable with tileHead(t).
Let L(t[1 : 12]) be the corresponding list. The q-hits can
be found by traversing through the list and outputting those
locations for which tileTail(t) matches. Note that creation
of index need to be done only once for a given value of q.
After that, we can process any number of queries.

GetHits - The algorithm takes each overlapping q-gram
in the query and finds the locations of all occurrence of the
q-gram in the database using the index-table. The algorithm
creates a q-hit with each location and adds it to the hitList.
Each q-hit consists of two values - starting position of the
q-gram in the query (qStart) and in the database (dStart).



FindRegions - FANGS uses the following corollary to
filter out non-homologous regions.

Corollary: Given a query Q[1..m] and database G[1..L]
(m < L). For all substrings α of G such that edist(Q,α) <
n, ∃x, y such that Q[x : x+q−1] = α[y : y+q−1], Q[x+q :
x+ 2q − 1] = α[y + q : y + 2q − 1], · · · , Q[x+ (T − 1)q :
x+Tq− 1] = α[y+ (T − 1)q : y+Tq− 1]. In other words
Q and α share a common substring of length T q-grams,
where T is given by:

T = b
b m

n+1c − (q − 1)
q

c

The substring α is called a homologous region of Q in
G. Using the q-hits, FANGS finds regions in the database
which have a common substring of length T q-grams. This
filtering criteria significantly reduces the search space for
finding homologous regions.

CheckRegions - Each potential homologous region is
further processed by using an adaptation of the Needleman-
Wunsch algorithm to check if the region actually has an edit
distance ≤ n.

The above algorithm, though very fast, is still not at par
with the current sequencing speeds. Hence there is a need
to parallelize the algorithm. For the human genome, the
algorithm needs 1GB memory for the index-table. Moreover,
it also needs to keep the database G in memory as it needs
the database to create the index-table and also to examine
the candidate homologous regions in the end. Hence, the
algorithm requires about 4.5GB memory for mapping reads
to a reference human genome. This large amount of memory
usage can potentially lead to a number of cache-misses and
page-faults due to random access and hence slows down
the execution. Hence, we need to distribute both the index
and the database across processor nodes in order to run it
efficiently on a cluster.

V. PARALLEL APPROACHES

In this section, we investigate three parallelization ap-
proaches for FANGS: (a) a shared memory task-parallel
implementation using OpenMP, (b) an MPI-OpenMP task-
parallel hybrid implementation, and (c) a fully data- and
task-parallel MPI implementation called pFANGS.

A. Shared Memory Parallel Implementation

Since the human genome database occupies significant
amount of memory, a shared memory parallel implementa-
tion seems like a natural choice as we can load both index
and database in the shared memory. The target platform
is the parallel machine equipped with multiple CPU cores
sharing a large sized main memory. We adopt the query
segmentation strategy in which each thread takes a subset
of the queries and processes them independently. In other
words, we parallelize the outermost loop of the sequen-
tial algorithm. The algorithm divides the queries equally

amongst all threads. All the threads access the same copy of
the database and the index-table stored in shared memory.
Each thread uses FANGS to perform the alignments and
stores the results in the localOutputList data structure. The
globalOutputList is shared across all threads. Once a thread
finishes processing all its queries it acquires exclusive access
to the globalOutputList and concatenates its localOutputList
to it. After all the children threads have merged their results
to the global list, the parent thread writes all the outputs to
the output file.

Accessing the shared data structures, such as genome
database, index table, and globalOutputList, must be serial-
ized in order to achieve data atomicity and cache coherence.
This can become a major performance bottleneck as the
number of threads increase.

B. MPI-OpenMP Hybrid Implementation

In order to overcome the drawbacks of the shared memory
approach, we have also designed an MPI-OpenMP hy-
brid approach. This approach targets the parallel computers
equipped with multiple SMP compute nodes interconnected
with a high speed communication network and the memory
in each node is not directly accessible to a remote node. In
this hybrid approach, the index-table is built independently
in each compute node. All processes running on the same
node share the index-table by accessing the shared memory.
The queries are evenly assigned to the MPI processes across
all compute nodes. The alignment outputs produced at each
node are saved locally, which are later sent to the root
process. The root process concatenates all the partial results
and writes to the output file.

There is a single MPI process running on each compute
node and OpenMP is used to enable thread parallelism using
all cores in each node. Even though the memory size per
processing core is small, the combined shared memory of all
cores on a node is sufficient to hold both the database and the
index-table. Compared to the shared-memory method, this
approach alleviates the congestion problem by reducing the
number of processes accessing the shared memory. However,
since we are using more than 4GB of the memory on each
node, the problem of cache misses is still unsolved.

C. pFANGS: Fully Data and Task Distributed MPI Imple-
mentation

The above hybrid implementation may not be very scal-
able as it requires about 4.5GB memory per node. In this
section we describe a completely task and data parallel MPI
implementation, named pFANGS.

The idea is to distribute the entire database and the index-
table equally among all MPI processes. Recall that the
genomic database is available as a set of sequences {S1,
S2, · · ·, Sl}. As a preprocessing step, for each sequence
Si,we remove |Si|mod q nucleotides from the end so that
the length of each sequence is a multiple of q. Then we



store all the sequences in a file named genomeFile by
concatenating the sequences. To keep track of the positions
of these sequences, we also maintain a metadata file that
stores the name and length of each sequence.

PFANGS starts by having each process read an equal
contiguous portion of the genomeFile. For example, if the
length of the file is L and there are p processes, process
0 will read the first L

p nucleotides, process 1 will read the
second L

p nucleotides and so on. Recall that the length of
the lookupTable is 412. In order to create the index-table in a
distributed manner, process 0 is responsible for the first 412

p
entries of the lookupTable and the corresponding part of the
occurrenceTable, process 1 is responsible for the second 412

p
entries of the lookupTable and so on. Each process creates
non-overlapping q-grams from its chunk of the database
and sends each q-gram to the process responsible for the
corresponding part of the index-table. After receiving all the
q-grams, each process creates its part of the index-table. This
way we create the index-table in a distributed manner. Each
process discards its chunk of the database read after the
creation of the index-table. In the query processing phase,
the queries are equally divided to all processes. This phase
is divided into five stages.

GetHits - Each MPI process takes its assigned queries
and finds all the overlapping q-grams. Each q-gram is
represented using three numbers: tileHead, tileTail and
queryId; and stored in an array. The array is sorted ac-
cording to the tileHead value. Hence, the q-grams whose
corresponding index-table entries are on one process are
located in contiguous locations in the array. The process
then sends each q-gram to the process which has the cor-
responding part of the index-table. It also receives q-grams
which correspond to its part of the index-table. For all these
q-grams, it hashes the corresponding hits using the index-
table. Each hit consists of three values: the database location
(dStart) the query location (qStart) and the queryId.

RedistributeHits - We redistribute the hits across all pro-
cesses such that after redistribution, all hits corresponding
to one query are on one process and hits are approximately
evenly divided across all processes.

FindRegions - Every process processes all the hits for each
assigned query to obtain the candidate homologous regions.
A candidate homologous regions consists of three numbers:
(1) dBegin, (2) dEnd and (3) queryId, where dBegin and
dEnd are the start and end positions of the candidate region
in the database.

RedistributeRegions - The candidate homologous regions
are redistributed across all processes such that the number of
regions on each process is approximately equal and regions
with close dBegin values are on the same process. In order
to do this, we perform a global bucket sort on all the regions
across all processes based on the dBegin value. Then we
divide the sorted list of regions into equal parts and assign
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Figure 1. Number of queries mapped per hour to a reference human
genome using the shared memory OpenMP implementation for different
number of processes and different values of maxEditDist, n. Each query is
500 nucleotides long.

6

8

10

12

q
u

e
ri

e
s

 m
a

p
p

e
d

 p
e

r 
h

o
u

r 
(i

n
 m

il
li
o

n
s

)

n=1

n=3

n=5

0

2

4

1 2 4 8 16 32 64 128

q
u

e
ri

e
s

 m
a

p
p

e
d

 p
e

r 
h

o
u

r 
(i

n
 m

il
li
o

n
s

)

Number of processes

Figure 2. Number of queries mapped per hour to a reference human
genome using the MPI-OpenMP hybrid implementation for different num-
ber of processes and different values of maxEditDist, n. We have used 2
shared memory cores per node. Each query is 500 nucleotides long.

one part to each process.
CheckRegions - Each process takes the list of regions

(regionList) assigned to it. The regions are already sorted
according to dBegin values as a result of the global bucket
sort. Each process reads the genome database from minimum
of dBegin values to maximum of dEnd values of all the
assigned regions. Then it checks each candidate region one
by one to see if the edit distance is indeed less than maxEdit-
Dist. All the homologous regions, which satisfy the criteria,
are sent to the root process. The root process concatenates
the results from all processes and writes them to the output
file. Since the regions are processed in increasing order of
dBegin values and regions with close dBegin values are
on the same process, the disk IO cost due to random access
is minimized.

VI. EXPERIMENTS AND PERFORMANCE ANALYSIS

In our experiments, the human genome database is used.
The queries to be used to search against the database were
randomly sampled from the human genome into reads of
length 500. The number of queries is set to 10000 per
process. In this section, we will use the word ”process” to
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Figure 3. Number of queries mapped per hour to a reference human
genome using the data and task parallel distributed memory MPI implemen-
tation for different number of processes and different values of maxEditDist,
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0.6

0.8

1

1.2

N
o

r
m

a
li
z
e

d
 t

im
e

 t
a

k
e

n

Hybrid

MPI

0

0.2

0.4

0.6

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0
5

1
1
2

1
1
9

1
2
6

N
o

r
m

a
li
z
e

d
 t

im
e

 t
a

k
e

n

Processor Id

Figure 4. Comparison of load on each process for hybrid and MPI
implementations. In order to obtain this plot, we normalized the time
taken by each process by the maximum time taken by a process. The
variances of load for hybrid and MPI implementations are 0.046 and
0.0021 respectively.

refer to MPI process as well as OpenMP threads, so that
the presentation is consistent. The comparison of the speed,
sensitivity and accuracy of FANGS with the other existing
tools is given in [12]. The paper shows that sequential
FANGS is upto an order of magnitude faster than the state-
of-the-art techniques for 454-Roche reads of length 500
allowing 5 mismatches or insertion/deletions. To the best of
our knowledge, there is no other published parallel imple-
mentation for mapping 454-Roche sequencing data. Hence,
in this paper, we compare the parallel implementation with
the sequential implementation of FANGS. All the parallel
implementations give the same output as FANGS and hence
retain the sensitivity and accuracy of FANGS (data not
shown here).

The experiments of using the shared-memory approach
were performed on the NCSA SGI Altix SMP machine
(Cobalt). Cobalt has two SMP nodes with 512 1.6 GHz
Intel Itanium 2 processors each. The machine has 4GB of
memory per processor. The SMP machine is running SGI
ProPack 5 and Intel 10.1 C compiler. Figure 1 shows the

number of queries mapped per hour by using the shared
memory parallel implementation. Since all the processes are
accessing the shared database and index-table, memory IO
becomes a major bottleneck when the number of processes
increases. It is clear that the shared memory approach does
not scale. It improves the performance up to a certain
number of threads beyond which the performance starts to
come down. Such performance saturation and degradation
are commonly seen on the SMP parallel machines, due to the
contention on the system bus as well as the system overhead
of cache coherence control.

The performance results of the MPI-OpenMP hybrid im-
plementation were collected from the NCSA IA-64 Teragrid
cluster (Mercury). Mercury consists of 887 IBM cluster
nodes, 128 of which have dual 1.3 GHz Intel Itanium 2
processors and with 12GB of memory per node on which we
ran our experiments. The cluster runs SuSE Linux and uses
Myricom’s Myrinet cluster interconnect network. Figure 2
presents the performance results. The hybrid approach scales
much better than the pure shared-memory approach, as each
node has its own copy of the database and the index-
table. Only a limited number of threads share each copy
of the hash table using OpenMP. However, even though
there are a small number of OpenMP threads on each
node, they still have to contest for memory access thereby
resulting in a sub-optimal speedup. Recall that our algorithm
needs about 4.5GB memory to execute. Such large memory
requirement with random data accesses can cause significant
cache misses.

The distributed memory implementation was also evalu-
ated on Mercury. Figure 3 and Table II show the results. It
can be clearly seen that the distributed memory implemen-
tation scales very well. As the database and index-table (See
Table I for performance results of creation of the index-table)
are distributed across all processes, the memory requirement
on one process is smaller, thereby reducing the number of
cache-misses and page-faults. Another important thing to
note is that, for the shared memory and hybrid implemen-
tations, we statically divided the queries equally across all
processes assuming that the amount of load is equal for equal
number of queries. Since our sequence mapping algorithm
is heuristic based, the actual run times and result sizes for
queries are highly irregular and difficult to predict. For the
128 process case, figure 4 displays the load on each process
for the hybrid and MPI implementations. It is clear that there
is significant load-imbalance for the hybrid implementation,
while the load for the MPI implementation is much better
balanced. For the MPI implementation, two of the processes
(0 and 85) always take significantly more time in the
CreateIndex and GetHits stage. Our initial investigations
reveal that the imbalance in load is due to the irregular nature
of the genomic databases.

Figure 5 shows the breakdown of time spent on each
stage of the query processing phase for various values of



Time taken (seconds)
q = 15 q = 20

# proc n=1 n=3 n=5 n=1 n=3 n=5
2 300.5 299.1 299.0 225.9 231.1 225.0
4 159.2 160.1 161.7 117.6 117.0 123.8
8 87.0 87.1 80.1 58.5 63.5 64.6

16 46.8 45.9 46.9 39.3 34.8 34.5
32 31.4 32.5 31.4 27.3 21.9 25.9
64 27.6 28.0 27.5 15.2 15.2 17.1
128 21.6 21.9 21.9 12.9 14.0 14.1
256 20.7 20.7 21.6 11.8 12.2 14.5
512 21.4 21.3 21.8 13.6 12.6 14.1

Table I
ABSOLUTE TIME TAKEN FOR THE CREATION OF INDEX TABLE FOR

DIFFERENT VALUES OF n AND q, FOR DIFFERENT NUMBER OF
PROCESSORS.

maxEditDist and number of processes used. As the value of
maxEditDist increases, more candidate homologous regions
are generated by FindRegions algorithm since the value of
T gets smaller. Moreover, CheckRegions stage has higher
computational complexity as compared to other stages.
Hence for larger values of maxEditDist, CheckRegions stage
consumes more than 85% of the overall execution time. Note
that each region can be examined independently of all other
regions. We dynamically balance the load across processes
by redistributing the candidate homologous regions evenly
across processes to achieve better process efficiency. Also
note that the percentage of time spent on the RedistributeHits
stage increases as the communication time increases with
the increase in the number of processes. This stage may
become a bottleneck and hinder scalability as the number
of processes increase. To avoid this, for larger number
of processes, we divide them into disjoint subsets of 128
processes each. The queries are equally divided among
these subsets. Each of these subsets work independently by
creating their own copy of the index. As a result of this, the
percentage of time spent on the RedistributeHits stage does
not increase as the number of processes increase beyond 128.
Notice from Figure 3 that we can process up to 31061118
queries per hour for n = 5 using 512 processors. Since
each query is of length 500, this means we can map 454-
Roche reads with a total of 31061118 ∗ 500 = 15.53 Billion
nucleotides per hour against a reference human genome.
Hence, with 512 processors, we are able to map 454/Roche
reads of 5.17x coverage of a human genome to a reference
human genome per hour allowing 5 mismatches or Indels
at full sensitivity. In other words, we can map 5.17 human
genomes per hour.

VII. CONCLUSION

Advances in sequencing techniques necessitate the devel-
opment of high performance, scalable algorithms to extract
biologically relevant information from these datasets. In this
paper, we investigate different parallel implementations of a
fast sequence alignment tool FANGS. Firstly we develop

Speedup with respect to two processes
q = 15 q = 20

# proc n=1 n=3 n=5 n=1 n=3 n=5
2 1.0 1.0 1.0 1.0 1.0 1.0
4 2.1 1.0 2.0 2.2 2.2 2.0
8 4.3 1.7 4.4 4.8 4.5 3.9

16 9.5 9.1 9.0 7.5 10.1 9.1
32 16.8 17.5 17.5 14.5 17.9 10.2
64 28.1 21.0 19.6 20.3 28.1 29.4
128 46.4 60.8 65.5 26.0 42.8 41.9
256 92.9 119.6 130.7 52.5 87.5 105.1
512 177.6 224.2 225.4 94.3 158.1 188.5

Table II
SPEEDUP FOR PROCESSING STAGE OF PFANGS WITH RESPECT TO TIME

TAKEN BY TWO PROCESSES FOR DIFFERENT VALUES OF n AND q, FOR
DIFFERENT NUMBER OF PROCESSES.

query segmentation based OpenMP and MPI-OpenMP hy-
brid implementations and discuss their limitations. We then
develop a highly optimized data- and task-distributed MPI
implementation with intelligent load-balancing techniques
that avoid problems of memory bandwidth and cache misses.
Our experimental evaluation shows that this technique re-
sults in excellent load-balance and process efficiency and
hence yield close to linear speedups.

With the advent of new technologies, we will need even
faster sequence mapping tools to stay at par with the
increasing sequencing speed. With the development of better
parallel algorithms, we can setup huge processing centers
which contain a large number of sequencers producing reads
and huge clusters working in tandem to rapidly process
them to extract a variety of information. The Next Genera-
tion Sequencers along with high-speed sequence processing
systems will enable us to realize the dream of personal
genomics. This can help us in using a patient’s DNA in
diagnosing a disease or even knowing in advance whether a
person’s DNA encodes a risk of a certain disease.
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