Journal of Parallel and Distributed Computing 61, 1633-1664 (2001) ®
doi:10.1006/jpdc.2001.1743, available online at http://www.idealibrary.com on IDE %l.

Design and Evaluation of a Smart Disk Cluster for
DSS Commercial Workloads

Gokhan Memik

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208
E-mail: memik@ece.nwu.edu.

Mahmut T. Kandemir

Department of Computer Science and Engineering, Pennsylvania State University,
University Park, Pennsylvania 16802
E-mail: kandemir@cse.psu.edu.

and

Alok Choudhary

Department of Electrical and Computer Engineering, Northwestern University,
Evanston, Illinois 60208
E-mail: choudhar@ece.nwu.edu.

Received January 1, 2000; revised August 17, 2000; accepted October 4, 2000

The requirements for storage space and computational power of large-scale
applications are increasing rapidly. Clusters seem to be the most attractive
architecture for such applications, due to their low costs and high scalability.
On the other hand, smart disk systems, with their large storage capacities
and growing computational power are becoming increasingly popular. In this
work, we compare the performance of these architectures with a single host-
based system using representative queries from the Decision Support System
(DSS) databases. We show how to implement individual database operations
in the smart disk system and also show how to optimize the execution of the
whole query by bundling frequently occurring operations together and
executing the bundle in a single invocation. Besides decreasing the overall
execution time, operation bundling also offers an easy-to-program and easy-
to-use interface to access the data on smart disks. We also present a protocol
for minimizing the communication time in the smart-disk-based system.

To measure the response times, we have developed the DBsim, an accurate
simulator which can simulate the database operations for the single host-
based, cluster-based, and smart-disk-based systems. Using this simulator, we
illustrate that the smart disk architecture offers substantial benefits in terms

1633 0743-7315/01 $35.00
© 2001 Elsevier Science
All rights reserved.

1634 MEMIK, KANDEMIR, AND CHOUDHARY

of overall query execution times of the TPC-D benchmark suite. In par-
ticular, the average response time of the smart disk architecture for the repre-
sentative queries from the TPC-D benchmark in our base configuration is
71% smaller than the response time on the single host-based system and
4.2% smaller than the response time on the fastest cluster architecture. We
also demonstrate the effectiveness of the operation bundling and compare the
scalabilities of the cluster-based and smart-disk-based systems. © 2001 Elsevier
Science

Key Words: intelligent 1/O; embedded systems; decision support systems;
distributed databases; cluster of smart disks.

1. INTRODUCTION

The requirements for storage space and computational power of large-scale
applications are increasing rapidly. Although SMP’s and cluster of workstations
offer high computational power, there is a need for new architectures especially for
data-intensive applications. Such applications manipulate huge amounts of disk-
resident data, in addition to their substantial computational requirements. In tradi-
tional systems, these data are moved back and forth between the storage device and
the processing unit. This imposes an overhead on the I/O bus which may degrade
the system performance. In the near future, the I/O interconnection is expected to
become the bottleneck in the I/O subsystem due to the increases in the drive media
rates.

For many of these large-scale applications, however, it is possible to manipulate
data on the storage device, before putting it on the bus. Smart disks,! having
embedded processors and a substantial amount of memory on the storage device,
solve this problem by manipulating the data on disks and leveraging the bandwidth
requirement on the bus. In the near future, storage devices with 100 Gbytes of
capacity, several hundred Mips engine, and a few hundred MBytes of RAM are
expected to exist in the market [16]. Even today, it is possible to find storage
devices in the market with 150 Mips core and up to 2 MB of main memory [10,
22, 36, 39]. Intel’s IQ-SDK system has a 2 MB memory, which can be expanded
to 64 MB. Most of the processing power in these disks is devoted to disk scheduling
and similar duaties. But, next generation smart disks will contain processors power-
ful enough for performing application-level programming. They might even contain
coprocessors for performing tasks related to disk scheduling. It is possible to build
such systems with a small amount of extra cost over the disk cost due to the low
costs of embedded processors and memory chips. Although this new type of smart-
disk-based architecture seems very attractive, it poses many challenges. Previous
work in this area focused on the architectural and operating system related issues
[25, 34, 44]. Acharya et al. [1], on the other hand, focused on the implementation
of the individual database operations. Smart disks seems to be an attractive alter-
native especially for database applications. Therefore, investigating the individual

' We use the term smart disks to refer to a class of architectures that put substantial computational
power on disks, such as Active Disks [1, 34, 427 and IDISKs [25].

SMART DISK CLUSTER DESIGN 1635

database operations on this architecture is very important. But, to gain more
insight on the possible improvements by the smart disk architecture, we must
examine whole queries from commercial workloads. Some individual operations
may have good performance on smart disks and some may have poor performance.
If the execution times or the occurrence frequency of the better operations are high,
then the improvement with smart disks will be significant. If, on the other hand,
such operations occur rarely, we will end up with a slight improvement. As an
example, the smart disk architecture is expected to perform well in a sequential
search operation, where all the data should be transferred to the processing unit.
But for indexed selection, where an index structure is traversed and only the rele-
vant tuples are brought to the processing unit, the improvements achieved by the
smart-disk-based system may be lower because only the relevant data will be trans-
fered from the storage unit to the processing element.

In this paper, we present a detailed quantitative evaluation of a smart-disk-based
architecture. To achieve this, we compare the performances of a smart disk system,
two types of cluster systems and a single host system for whole database queries.
The main contributions of this paper are as follows:

o We present how a whole database query can be executed on a smart disk
system.

o We present and evaluate a method called operation bundling for reducing
the execution time of the database queries in smart disk architecture.

e We compare the execution times of whole database queries for single-host
system, cluster system and smart disk system under several values of architectural
parameters using an accurate simulator.

Both SMP’s and cluster of workstations are widely used for large-scale applica-
tions. But clusters are getting increasingly popular due to their cost effectiveness.
They are shown to perform well for many types of applications. Our goal is to
measure the effectiveness of the emerging smart disk technology by comparing its
performance to the existing popular technology of clusters.

We have selected Decision Support System (DSS) databases as our application,
because of the large storage requirements and wide usage of such databases. Specifi-
cally, we measure the execution times, consisting of the I/O, computation, and com-
munication times, for all the architectures for six different queries from the TPC-D
benchmark [41]. These queries contain a combination of select, join, sort, group-
by, and aggregate operations and are a representative of the whole benchmark
suite. Our experiments show that smart disk architecture delivers high levels of per-
formance under different values for processor speed, available memory size, number
of disks, and database size. Based on our performance numbers, we also discuss the
cases where the smart-disk-based system is preferable to the cluster-based system
and vice versa.

DSS databases process up to 4.5 TBytes of data, consisting of up to 50 billion
rows [45, 46]. These challenges require innovative approaches in architecture,
software, and algorithm areas because the traditional approaches, which depend on
the technological advances for improving their throughput, may not be sufficient

1636 MEMIK, KANDEMIR, AND CHOUDHARY

for solving these problems. Considering the results we have obtained in this work
and the low cost of this architecture, the employment of smart disks in such
applications seems to be an attractive solution.

In the following section, we describe the smart disk architecture and discuss the
possible configurations of systems employing smart disks. In Section 3, we intro-
duce the queries used in our experiments. In Section 4, we explain the algorithms
we have used for single database operations and also explain the execution of the
whole query using operation bundling. In Section 5, we present our simulator and
discuss its accuracy. In Section 6, we describe our experimental platform, define the
methodology used in the experiments, and present the simulation results. In
Section 7, we discuss related work, and in Section 8 we conclude the paper with a
summary and an outline of on-going research.

2. SMART DISK ARCHITECTURE

Each smart disk consists of an embedded processor, a controller, disk space, and
some amount of DRAM (see Fig. 1¢c). Compare this architecture with a traditional
single host-based system (Fig. 1a) and a cluster-based system (Fig. 1b). In today’s
standards the CPU in Fig. 1a is between 300 and 600 MHz, with up to 1 GByte of
main memory. The I/O interconnect is between 200 and 300 MB/s. To build a
cluster, similar hosts are connected to each other using a fast-speed interconnection
network. The speed of the interconnection is between 150 and 1200 Mbps. We have

Processor

Memory

l Interconnection Network

Processor F [N]

Memory . Disk E Memory
L«-.........‘ ® L...._..,..,...

[J

(b)

Processor

Processor

| Embedded Processor

| Com_rollﬂ ’ Memory E
Disk

(c)

FIG. 1. (a) Traditional architecture. (b) Cluster architecture. (c¢) Smart disk architecture.

SMART DISK CLUSTER DESIGN 1637

simulated clusters with no shared disks. Our selection of this configuration is based
on the trends in the hardware for parallel databases. The embedded processor in
Fig. 1c is 100 to 300 MHz. As far as the memory is concerned, Texas Instruments
C27x has a 16 MB address space [39]. So, we would expect memory sizes of 16 to
128 MB in the future. According to Keeton et al. [25], the total cost of a smart
disk system including fast serial links will be on the order of 10% of the total cost
of a traditional host-based system.

Many alternatives for the cluster hardware exist, especially for larger systems. We
have selected a configuration similar to Fig. 1b. Considering the size of our applica-
tions and the system size, we believe that our selection of the configuration is a
reasonable one. The software issues for the cluster configuration is discussed in
Section 3.

We can consider two alternatives for the configuration of a smart disk system. In
the first configuration, the smart disks are connected to a host machine through a
bus. In such a system the host will carry out the tasks for security, coordination,
code loading, etc. In such a system, smart disks will process the data and send only
the relevant parts to the host (we call these filtering operations because these opera-
tions discard the irrelevant data, resulting in a smaller amount of data transfer).
But compute-intensive operations will still be performed by the host. In other
words, the system will take advantage of the increasing computational power on
disk devices by allowing filtering type of operations to operate on disks, close to
data, and sending only the relevant information to the host. This offloading of code
does not only reduce the network traffic, but also offloads the host processor and
increases the system power. The emerging first generation of smart disk systems fall
into this group [10, 22, 36, 39]. The second alternative configuration is a dis-
tributed system of smart disks. In such a system, smart disks are connected through
an interconnection network. One of the smart disks may be assigned as a central
unit for coordination purposes, but all the applications are distributed among the
smart disks. If parallelism in such a system can be exploited efficiently, systems with
significant computing power and storage capacity can be constructed in a cost-
efficient manner. Such a system will allow high performance computing for con-
siderably low costs. The architecture we have used for our experiments falls into
this category, with one of the smart disks assigned as a central unit. Using the first
alternative would increase the cost of the system significantly, but would have
increased the system performance only slightly, because of the high parallelism
exhibited by the database applications.

There are also two important alternatives for programming of the smart disks.
First, the smart disks can be programmed by the vendor. Second, the smart disks
can upload user written code from the host machine. Both of these alternatives have
advantages and disadvantages. Vendor implemented code will be compact, efficient,
and easy to use, but the portability and flexibility will be important problems.
There are several problems with the user written code, as well. We have assumed
a vendor written programming model in our simulations. Therefore we assumed
that most of the memory of the system can be used by the application.

Current technology is not in a position to employ smart disk systems for scien-
tific codes. Even though parallelism is used widely in such applications, issues like

1638 MEMIK, KANDEMIR, AND CHOUDHARY

code loading, language constructs, data partitioning among disks and the interac-
tion between operating system and the disk resident code should be solved.
Acharya et al. [1] propose a stream-based programming model for these purposes.

For database applications, however, a significant amount of research has already
been conducted. First, there is literature on database machines, which were studied
some time ago [6, 7, 26, 31]. Special purpose hardware, which was employed by
the database machines, had high cost and moderate performance, which eventually
led to the demise of database machines. Smart disk systems, on the other hand, use
commodity hardware, lowering the cost of the system. Also the VLSI technology
has improved dramatically, making smart disk systems feasible. The improvements
in the interconnection network technology is also in favor of the smart disks.
Unlike the old database machines, we do not have to perform all the operations on
disks. We can make use of complex optimization schemes, most of which have been
developed in the post-database machines era and can take the selectivity and cost
of each operation into account and distribute the load in an efficient manner
between the host and the smart disks. There has also been a significant amount of
research in parallel execution of database operations [11]. Considering each smart
disk as a processing unit in the parallel database sense, we should be able to adapt
at least some of these techniques to the smart disk architecture. Overall, armed with
new optimization techniques from parallel databases and lessons from old database
machines, we believe that we can build smart-disk-based systems which are cost
effective, practical and effective in handling large database applications.

3. DSS QUERIES

Dr. Philip Bernstein estimates that 35% of all database servers are decision sup-
port systems [8]. The storage and computational requirements of these systems
increase rapidly. This wide usage and the large storage and computational
requirements of these systems led us to select them as our application in this work.
We have used six queries from the TPC-D benchmark [41]. This benchmark has
gained wide acceptance both in academia and industry. It contains 17 read and 2

TABLE 1
The Read-Only TPC-D Queries That We Used and Their Operations

Select Join
Query SS IS NL M H Sort Group Agg.
0, X X X
(08 X X X x X
Qs X
O X X X X X
013 3 X X X
Qe X X X X X

Note. The operations are sequential scan (SS), indexed scan (IS), nested loop join (NL), merge join
(M), hash join (H), sort, group, and aggregate (Agg.).

SMART DISK CLUSTER DESIGN 1639

select
l-shipmode,
sum(case
when o-orderpriority = ‘1~-URGENT’ or o-orderpriority = ‘2-HIGH’
then 1
else O
end) as high-line-count,
sum(case
when o-orderpriority <«> ‘1-URGENT’ and o-orderpriority <> ‘2-HIGH’
then 1
else 0
end) as low-line-count
from
orders,
lineitem
where
o-orderkey = l-orderkey
and 1l-shipmode in (‘[SHIPMODE1]’, °[SHIPMODE2]’)
and l-commitdate < l-receiptdate
and l-shipdate < l-commitdate
and l-receiptdate > date ‘[DATE]’
and l-receiptdate < date ‘[DATE]’ + interval ‘1’ year

group by
1-shipmode
order by
1-shipmode;

FIG. 2. The SQL code for the query Q,, from TPC-D.

update queries, most of them being large and complex. The queries we have selected
are given in Table 1 along with the operations they involve. A “x” indicates that
the query involves the relevant operation. For example, Q, involves SS (sequential
scan), sort, group-by, and aggregate operations. We have selected these six queries,
because we wanted to cover all the operations at least once.

As an example, the SQL code of Q,, is given in Fig. 2. The possible values for
the parameters (e.g., SHIPMODE1, SHIPMODEZ, DATE) in the SQL codes are also
defined by the benchmark. Thus, the possibility of a tuple being selected is fixed.
For example, Q,; selects all the tuples from one of its input tables. On the other
hand, Q,, selects one out of 200 tuples from a table called 1ineitem. Our choice
of the queries also ensures that we experiment with both the low selectivity and
high selectivity queries.

In the following, we first explain the implementation of individual database
operations for both the smart disk and the cluster architectures. Then, we discuss
how to combine these individual operations to execute the whole query. We intro-
duce the notion of operation bundling and explain the protocol we devised for
reducing the communication.

4. QUERY EXECUTION

In this section, we first describe the algorithms we have used for individual
database operations for all the architectures experimented with. Then, we explain
how the whole query can be executed on the smart disk system. We also explain
the notion of operation bundling.

1640 MEMIK, KANDEMIR, AND CHOUDHARY

4.1. Individual Database Operations

Query optimization and processing in distributed environments had been studied
by many researchers [19, 20, 23, 28, 37]. Many of the algorithms we have used in
this work are adopted from the algorithms developed for distributed systems. We
had to simplify some of the algorithms. But, these simplifications do not invalidate
our comparisons, because we use the same assumptions and similar algorithms for
both the cluster and the smart-disk-based architectures.

The implementation of individual database operations we have selected for smart
disk architecture and clusters are similar in nature. The main difference of these
architectures is the way these individual operations are combined to execute the
whole query. These differences will be explained in Section 4.2 in more detail. The
implementations of sequential scan, group-by, and aggregate operations are similar
to those proposed by Acharya et al. [2]. In the sequential scan operation, each
smart disk scans the input table and sends the tuples that match the selection
criterion to the central unit. The central unit concatenates the tuples it receives from
the smart disks. Similarly, in the cluster architecture, hosts scan the input table and
matching tuples are sent to the front-end, which concatenates the results. The
aggregate operation is performed similarly. Each smart disk performs the aggrega-
tion locally and sends the results to the central unit, which combines the results and
reports the results. For both of the architectures, we assumed that the data is dis-
tributed evenly on all the units in the system (except the central unit in the smart
disk system, which performs only coordination and concatenation tasks). For
indexed scan operation, we assumed that the smart disks keep the indexes for the
part of the data they are holding. So, similar to the sequential scan, the smart disks
scan their input table and forward the matching tuples to the central unit. The
implementation is similar for the cluster architecture. For implementing the group-
by operation, we have used a hashing based algorithm. In the first step, the local
hashes are performed by each smart disk. Then, in the second step, these local
hashes are sent to the central unit, which accumulates the results.

For the sort operation, we have used an external local sort in each disk. Then,
these results are forwarded to the central unit (or to the front end), where the
results are merged. Note that, for this operation more sophisticated sort algorithms,
such as NOW-sort [3] can also be used. Join operations require synchronization
among the processing elements (smart disks in the smart disk system and hosts in
the cluster architecture). For nested loop (NL) join, one of the tables is replicated
in all the processing elements. The selection for this table is done by the central unit
in smart disk system. This table is joined with the local tables using a doubly nested
loop to match the elements of one table to the other and the result is forwarded to
the central unit (or to the front-end in cluster architecture). The merge (M) join
starts by sorting one of the tables globally and replicating this sorted table in all the
processing elements. Then, the local tables are merged with the global table and the
results are forwarded to the central unit (to the front-end). For the hash (H) join, we
first form the local hashes. Then, these hashes are communicated to form a global
hash table. After receiving the global hash, the smart disks (the hosts) perform the join
operation and the results are sent to the central unit (to the front-end).

SMART DISK CLUSTER DESIGN 1641

4.2. Whole Query Execution

The execution of the whole query in smart disk architectures and cluster architec-
tures differ in many ways. The processing elements in the clusters (hosts) are
machines with their full operating system support and stand-alone database
management systems. Their main difference from a single host-based machine is
that they are aware of the other machines in the system and that each of them is
set up to serve as an element in the whole system, which makes the whole system
look as a single system to the clients. On the other hand, due to the limited memory
and hardware, smart disks will not have the full support of the operating system or
the database management system like their counterparts. Therefore, there must be
a central unit in the system coordinating or synchronizing the operations of the
smart disks in a finer grain. But, we believe that the smart disks will be powerful
enough to control their memory and disk and will also be able to communicate
with other smart disks without the intervention of the central unit.

The query execution on clusters is started by the front-end. Then, each host
manipulates the data it owns. The hosts synchronize only when the operation they
are performing requires the data on other machines. Among the individual opera-
tions we are performing, only the join operation requires such a synchronization.
In other words, hosts perform the sequence of individual operations without any
interruptions unless they encounter a join operation. If there is a join operation,
they synchronize and proceed independently after the join operation is finished.
Then, when all the operations are finished, they send their results to the front end.

In the following subsections, we are going to present the execution of the whole
query in the smart disk architecture. First, we are going to define the notion of
operation bundling and introduce a protocol we have devised for reducing the com-
munication between the central unit and the smart disks, which in turn reduces the
synchronization overhead. Then, we are going to discuss the main idea with the
help of an example.

4.2.1. Operation Bundling

The core of our approach for executing the whole query is to bundle (where
appropriate) a number of database operations and execute this bundle as a single
operation on the smart disks. The execution of the bundles is coordinated by the
central unit, which ensures that all the smart disks in the system are executing the
same bundle at a time.

The decision of which operations are to bundle is also made at the central unit.
The algorithm uses a relation of bindable operations and the query plan tree as
input. The relation of bindable operations consist of tuples of individual operations
of the form (child; parent). If there exists a (child; parent) tuple in the relation, this
mean that any occurrence of these consecutive individual operations in the query
plan tree should be included in the same bundle. The algorithm used for determin-
ing the bundles is given in Algorithm 1. It is a greedy algorithm for determining the
bundles. Although, it is not guaranteed to give the optimal result in all cases, for
the queries we experimented with, it gives the optimal solution.

1642 MEMIK, KANDEMIR, AND CHOUDHARY

The execution of the query starts by forming a query plan tree [32]. Then, the
tree is traversed starting from the root. When an individual operation is traversed,
the algorithm checks all the children of the node. If a child and the parent are
bindable, in other words if there exists a corresponding tuple in the relation (line 5
of Algorithm 1)? then the child is included in the current bundle and the algorithm
continues recursively from the child. If they are not bindable, then the current bundle
is finalized, a bundle containing the child is formed, and the algorithm is called
recursively with the child as the root of the plan tree. In summary, the algorithm
traverses the entire query plan tree and bundles all the bindable individual opera-
tions. Algorithm 1 gives the algorithm of operation bundling.® It uses a function
called insert for both inserting a bundle to the list of finalized bundles and for
inserting a node to a bundle. The algorithm returns a list of bundles.

ALGORITHM 1 (FIND_BUNDLES(relation, root, current_bundle)).

1. [*relation is used to store the relation of bindable operations,
2. root is the root node of the plan tree. */

3. begin

4, for i=0 to number of children of root do

5. if relation[child,, parent]= =1 then

6. insert (child;, current_bundle)

7. FIND_BUNDLES (relation, child;, current_bundle)
8. elseif

9. new_bundle = {}
10. insert (child;, new_bundle)
11. FIND_BUNDLES (relation, child,, new_bundle)
12. insert (new_bundle, list_of _finalized_bundles)
13. end if
14. end for
15. return /ist_of _finalized_bundles
16. end.

The success of the bundling algorithm depends heavily on the selection of the
bindable individual operations. If this relation is empty, all the individual opera-
tions will be performed independently. If this relation contains all the possible com-
binations of tuples of individual operations, then the whole query plan tree will
form a bundle. In this study, we have used a relation with the following tuples:
{(indexed scan; nested loop join),

(sequential scan; nested loop),
(indexed scan, merge join),
(sequential scan, merge join),
(indexed scan, hash join),
(sequential scan, hash join),

2 For representation of the relation, we have used a two diminsional matrix. Note that other represen-
tations, e.g., a list of tuples, can be used instead.

3 This is a simplified version of the algorithm. In this version, the bundle containing the root of the
tree is not included in the final list, but in the original algorithm this case is also considered.

SMART DISK CLUSTER DESIGN 1643

(indexed scan, group-by),
(sequential scan, group-by),
(group-by; aggregation)}

Many consecutive individual database operations can be bundled together to
form the bundle. On one side, it is beneficial to bundle as many operations as
possible together, because this will reduce the amount of traffic and the syn-
chronization overhead and also increase the performance. On the other side, having
large number of single operations within a bundle will increase the possible number
of bundles possible* and will require the smart disks to have more power and will
make the query related system support more complex. Our selection is based on the
fact that, in all cases above, knowing the next individual operation can decrease the
overall response time. In other words, we have manually examined most of the
basic database operations and selected all possible tuples that potentially increase
the system performance. Specifically, the tuples we have selected have at least one
of the following properties:

e The results of the child operation can directly be supplied to the parent
operation, thereby eliminating the need of storing the temporary results and also
increasing the intra-query parallelism (for example, the results of a scan operation
can directly be used by the join operation following it).

o The consecutive operations can be performed as a single operation, thereby
decreasing the execution time (for example, while forming the groups the smart
disks can also perform the aggregation operation).

In Section 6.2, we present experimental results with the above selection of rela-
tion of bindable operations and compare the results against no bundling. We also
give results of another relation with more tuples and show having additional tuples
in the relation brings only marginal improvement.

Table 2 summarizes the execution of the whole query and the communication
protocol between the smart disks and the central unit. Query execution starts on
the central unit, where the query is parsed and optimized. These steps produce a
query plan tree [32]. Then, the plan tree is fragmented by the central unit using
the operation bundling algorithm described in this section. Then, the central unit
sends each bundle to the smart disks and waits for its execution before sending the
next bundle. The bundles are executed by the smart disks and the results are stored
locally. Smart disks decide where to store the resulting data. According to the size
of the produced data and of memory, the results are stored either in memory or on
disk. In the last bundle, the central unit instructs the smart disks to send the result
to the central unit. Then, it receives these results and combines them.

4The number of different possible bundles corresponds to the number of different sequences of
individual operations that both satisfy the bindable operation relation and are encountered in at least
one query plan tree. In other words, it corresponds to the number of different bundles the smart disk
system should be able to execute for the set of queries supported. Note that the number of possible
bundles and the average number of bundles in a query are inversely proportional. As the average
number of individual operations within bundles increases, the number of different bundles which can be
formed increases. But, since each bundle contains more individual operations, the average number of
bundles satisfying a query decreases.

1644 MEMIK, KANDEMIR, AND CHOUDHARY

TABLE 2

Execution Protocol for the Smart Disk System

Task Central unit Smart disk architecture
Query Parsing Parse query —
Query Optimization Perform query optimization —
Query Fragmentation Fragment query into bundles —
Send the bundle to the smart disks Receive the bundle,
Execution of the Wait for the completion signal Execute the bundle,
intermediate bundles Store the result,

Send the completion
signal to host.
Send the bundle to the smart disk Receive the bundle
Execution of the last bundle Wait for the results Execute the bundle,
Send results to host.
Combining the Results Combine the results —
of each smart disk

4.2.2. Example

In this section, we will explain the whole query execution by discussing the steps
of executing the query Q,,. The SQL code for the query Q,, is given in Fig. 2 and
the query execution plan is shown in Fig. 3 (this plan tree is from [40]), which also
shows the bundles for the query.

>~

Order

Lineitem

FIG. 3. Query execution plan for Q,,. (Each dashed box contains a bundle).

SMART DISK CLUSTER DESIGN 1645

The execution starts on the central unit. Taking the SQL code, the central unit
parses and optimizes the code and creates the execution tree. Then, the tree is
fragmented using the algorithm described in Section 4.2.1. The resultant bundles are
shown using the dashed boxes in Fig. 3. The algorithm starts by having the root
operation sort as a bundle. Since the tuple (aggregation; sort) is not in the relation,
it leaves the bundle as it is and continues from the aggregate node. Since there
exists a tuple (group-by; aggregate), it includes the group-by operation to the
bundle of aggregate operation. Since the next operation (sorting) cannot be added
to this bundle (there exists no tuple (sort; group-by)), this is the final shape of the
bundle. The algorithm keeps working its way in this fashion until all the nodes are
visited and all the bundles are determined.

After determining the bundles, the central unit sends a message to the smart disks
telling them to select the 1ineitem.shipmode and 1ineitem.orderkey fields
of the table 1ineitem according to the parameters given in the query. This way,
the selection and projection operations are performed as a single bundle. Receiving
this message, smart disks scan the 1ineitem table sequentially. The smart disks
store the results. If the resultant table fits into memory, it will be kept there,
otherwise the data will be stored on disk. After finishing the operation, each smart
disk sends a completion signal to the central unit. The central unit waits for all
the smart disks to finish and then sends the next bundle to the smart disks. This
new bundle instructs the smart disks to sort the resultant table from the previous
bundle. When the execution of this bundle is finished, the next bundle is sent. This
bundle contains a join and two select operations. The join operation requires one
of the tables to be replicated in all the smart disks. The decision for the table to be
replicated is done by the central unit and is indicated in the bundle message sent
to the smart disks. The most important criterion in this selection is the size of the
tables. For this query, it is more beneficial to take the 1ineitem table. Receiving
the message, smart disks first replicate the filtered 1ineitem table by communicat-
ing each other. Then, each smart disk traverses this table and merges the matching
elements from the local order table. Again the resultant table is stored in the
smart disks. After this bundle, the central unit sends a message for sorting the resul-
tant table. The next bundle contains the group-by and aggregate operations. In
the last step, the central unit sends the instruction to sort the result table of the
previous bundle. But this time, it indicates that the results should be sent to the
central unit. Then, it waits for the incoming results, merges them, and finishes the
execution of the whole query.

5. SIMULATOR

To conduct the experiments, we have developed a simulator, called DBsim,
which is used to simulate the database operations for all the architectures. DBsim
is capable of simulating both individual database operations and a sequence of
individual operations. It can simulate a wide variety of disks, I/O interconnects,
and processors.

DBsim uses the Disksim developed by Ganger et al. [13], for simulating the
disk behavior. Disksim is an efficient and accurate disk system simulator. It

1646 MEMIK, KANDEMIR, AND CHOUDHARY

includes modules for simulating disks, intermediate controllers, buses, device
drivers, and request schedulers.

The sequential scan, indexed scan, sort, group-by, aggregate, nested loop join,
merge join, and hash join operations can be simulated in DBsim. DBsim is also
capable of executing combinations of these individual operations. It requires both
the architectural values like processor speed, memory size, and disk parameters and
also database related parameters like the total data size, location of data, index
properties (e.g., whether there is an index on the attribute accessed or not, the type
of index, etc.), tuple size, types and sizes of the resultant tuples, and size of the
resultant table.

To simulate the communication times, DBsim performs the actual communica-
tion required by the query. This limits the number of different network configura-
tions we can simulate, but gives a very accurate measurement of the communication
overhead.

The different architectures are simulated by using different programs driving the
DBsim. The single host simulator is a sequential program, which reads the
appropriate parameter values from a configuration file and calls DBsim with the
appropriate arguments. The cluster simulator and the smart disk simulator are
parallel programs. They read the parameter values from a configuration file and
then they call the DBsim with the corresponding values. Then, according to the
results obtained from DBsim, the processors communicate with each other using
message passing.

To measure the accuracy of the DBsim, we have compared the response times of
it against the values we have obtained from Postgres95 [47]. Postgres95 is installed
on an IBM RS/6000 workstation with three IBMRISC DFHSS4W 4.5 GB, 16-bit
SCSI disk drive. We have measured the response times for the queries Q5 and Qg
from the TPC-D benchmark for two different database sizes and three different
selectivities. The database sizes we have experimented with have scale factors® of
s=0.1 and s =0.05. The selectivities range from 2 to 4% and from 44 to 63% for
Q¢ and Qj;, respectively.

The errors for changing the selectivity are 2.4 and 1.1 % with the scale factor of
s=0.1 for the queries Q5 and Qg, respectively. The errors are calculated by dividing
the difference of increase rates® in DBsim by the increase rates of Postgres95. The
results were similar to the scale factor of s =0.05. The errors for different database
sizes are calculated in a similar way. The average of all the errors for different selec-
tivities for changing the database size are 1.4 and 1.1 % for the queries Q5 and Q,
respectively. The maximum error observed is 2.4 %. More information on DBsim
and experiments we have conducted to validate the simulator is given in [29].
Overall, the DBsim simulator is found to be highly accurate.

5 Scale factor corresponds to the total database size in GB; for instance, s =k means that the total size
of all the tables in the TPC-D database in & GB.

S Increase rate indicates the change in the execution time caused by a modification to the system
parameters. We have used increase rates instead of absolute values to validate our simulator, because
DBsim is a generic database simulator, it does not imitate any specific database management system.
Therefore the increase rate is more important for us than the absolute execution times taken from any
specific database management system.

SMART DISK CLUSTER DESIGN 1647

6. EXPERIMENTS

In this section, we present the simulation results obtained. First, we explain the base
configuration used in the experiments. Then, we give results for the experiments with
different bundling schemes. Afterward, the results for the base configurations of the single
host-based, cluster-based, and smart-disk-based systems are given. Then, architectural
and database values are changed to evaluate the potential performance of smart disks
in the future. The results for all the variations are summarized in Table 8. Finally, we
compare the scalability of the smart disk architecture and the clusters.

6.1. Parameters for Base Configuration

In this section, we explain the values used for architectural parameters in the base
configuration. Table 3 summarizes these values. We have selected the base con-
figurations to represent existing state-of-the-art hardware. Our main goal was to
have four systems of comparable prices. We also wanted the smart disk system to
be the cheapest system to build. Although, it is hard to predict the market prices
of smart disk systems, it is safe to assume that their manufacturing costs will be

TABLE 3

Base Configurations for the Experiments

Parameter Value

Single host configuration

Host CPU 500 MHz
Host memory 256 MB
I/O interconnect 200 MB/s

Configurationof clusters

Host CPU 400 MHz
Host memory 128 MB

I/O interconnect 200 MB/s
Interconnect speed 155 Mbps

Smart disk configuration

Disk CPU 200 MHz
Disk memory 32 MB

Disk-related values

Number of disks 8
Rotation speed (rpms) 10000
Data page size 8 KB
Min. seek time 1.62 ms
Mean seek time 8.46 ms
Max. seek time 21.77 ms

Database-related values

Size/relation medium
Selectivity medium

1648 MEMIK, KANDEMIR, AND CHOUDHARY

much less then the cluster or single-host based systems. In the base configuration,
single host contains a 500 MHz CPU, 256 MB of RAM, and 8 disks connected
through a 200 MB/s interconnection network. The hosts in both the clusters have
a 400 MHz CPU with 128 MB RAM. For both of the cluster configurations, the
total number of disks are kept constant at 8. So, the hosts in the cluster with 2
machines have 4 disks each and the hosts in the cluster with 4 machines have 2
disks each. The simulations for cluster systems are performed in a cluster of
workstations connected through an ATM network with 155 Mbps peak bandwidth.
Since the simulator performs the communication between the nodes, the simulated
cluster system is also connected through an 155 Mbps ATM network. The smart
disk system, on the other hand, consists of 8 smart disks, each having a 200 MHz
CPU and 32 MB main memory. The simulations for the smart disk system were
conducted on an IBM SP/2. So, the smart disks have fully connected TrailBlazer3
(TB3) switches between them with a 50.9 MBps peak bandwidth. Note that, neither
the cluster system nor the smart disk employ the fastest available links. Networks
with better performances can be used for both of the architectures, but this will
increase the system cost dramatically. We wanted all the systems to have a com-
parable cost, having faster links for cluster and smart disk systems would violate
this goal. If we employed faster links, this would have a minor effect on the relative
performance of the cluster and the smart disk system. One of the smart disks in the
system is employed as the central unit, accomplishing the task of coordination. The
disks employed by all the systems are of the same type. The seek times along with
the rotational speed of the disk are also given in Table 3.

6.2. Effect of Operation Bundling

To see the effect of the operation bundling, we have conducted two sets of
experiments with the base configuration given in Table 3. We have experimented
with a smart disk system having 4 disks, and also with a smart disk system having
8 disks. We have conducted experiments using three different bundling schemes:
no-bundling, bundling with the relation given in Section 4.2.1 (we call this scheme
optimal bundling), and excessive bundling. In no-bundling scheme, all the individual
operations are performed independent of each other. For the six queries experi-
mented in this study, this results in 8 different operations for the smart disks, each
consisting one individual database operation. Optimal bundling results in 9 different
possible bundles, each having 1.89 individual database operations in average. For
excessive bundling, we included the following tuples to the relation of bindable
operations given in Section 4.2.1:

{(indexed scan; sort),
(sequential scan; sort),
sort; group-by),

sort; aggregate),
aggregate; sort),
aggregate; group-by)}’

—_~ o~~~

7 Note that these tuples do not correspond to different bundles. They are bindable individual
operations. For more information about the relation of bindable operations see Section 4.2.1.

SMART DISK CLUSTER DESIGN 1649

£ Optimal Bundling B Excessive Bundling

Percentage Improvement
[%]

Q1 Q3 Q6 Q12 Q13 Q16
Queries

FIG. 4. Results for operation bundling with the smart disk system having 4 disks.

This has resulted in 11 different possible bundles,® each having 2.45 individual
database operations in average. The number of different possible bundles and the
average size of the bundles are an indication of the complexity of the system. The
higher these numbers, the more complex the system is, because each different
bundle possible should be supported by the smart disks.

Figures 4 and 5 give the results obtained. The values in these figures correspond
to the percentage improvement of the overall execution time over the no-bundling
scheme. Note that in Q4, which consists of only two individual operations, no
operations are bundled. Therefore the execution times for all bundling schemes are
equal. O, gives the best results among the queries we have examined. This query is
one of the most complex queries and contains two join operations. Three out of
four bundles formed for this query contain more than one individual operation. It
also produces a significant amount of intermediate results. All these properties com-
bined together, it has the best performance improvement among all the queries.
Overall, we can conclude that when the number of individual operations bundled
increase, the execution time decrease.

The average improvement over the no-bundling scheme in the 4-disk system is
4.90% for both the optimal and excessive bundling schemes. The average improve-
ment in the 8-disk system is 4.98 % with optimal bundling scheme and 4.99 % with
excessive bundling scheme. On average, the percentage improvement increases with
the number of disks increased. When the number of disks is increased, the duration
of each individual operation decreases. Therefore, bundling consecutive operations
result in longer uninterrupted code segments, thereby improving the effectiveness of
the bundling. In some queries, however, the percentage improvement drops with the
increased number of disks, because for no-bundling scheme larger percentage of the
temporary results can be kept in memory with the increased number of disks.

These results show that building larger bundles does not improve the perfor-
mance over the optimal bundling. There axe two reasons for this phenomena. First,
we have included all the possible combinations of individual operations which
would increase the intraquery parallelism; consecutively, building larger bundles

8 Note that the actual number of different possible bundles is much higher than this number, but most
of them are not formed in the queries we are experimenting with. For a discussion of the number of
different possible bundles refer to Section 4.2.1.

1650 MEMIK, KANDEMIR, AND CHOUDHARY

Optimal Bundling & Excessive Bundiing

Percentage Improvement

Q1 Q3 Q6 Qi2 Q13 Q16
Queries

FIG. 5. Results for operation bundling with the smart disk system having 8 disks.

does not improve the parallelism within the query. Second, the synchronization cost
is also not decreased with excessive bundling, because some of the operations
require synchronization regardless of the size of the bundle. The number of syn-
chronization points cannot be less than the number of such operations. Therefore,
increasing the bundle size does not decrease the number of synchronization points
significantly.

Overall, we can conclude that the operation bundling improves the performance
of the smart disk system. Another advantage of the communication using the opera-
tion bundling is the ease-of-programming. Using operation bundling, it is easy to
program a portable, easy-to-use interface to access data residing on the disks.

6.3. Results for Base Configurations

The base configurations are shown in Table 3. In each of the results (Figs. 6
through 17) presented later in this section we compare four different architectures:
a traditional architecture with a conventional disk subsystem, a cluster consisting of
2 host machines, a cluster consisting of 4 host machines and a smart disk architecture.
The idea in conducting these experiments is not to show that the smart disk system
performs better then the conventional systems, but our goal is to show that it is
possible to build a cheaper and less complex system that performs as good as the
available more costly systems.

Figure 6 presents the normalized execution times for the six queries for all the
architectures. In this and the following figures the x axis denotes the queries and y
axis denotes the execution times normalized with respect to the execution times of
the single host-based system in base configuration. The leftmost bar for each query
shows the normalized time for the single host machine (i.e., it shows the new execution
time divided by the execution time in base configuration), the second bar on the left
represents the time for the cluster with 2 machines (i.e., it shows the new execution
time of the cluster with 2 machines divided by the execution time of the single
host-based machine in base configuration), the second right bar represents the time for
the cluster with 4 machines, and the rightmost bar represents the relative execution
time of the smart disk system. Also, each bar for the host-based system is broken
down into two components, the computation time and I/O time, whereas each bar
for the clusters and the smart disk system is divided into three parts, the computation

Relative Execution Times Relative Execution Times Relative Execution Times

Relative Execution Times

SMART DISK CLUSTER DESIGN 1651

Bal/0

Computation

Base Configuration

al <) &3]

[C ommunication

Base Configuration

Relative Execution Times

Q12 Qi3 Qe

FIG. 6. Relative execution times for the default configuration.

Faster CPU

Ql o] [e3]

FIG. 7. Relative execution

Page Size =4 KB

Ql o] @3]

Faster CPU

Relative Execution Times

Qi2 Q13 Qie

times for faster CPU.

Page Size =4 KB

Relative Execution Times

Qi2 Qi3 Qe

FIG. 8. Relative execution times for smaller page size.

Page Size =16 KB

Qt (o] [e3]

Page Size =16 KB

Relative Execution Times

FIG. 9. Relative execution times for larger page size.

1652 MEMIK, KANDEMIR, AND CHOUDHARY

time, I/O time, and communication time. Computation time here denotes the time
spent by all processors (host and smart) during the execution of the query code.
The I/O time, on the other hand, is the time spent in I/O by host (in the traditional
host-based system and in the clusters) and by smart disks (in the smart disk
system). The communication time in clusters is the time spent in communication
between the hosts. The communication time in smart disk system is the time spent
in communication between the smart disks and the time spent in communication
between the central unit and the smart disks.

The results show that in the base configuration the smart disk system has a
speed-up between 2.24 and 6.06 for different queries, averaging 3.5 against the single
host system. The average speed-ups for the cluster with 2 machines and 4 machines
are 1.96 and 3.30, respectively. The smart disk architecture performed 43 % better
than the cluster with 2 machines and 4.2% better than the cluster with 4 machines
on average. Note that the cluster with 4 machius has twice as much memory with
respect to all other systems. Only in Q,¢, did the cluster perform better than the
smart disk system. In Q,, the cluster with 4 machines matches the performance of
the smart disk system. Q; does not involve any join operation, which allows hosts
in the cluster system to work independent from each other until the execution is
finished. Another property of this query is that it has a low 1/O percentage, which
allows the full utilization of the host processors. Because of these two reasons the
cluster with 4 machines can perform as well as the smart disk system. Q,4, on the
other hand, involves a hash based join operation. This operation requires a sub-
stantial amount of main memory and computation. Although constructing the
global hash table can be parallelized easily, its building from the local hash tables
takes a significant amount of time, for which the overhead increases with the
number of processors involved. Therefore, a cluster with 4 machines having larger
total memory than the smart disk system and the same computational power with
less machines favor from these properties, resulting in a faster response time.

A very important property of all the experiments conducted in this work is that
the communication time is relatively small compared to the total running time,
especially for the smart disk architecture. This is due to the use of fast links
employed and the protocol we have developed for the smart disk architecture. For
all the experiments conducted, we have assumed a perfect data load balancing. This
assumption, together with the low synchronization costs resulted in such high
speed-ups for both the clusters and the smart disk architecture.

6.4. Sensitivity Analysis

In this section, we present the results obtained for different values of several
architectural and database parameters. Table 4 shows all the variations with which
we have experimented. It gives the new values for the variables whose values are
modified for all the architectures. In each case, all the parameters except the rele-
vant parameter remain the same as in the base configurations (Table 3). For
instance, in the first variation, changing the CPU speed does not affect the memory
size. The interpretations for the small, medium, and large database sizes and
selectivities are given in Tables 5 and 6, respectively. Table 7, on the other hand,

SMART DISK CLUSTER DESIGN 1653

TABLE 4

Variations in Simulation Parameters with Respect to the Base Configuration

CPU Page Memory 1/0 Number Database
Variations — speed size size inter. of disks size Selectivity
Single Host 1GHz {4K,16K} 512MB 400MB/s {4,16} {small, large} {small, large}
Clusters 800 MHz {4K, 16K} 256 MB 400 MB/s {4,16} {small, large} {small, large}
Smart Disk 350 MHz {4K, 16K} 64 MB — {4,16} {small, large} {small, large}
TABLE 5

Total Size of the Tables

Ql Q3 Q6 Q12 Q13 Q16
small 24GB 3GB 24GB 3GB 0.75GB 0.6GB
medium 8GB 10GB 8GB 10GB 2.5GB 2GB
large 24GB 30GB 24GB 30GB 75GB 6GB

TABLE 6

Selectivities of the Queries [%]

0, 0 Os On 013 Os

small 83 44 2 04 100 12

medium 88 54 3 0.8 100 15

large 93 63 4 1.6 100 18
TABLE 7

Number of Tuples in the Accessed Tables (IM denotes Millions)

Ql Q3 Q6 Q12 Q13 QIG
small 18M 18M x 4.5M x 0.45M 18M 1SM x45M 45M x045M 2.4M x 0.6M x 30K
medium 60M 60M x 15M x 1.5M 60M 60M x 15SM 15M x 1.5M 8M x 2M x 0.1M

large 180M 180M x 45M x 4.5M 180M 180M x45M 45M x4.5M 24M x 6M x 0.3M

1654 MEMIK, KANDEMIR, AND CHOUDHARY

gives the corresponding number of tuples in the database for different database
sizes.

6.4.1. Varying Architectural Parameters

We start our architectural variations by increasing the CPU speed. Figure 7
reveals that increasing CPU speed increases the effectiveness of the smart disk
system. The speed-up for the smart disk architecture increases to 3.56, whereas the
speed-ups for both the cluster drop to 1.79 and 2.78 for clusters with 2 machines
and 4 machines, respectively. So, the smart disk architecture performs 49.64 %
better than the cluster with 2 machines and 6.73% better than the cluster with 4
machines. Although the improvements in most of the queries are slight, the
relatively larger improvement in Q;¢ resulted in an improvement in the average.

Next, we modified the data page size to see its effect on the performance.
Figures 8 and 9 give the results for the experiments with page sizes of 4 and 16 KB,
respectively. As the page size is increased, the effectiveness of the smart disk system
increases. This is due to the fact that as the page size is increased, the size of the
“irrelevant” (unwanted) data increases, resulting in higher loads on the I/O bus.

When the memory sizes of all the architectures are doubled, the percentage
decrease of the response times for all the architectures are similar. So, the relative
performances remain as in the base configurations. The results for the experiment
with larger memory sizes are given in Fig. 10. We see from the figures that the 1/O
times also drop when the memory size is increased for most of the queries.

Increasing the speed of the I/O interconnection, favors mostly for the cluster with
4 machines. Even though data can be transfered faster to the processing unit in the
single host system, since the CPU is already highly utilized (for most of the
queries), the throughput of the system does not change dramatically. On the other
hand, for the cluster with the 4 machines, faster data retrieval can result in higher
throughputs. The results for these experiments are plotted in Fig. 11. The speed-up
for smart disk architecture drops to 3.27 and the cluster with 4 machines performs
5.56% better than the smart disk system for this configuration. In these experi-
ments, we could not change the speed of the interconnection network for the smart
disks, due to the hardware limitations.

Finally, we changed the number of disks in all the systems, without changing the
number of machines in cluster systems (the experiments with different number
machines are given in Section 6.5). Note that, as the number of disks is reduced
in the smart disk system, the total computational power also drops and as the
number of disks increases, the total computational power automatically increases.
Figures 12 and 13 give the results obtained for experiments with different numbers
of disks. The speed-up against the single host machine for the smart disk architec-
ture with 4 disks drops to 1.91 on average, matching the speed-up of the cluster
with 2 machines. The cluster with 4 machines, on the other hand, has a speed-up
of 3.13. In contrast, the smart disk system has a speed-up of 5.38 when there are
16 disks in the system, showing that adding more disks to the single host machine
(similarly to the hosts in the clusters) without increasing the computational power
hardly makes a difference on the throughput of the system.

SMART DISK CLUSTER DESIGN 1655

B# /0 Computation [[ACommunication
Larger Memory Larger Memory

[w

[

£ E

= [

c c

L o

E :

@ %

il w

s 5

3 2

T at @ o3 Q2 Qi3 Q16

FIG. 10. Relative execution times for larger memories.
Faster /O interconnnection Faster VO interconnnection

[} [

E £

= =

c <

2 o

: 3

& %

w w

g 5

3 2

e Q12 Qi3 Qi6

FIG. 11. Relative execution times for faster I/O interconnection.
Number of Disks =4 ‘ Number of Disks = 4

0 v

£ £

F =

c =

2 8

2 3

2 %

& |

2

E E

3 2

« at @ o a2 Qi3 Qie

FIG. 12. Relative execution times for less disks (without increasing the number of hosts in the
clusters).

Number of Disks =16 Number of Disks =16

Relative Execution Times

Relative Execution Times

Qi (ec] (03 Qi2 Qi3 Q16

FIG. 13. Relative execution times for more disks (without increasing the number of hosts in the
clusters).

1656 MEMIK, KANDEMIR, AND CHOUDHARY

As the technology advances, CPU speeds, memory sizes, and the number of disks
in almost all the systems are increasing. Looking at the results we have obtained
from our experiments, we can see that the smart disk architecture performs better
with the increased CPU speed and the number of disks, and the performance
improvement in smart disk system with the large memory size matches the increases
for both the cluster systems and single host-based system. According to these
results, we can conclude that technology advances will favor smart disk systems
more than it does clusters and single host-based systems.

6.4.2. Varying Database Parameters

In this section, we present the experiments conducted with different database
parameters. First, we experimented with different database sizes. Figure 15 reveals
that increasing the database size increases the performance of the smart disk system.
The speed-up for the database with large size with the smart disk architecture is
3.91, which performed 12.03% better than the cluster with 4 machines and 48.39 %
better than the cluster with 2 machines. For smaller database size (Fig. 14), the
speed-up drops to 3.32, which is matched by the cluster with 4 machines. The smart
disk architecture performs better with larger database size, because as the size is
increased, constant overheads of the smart disk system (synchronization, start-up,
etc.) become negligable. As expected, increasing selectivity (Fig. 16) decreases the
effectiveness of the smart disk system and decreasing selectivity favors smart disk
systems (Fig. 17). One of the advantages of the smart disk system is that the irrele-
vant data (e.g., database tuples which do not have any effect on the result of the
operation) are not sent through the I/O bus, which enhances the 1/O performance
of the system. When the selectivity is increased, the proportion of this irrelevant
data decreases, decreasing the advantage of the smart disk system. This effect of
selectivity is similar to the results obtained by Riedel ef al. [34].

6.5. Scalability

In this section, we compare the scalability of clusters and the smart disk system.
To measure the scalability, we conducted experiments with 4, 8, 16, and 32 disks.
In these experiments, the number of disks per host remains the same, so we
increased the number of hosts in the system to increase the total number of disks.
We used the same type of clusters discussed in the previous sections, i.e., hosts with
2 disks and 4 disks each. Again as before, the hosts are connected through a
155 Mbps ATM network, with an ATM switch for each 4 cluster machine
simulated. The configuration for the smart disk system and the values for the
database related parameters are also as in the base configurations (Table 3).

Figures 18 through 20 give the results obtained from our experiments. For each
query, the leftmost bar represents the speed-up of the cluster consisting of hosts
with 4 disks, the middle bar represents the speed-up of the cluster consisting of
hosts with 2 machines, and the rightmost bar represents the speed-up of the smart
disk system. To calculate speed-ups, we take the response time of each architecture
with 4 disks as the base. In other words, the speed-up is calculated by dividing the

Relative Execution Times Relative Execution Times Relative Execution Times

Relative Execution Times

SMART DISK CLUSTER DESIGN

BE1/0

Small Database Size

(@] [ec] (&3]

Computation

[AC om munication

Small Database Size

1657

o
~

o
w

Relative Execution Times
(=
N

FIG. 14. Relative execution times for smaller database size.

Large Database Size

Qf @ 03

FIG. 15.

High Selectivity

16

Large Database Size

w

N

e h f <
[—EIETN S SRS N ARSI N

Relative Execution Times

Qi6

Relative execution times for larger database size.

FIG. 16. Relative execution times for high selectivity.

Low Selectivity

(& e¢] @3]

High Selectivity
123
E 2
C s
S
512
8
X 08
.g 0.4
5
g o
Q2 Q3 Q16
Low Selectivity

Relative Execution Times

Q12

FIG. 17. Relative execution times for 1ow selectivity.

1658 MEMIK, KANDEMIR, AND CHOUDHARY

ElCluster with 4 disks [g Cluster with 2 disks [jSmart Disk Syétem

Queries

FIG. 18. Speed-ups of the three architectures with 8 disks for different queries.

corresponding response time of the architecture with 4 disks by the response time
of the same architecture with the corresponding number of disks (8 disks for
Figs. 18, 16 disks for Figs. 19, and 32 disks for Fig. 20). For all the figures, we can
say that the scalabilities for all the architectures are similar except for the query
Q. For this query, the speed-up of the smart disk architecture is slightly less than
the speed-ups of clusters. The reason for this result is that this query produces
relatively large results, which should be combined by the central unit. As the
number of disks in the system is increased, combining the local results becomes a
bottleneck. Clusters are less affected by this bottleneck, because they have a faster
front-end. Note that the combination of the final result from the local results can
also be performed in parallel, which will increase the speed-up for all the systems.
Another solution to this problem may be to reconfigure the smart disk system.
Instead of having one central unit for all the smart disks, smart disks can be collected
in several groups, each with its central unit. Then, to increase the total number of
disks in the system, all we have to do is to add more groups, each having a central
unit. Such a configuration of smart disks will be more scalable than our current
configuration. But considering the sizes of the systems we have experimented with
(8 disks in default configuration), such a rearrangement of smart disks will have an
insignificant effect on the results of the previous sections. The effect of a slower cen-
tral unit can also be observed in queries Q, and Q5 to a lesser extent. On the other
hand, for Q5, the smart disk architecture scales better especially up to 16 disks. This

‘ig Cluster with 4 disks fg Cluster with 2 disks [Smart Disk System }

4 e

Queries

FIG. 19. Speed-ups of the three architectures with 16 disks for different queries.

SMART DISK CLUSTER DESIGN 1659

g3 Cluster with 4 disks gg Cluster with 2 disks g Smart Disk SystemJ

Queries

FIG. 20. Speed-ups of the three architectures with 32 disks for different queries.

TABLE 8

Averages of Experiments for Different Architectural and Database-Related Parameters

Single Cluster Cluster Smart
host with 2 with 4 disk

Variation machine machines machines system
Base conf. 100 50.6 30.3 29.0
Faster CPU 100 55.8 36.0 28.1
Large page size 100 48.6 29.2 25.6
Small page size 100 57.1 338 30.0
Large memory 100 51.1 30.7 29.1
Faster 1/O inter. 100 48.1 389 30.6
Fewer disks 100 52.9 320 523
More Disks 100 50.1 29.6 18.6
Smaller DB. size 100 59.7 30.1 30.1
Larger DB. size 100 49.6 29.1 25.6
High selectivity 100 49.3 29.5 29.4
Low selectivity 100 523 315 28.5

Note. Each number corresponds to the average of the response times with respect to the single host
machine for all queries.

TABLE 9

Average Speed-Ups for Scalability Experiments

Number Cluster Cluster Smart
of disks with 4 disks with 2 disks disk system
8 1.89 1.88 1.88
16 3.75 3.73 3.72
32 7.39 7.36 7.31

Note. Each number corresponds to the average of the speed-ups for all the queries.

1660 MEMIK, KANDEMIR, AND CHOUDHARY

query is the query with the largest communication requirement. The communica-
tion overhead increases if the total number of machines in the system is increased.
Having a smaller communication percentage, the smart disk system is less affected
by this overhead. But as the number of disks is increased, the overhead of a single
central unit becomes the dominant factor, favoring the clusters.

Table 9 gives the average speed-ups of all queries for all the architectures and for
different numbers of disks. With a slight effort of putting in a faster central unit, the
scalability of the smart disk system can be improved significantly. Also, the speeds
of embedded processors are increasing rapidly, which will favor the smart disk
architecture. Overall, our results show that the scalability of the smart disk system
matches the scalability of clusters.

7. RELATED WORK

In the late 1970s and early 1980s there were numerous proposals for putting
processing power in storage subsystems. As an example, in the IBM 360, the 1/O
processors were able to execute channel programs that perform I/O on behalf of
their hosts. Database machines employed processors on different levels of the disk
architecture. For example, Banerjee et al. [7] proposed putting a processor per disk
head. The others offered processor per track and processor per disk [6, 26, 317.
Unfortunately, the special-purpose components eventually led to the demise of
earlier database architectures. As we have mentioned in Section 2, there are many
differences between our work and the database machines. First of all, smart disk
systems use commodity hardware, which makes them cost-effective. Secondly we
take efficient query optimization techniques into account and we also have
experience in parallel databases.

Derived Virtual Devices [43] are proposed as a means of exporting devices with
different capabilities to different users. DVDs are assumed to have IP-connectivity
and that they can be accessed through a wide-area-network. This general-purpose
connectivity increases the overhead of accesses to devices, especially when only
communication between disk-processors and central unit is needed. The main focus
of this work is to design mechanisms for maintaining security at the disks. Secure
devices and migration of file-system capability to devices are also investigated as
part of network-attached secure-disks (NASD) at CMU [14].

Acharya et al. [1] have recently proposed an Active Disk architecture which
integrates significant processing power and memory into a disk drive and down-
loads application-specific code on disk. They hand-optimized a number of isolated
database operators to run on the active disk architecture [2]. They also compare
the performance of smart disk architecture, SMP’s and clusters for a subset of
individual database operations we have used in this work [2, 42]. Their simulation
results show that the processing power on disks might be useful. Our research is dif-
ferent from theirs in the sense that we evaluated the execution of whole queries.
Since a typical database query might involve parts that are suitable for the smart
disks and parts that are not, it is very important to focus on the entire queries to
reach a reliable evaluation. We have also implemented individual operations like

SMART DISK CLUSTER DESIGN 1661

indexed scan and hash join which were not considered in their work. We also use
a different communication scheme. Riedel et al. [33, 34] have also focused on the
active disk architecture and have used it in database applications. Their work is
concentrated mainly on applications with almost no communication between disks.
We believe that with the advances in serial communication links the disk processors
will be able to communicate with each other without the involvement of the hosts.
Patterson et al. [25] present a disk architecture called intelligent disks (IDISKs)
that puts processing power at the disks to overcome the I/O bus bottleneck of con-
ventional systems. The main idea, as in active disks [1], is to off-load computation
from expensive desktop processors. Compared to the active disks, the IDISKs are
meant to be more general purpose.

Virtual disks [5] and logical disks [24] provide a device abstraction that hide
the physical connectivity of the disk. These systems make a disk connected to a
remote host to appear as if it is logically/virtually connected to a local host. Strip-
ing-related work [12, 18, 27] studies the impact of device-level and server-level
parallelism on I/O performance. These systems still treat disks merely as storage.
Our work will extend the function of any disk on the network to encompass local
processing at the disk.

Active Networks [30, 38] envisions code migration to the network to improve
QOS. These projects [9, 17] deal with execution of user code (carried within
network packets) in the network. The migratable code is much more application-
specific in smart disk systems as opposed to dealing with a number of predefined
QOS attributes of the network.

8. CONCLUSIONS

Putting excessive computational power to the embedded systems and bringing
processing units closer to the data are growing trends in computer architecture.
Smart disks are a continuation of these trends. A smart disk system takes advantage
of the processing power on disks by off-loading user-defined code to the disks. This
reduces the traffic in the I/O network, thereby increasing the system throughput
dramatically. We evaluated a single host-based system, two cluster systems, and a
smart disk system using queries from the TPC-D benchmark. Our results show that
the smart disk system can bring significant speed-ups for Decision Support System
(DSS) databases. Specifically, for our base configuration, the smart disk system per-
formed 71 % better than the single host system, 43 % better than the cluster with
2 machines, and 4.2% better than the cluster with 4 machines. CPU speeds,
memory sizes, total number of disks in the computer systems, and the storage
requirements of applications are increasing as the technology advances. Our
experiments show that, for all these parameters, the relative performance of smart
disk system increases as the parameter values are increased, except for the case of
memory where the increase of performance of other systems is matched by the
smart disk system. We also showed that the the scalability of the smart disk system
matches the scalability of clusters. These performance results along with the cost-
effectiveness of the smart disk systems make them very attractive for data-intensive
applications. The work-in-progress includes the design and implementation of

1662 MEMIK, KANDEMIR, AND CHOUDHARY

automatic query optimizers that can handle other types of queries (e.g., update
queries) and investigation of different applications for smart disk architecture.

10.
11.

12.

13.

14.

15.

19.

20.

REFERENCES

A. Acharya, M. Uysal, and J. Saltz, Active disks: Programming model, algorithms, and evaluation,
in “Proc. ASPLOS VIIL” pp. 81-91, October 1998.

. A. Acharya, M. Uysal, and J. Saltz, “Structure and Performance of Decision Support Algorithms on

Active Disks,” Technical Report TRCS98-28, Dept. of Computer Science, UCSB, October 1998.

. A. Arpaci-Dusseau, R. Arpaci-Dusseau, D. Hellerstein, and D. Patterson, High performance sorting

on networks of workstations, in “Proc. SIGMOD’97,” 1997.

. R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Hellerstein, D. Patterson, and

K. Yelick, Cluster I/O with river: Making the fast case common, Input/Output Parallel Distrib.
Systems (May 1999).

. C. R. Atanasio, M. Butrico, C. A. Polyzois, S. E. Smith, and J. L. Peterson, “Design and Implemen-

tation of a Recoverable Virtual Shared Disk,” IBM Technical Report RC 19843, Nov. 1994.

. E. Babb, Implementing a relational database by means of specialized hardware, ACM Trans.

Database Systems 4(1), March 1979.

. J. Banerjee et al., DBC—A database computer for very large databases, IEEE Trans. Comput. (June

1979).

. P. Bernstein, Database technology: What’s coming next?, Keynote Presentation at, in “Fourth

Symposium on High Performance Computer Architecture,” February 1998.

. S. Bhattacharjee, K. Calvert, and E. W. Zegura, Implementation of a active networking architecture:

White paper presented at “Gigabit Switch Technology Workshop,” Washington University,
St. Louis, July 1996.

Cirrus Logic, Inc., Preliminary Product Bulletin CL-SH8665, June 1998.

D. DeWitt and J. Gray, Parallel database systems: The future of high performance database systems,
Comm. Assoc. Comput. Mach. 35(6) (June 1992), 85-98.

A. Drapeau et al., RAID-II: A high-bandwith network file server, in “Proc. of 21st Ann. Symp. on
Computer Architecture (ISCA’94),” pp. 234-244, April 1994.

G. Ganger, B. Worthington, and Y. Patt, “The DiskSim Simulation Environment Version 1.0
Reference Manual,” Technical Report, CSE-TR-358-98 Dept. of Electrical Engineering and
Computer Science, Feb. 1998.

G. A., Gibson et al., File server scaling with network-attached secure disks, in “Proc. of the ACM
Sigmetrics,” June 1997.

G. Graefe, Query evaluation techniques for large databases, ACM Comput. Surveys 25(2) (June
1993), 73-170.

. J. Gray, Put everything in the storage device, presented at “NASD Workshop on Storage Embedded

Computing,” June 1998.

. J. Hartman, U. Manber, L. Peterson, and T. Proebsting, “Liquid Software: A New Paradigm for

Networked Systems,” Technical Report 96-11, Department of Computer Science, University of
Arizona, 1996.

. J. H. Hartman and J. K. Ousterhout, The Zebra striped network file system, in “Proc. of the 14th

Symposium on Operating System Principles (SOSP’93),” pp. 29-43, Dec. 1993.
W. Hasan, “Optimization of SQL Queries for Parallel Machines,” Ph.D. thesis, Stanford University,
1995.

W. Hasan and R. Motwani, Coloring away communication in parallel query optimization, in “Proc.
of the 21st Conference on Very Large Databases (VLDB95),” 1995.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.
37.
38.

39.

40.

41.

42.

43.

SMART DISK CLUSTER DESIGN 1663

“High Performance Computing and Communications: Grand Challenges 1993 Report: A Report by
the Committee on Physical, Mathematical and Engineering Sciences,” Federal Coordinating Council
for Science, Engineering and Technology, 1993.

Intel Corporation “i1960 Hx Microprocessor Developer’s Manual,” September 1998, Order Number:
272484-002, Intel, Santa Clara, CA.

Y. Ioannidis et al., Parametric query optimization, in “Proc. of the 18th Conference on Very Large
Databases (VLDB92),” August 1992.

W. de Jonge, M. F. Kasshoek, and W. C. Hsieh, The logical disk: A new approach to improving
file systems, in “Proc. of the 14th ACM Symp. on Operating Sys. Principles (SOSP’93),” pp. 15-28,
Dec. 1993.

K. Keeton, D. A. Patterson, and J. M. Hellerstein, The case for intelligent disks (IDISKS),
SIGMOD Record 27(3) (1998).

S. C. Lin, D. C.P. Smith, and J. M. Smith, The design of a rotating associative memory for
relational database applications, Trans. Database Systems 2 (March 1976), 53-75.

D. E. E. Long, B. R. Montague, and L. Cabrera, Swift/RAID: A distributed RAID system, Comput.
Systems 7(3) (1994), 333-359.

M. Mehta and D. J. DeWitt, Managing intra-operator parallelism in parallel database systems, in
“Proc. 21st Conference on Very Large Databases (VLDB95),” pp. 382-394, 1995.

G. Memik, M. Kandemir, and A. Choudhary, “An experimental Evaluation of Smart Disk Architec-
tures Using DSS Commercial Workloads,” Technical Report, CPDC-TR-9909-015, Dept. of Electri-
cal and Computer Engineering,, Sept. 1999.

D. Murphy, “Building an Active Node on the Internet,” Technical Report, MIT-LCS-TR-723,
Master of Engineering thesis, MIT, Cambridge, MA, May 1997.

E. A. Ozkarahan, S. A. Schuster, and K. C. Smith, RAP—Associative processor for database
management, in “Proc. AFIPS Conference,” Vol. 44, pp. 379-388, 1975.

R. Ramakrishnan, “Database Management Systems,” McGraw-Hill, New York, 1998.

E. Riedel and G. Gibson, “Active Disks—Remote Execution for Network-Attached Storage,” Technical
Report CMU-CS-97-198, School of Computer Science, Carnegie Mellon University, PA, 1997.

E. Riedel, G. Gibson, and C. Faloutsos, Active storage for large scale data mining and multimedia
applications, in “Proc. 24th Conference on Very Large Databases (VLDB98),” New York, NY,
1998.

C. Ruemmler and J. Wilkes, An introduction to disk drive modeling, IEEE Comput. 27 (March
1994), 17-28.

Siemens Microelectronics, Inc., “TriCore Architecture Overview Handbook,” February 1999.

M. Stonebraker et al., A wide-area distributed database system, VLDB J. 5 (January 1996), 48-63.
D. L. Tennenhouse and D. J. Wetherall, Towards an active network architecture, Comput. Comm.
Rev. 26 (April 1996).

A. Tessardo, “TMS320C27x: New Generation of Embedded Processor Looks Like a Microcon-
troller, Runs Like a DSP,” White Paper: SPRA446, Digital Signal Processing Solutions, March
1998.

P. Trancoso, J. L. Larriba-Pey, Z. Zhang, and J. Torrellas, The memory performance of DSS
commercial workloads in shared-memory multi-processors, in “Proc. International Symposium on
High Performance Computer Architecture (HPCA’97),” San Antonio, TX, Feb. 1-5.

Transaction Processing Performance Council, “TPC Benchmark D Standard Specification Revision
2.1,” February 1998.

M. Uysal, A. Acharya, and J. Saltz, Evaluation of active disks for decision support databases, in
“Proceedings of the 6th International Symposium on High-Performance Computer Architecture,”
Toulouse, France, January 10-12, 2000, to appear.

R. Van Meter, S. Hotz, and G. Finn, Derived virtual devices: A secure destributed file system
mechanism, in “Proc. 5th NASA Conf. on Mass Storage System and Technologies,” Sept. 1996.

1664 MEMIK, KANDEMIR, AND CHOUDHARY

44. R. Y. Wang, T. E. Anderson, and D. E. Patterson, Virtual log based file systems for a programmable
disk, in “Proc. Third Symposium on Operating Systems Design and Implementation (OSDI'99),”
February 1999.

45. R. Winter and K. Auerbach, Giants walk the earth: The 1997 VLDB Survey, Database Program.
Design 10 (Sept. 1997).

46. R. Winter and K. Auerbach, The big time: The 1998 VLDB Survey, Database Program. Design 11
(Aug. 1998).

47. A. Yu and J. Chen, “The POSTGRES95 User Manual,” Computer Science Div., Dept. of EECS,
University of California at Berkeley, July 1995.

	1. INTRODUCTION
	2. SMART DISK ARCHITECTURE
	FIG. 1

	3. DSS QUERIES
	TABLE 1
	FIG. 2

	4. QUERY EXECUTION
	TABLE 2
	FIG. 3

	5. SIMULATOR
	6. EXPERIMENTS
	TABLE 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	FIG. 10
	FIG. 11
	FIG. 12
	FIG. 13
	FIG. 14
	FIG. 15
	FIG. 16
	FIG. 17
	FIG. 18
	FIG. 19
	FIG. 20
	TABLE 8
	TABLE 9

	7. RELATED WORK
	8. CONCLUSIONS
	REFERENCES

