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Abstract
Over the last decade, processors have made enormous gains in speed. But increase in the speed of
the secondary and tertiary storage devices could not cope with these gains. The result is that the
secondary and tertiary storage access times dominate execution time of data intensive computations.
Therefore, in scientific computations, efficient data access functionality for data stored in secondary
and tertiary storage is a must. In this paper, we give an overview of APRIL, a parallel runtime
library that can be used in applications that process tape-resident data. We present user interface
and underlying optimization strategy. We also discuss performance improvements provided by the
library on the High Performance Storage System (HPSS). The preliminary results reveal that the
optimizations can improve response times by up to 97.2%.

1 Introduction
We address the problem of managing the movement of very large data sets between dif-
ferent levels of a hierarchical storage system. It is now widely acknowledged that the data
set sizes manipulated by scientific codes are getting larger as programmers have access to
faster processors and larger main memories. The data sets whose sizes exceed main memo-
ries should be stored in secondary and tertiary storages. Although the prices for secondary
storage devices are decreasing, tertiary storage devices are becoming increasingly attrac-
tive especially for applications that require vast amount of storage capacity which cannot be
satisfied by secondary storage devices and for applications which cannot afford the cost or
system complexity of a large number of disk drives. There has been a considerable amount
of work in addressing the flow of data to and from secondary storage devices (e.g., mag-
netic disks) [1, 2, 3, 4, 5, 6, 7, 8, 9]. There has also been a significant amount of work on
the management of large scale data in a storage hierarchy involving tertiary storage devices
(e.g., tapes devices) [10, 11, 12, 13, 14]. Striping has been studied to improve the response
time of tertiary storage devices [15, 16].

The Department of Energy’s ASCI plan draws an outline of the expected storage require-
ments for large-scale computational challenges. According to this plan, a large scientific
application today is producing 3-30 terabytes of simulation datasets for a run, requiring 3
petabytes of archive capacity. These sizes are excepted to grow to 100-1000 terabytes per
run and to 100 petabytes of archive capacity in the year 2004. Even with the assumptions
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of aggressive improvements in the evolution of storage devices, the data accesses in these
applications will take a significant proportion of the overall execution time [17]. On top of
this, aggregate data sizes may require the employment of tertiary storage devices. Many
of these applications do not demand the entire datasets to be accessed at a given time. So,
having means to access portions of the tape-resident datasets efficiently may decrease the
time spent in data accesses significantly.

In this paper, we present APRIL, a parallel run-time library, that can be used to facilitate
the explicit control of data flow for tape-resident data. Our library can be used by appli-
cation programmers as well as optimizing compilers that manipulate large scale data. The
objective is to allow programmers to access data located on tape via a convenient inter-
face expressed in terms of arrays and array portions (regions) rather than files and offsets.
In this sense the library can be considered as a natural extension of state-of-the-art run-
time libraries that manipulate disk-resident datasets (e.g., [2, 18]). The library implements
a data storage model on tapes that enables users to access portions of multi-dimensional
data in a fast and simple way. In order to eliminate most of the latency in accessing tape-
resident data, we employ a sub-filing strategy in which a large multi-dimensional tape-
resident global array is stored not as a single file but as a number of smaller sub-files,
whose existence is transparent to the programmer. The main advantage of doing this is that
the data requests for relatively small portions of the global array can be satisfied without
transferring the entire global array from tape to disk as is customary in many hierarchical
storage management systems. In addition to read/write access routines, the library also sup-
ports pre-staging and migration capabilities which can prove very useful in environments
where the data access patterns are predictable and the amount of disk space is limited.

The main contributions of this paper are as follows:
� The presentation of a high-level parallel I/O library for tape-resident data. APRIL

library provides a simple interface to the tape-resident data, which relieves the programmers
from orchestrating I/O from tertiary storage devices such as robotic tapes and optical disks.

� The description of the implementation of the library using HPSS [19] and MPI-IO
[3]. We show that it is both simple and elegant to build an I/O library for tape-resident data
on top of these two state-of-the-art systems. In this paper, however, we focus on a single
processor performance.

� The presentation of preliminary performance numbers using representative array re-
gions and sub-file sizes. The results demonstrate that the library is quite effective in exploit-
ing the secondary storage – tertiary storage hierarchy without undue programmer effort.

Section 2 gives an overview of the APRIL library. Section 3 describes sub-filing and its
use in the library. Section 4 briefly explains the implementation and Section 5 presents the
user interface. Section 6 gives preliminary experimental results and Section 7 concludes
the paper with a summary and an outline of future work.
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2 Library Overview
The library provides routines to efficiently perform I/O required in sequential and parallel
applications. It can be used for both in-core and out-of-core applications. It uses a high-
level interface which can be used by application programmers and compilers. For example,
an application programmer can specify what section of an array she wants to read in terms
of lower and upper bounds in each dimension, and the library will fetch it in an efficient
manner, first from tape to disk and then from disk to main memory. It provides a portable
interface on top of HPSS [19] and MPI-IO [3]. It can also be used by an optimizing com-
piler that targets programs whose data sets require transfers between secondary storage and
tertiary storage. It might even be possible to employ the library within a database manage-
ment system for multi-dimensional data.

At the heart of the library is an optimization technique called sub-filing, which is explained
in greater detail in the next section. It also uses collective I/O using a two-phase method,
data pre-staging, pre-fetching, and data migration. The main advantage of sub-filing is that
it provides low-overhead random access image for the tape-resident data. Sub-filing is in-
visible to the user and helps to efficiently manage the storage hierarchy which can consist
of a tape sub-system, a disk sub-system and a main memory. The main advantage of the
collective I/O, on the other hand, is that it results in high-granularity data transfers between
processors and disks, and it also makes use of the higher bandwidth of the processor inter-
connection network.

In general, a processor has to wait while a requested tape-resident data set is being read
from tape. The time taken by the program can be reduced if the computation and tape I/O
can be overlapped somehow. The pre-staging achieves this by bringing the required data
ahead of the time it will be used. It issues asynchronous read calls to the tape sub-system,
which help to overlap the reading of the next data portion with the computation being
performed on the current data set. The data pre-fetching is similar except that it overlaps
the disk I/O time with the computation time.

3 Sub-filing
Each global tape-resident array is divided into chunks, each of which is stored in a sep-
arate sub-file on tape. The chunks are of equal sizes in most cases. Figure 1 shows a
two-dimensional global array divided into 64 chunks. Each chunk is assigned a unique
chunk coordinate (x1; x2), the first (upper-leftmost) chunk having (0,0) as its coordinate.
For the sake of ensuing discussion we assume that the sub-files corresponding to the chunks
are stored in row-major as depicted in the figure by horizontal arrows.

A typical access pattern is shown in Figure 2. In this access a small two-dimensional
portion of the global array is requested. In receiving such a request, the library performs
three important tasks:

� Determining the sub-files that collectively contain the requested portion,
� Transferring the sub-files that are not already on disk from tape to disk, and
� Extracting the required data items (array elements) from the relevant sub-files from
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Figure 1: A global tape-resident array divided into 64 chunks.
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Figure 2: An access pattern (shaded portion) and its cover.

disk and copying the requested portion to a buffer in memory provided by the user call.

In the first step, the set of sub-files that collectively contain the requested portion is called
cover. In Figure 2, the cover contains the sub-files (1,2), (1,3), (1,4), (2,2), (2,3), (2,4),
(3,2), (3,3), and (3,4). Assuming for now that all of these sub-files are currently residing
on tape, in the second step, the library brings these sub-files to disk. In the third step, the
required portion is extracted from each sub-file and returned to the user buffer. Note that
the last step involves some computational overhead incurred for each sub-file. Instead, had
we used just one file per global array this computational overhead would be incurred only
once. Therefore, the performance gain obtained by dividing the global array into sub-files
should be carefully weighed against the extra computational overhead incurred in extract-
ing the requested portions from each sub-file. Our preliminary experiments show that this
computational overhead is not too much.

Parallel reads by multiple processors pose additional problems. Consider now Figure 3(a)
where four processors are requesting four different sub-columns of a region. The underly-
ing cover contains 28 sub-files. After bringing these sub-files from tape to disk, we have a
problem of reading the required sub-portions (sub-columns) for each processor. As stated
by del Rosario et al. [20], collective I/O is a technique in which processors perform I/O on
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Figure 3: (a) An access pattern involving four processors. (b) The global array with each
sub-file marked with the number of processors that share it.
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Figure 4: Successive array accesses.

behalf of each other in order to reduce the time spent in disk-I/O at the expense of some
extra communication. Two-phase I/O is a specific implementation of collective I/O, which
uses the information available about the access and storage patterns. It employs two phases.
In the first phase, the processors access the data in a layout conformant way (to exploit spa-
tial locality on disk as much as possible) and in the second phase they re-distribute the data
in memory among themselves such that the desired access pattern is obtained. While it is
quite straightforward how to use collective I/O when we have a single file, in our multiple
file case it is not clear how to utilize it. One simple approach might be to use collective
I/O for each sub-file on disk. In our example, that would mean calling a collective I/O
routine 28 times. A better alternative might be to read the data from disk to memory in
two steps. In the first step, the processors that have exclusive access to some sub-files per-
form these independent accesses. In the second step, for each of the remaining sub-files,
we can perform collective I/O using only the processors that request some data from the
sub-file in question. Considering Figure 3(b), this collective I/O scheme corresponds to
first reading the sub-files marked ‘1’ and then collectively (using two processors) reading
the sub-files marked ‘2’. We plan to implement this last collective I/O strategy in the future.

During successive reads from the same global file it might happen that the same sub-file
can be required by two different reads. Assuming that the sub-file in question still resides
on the disk after the first read, it is unnecessary to read it again from tape in the second
read. In such a case only the other (additional) sub-files required by the current access are
read from tape. The situation is shown in Figure 4 for three scenarios. In each case, the
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Figure 5: (a) Library architecture. (b) Pre-fetching, pre-staging, and migration.

first portion read is marked ‘1’ and the second portion read is marked ‘2’. The shaded parts
around the second portions correspond to additional sub-files that are needed for the second
read. In other words, the library effectively uses the storage hierarchy.

4 Implementation
We are implementing the APRIL library on top of HPSS [19] and MPI-IO [3]. The connec-
tions between different components are shown in Figure 5(a). In a read call, the sub-files
are first read from tape to disk using HPSS and then from disk to main memory using MPI-
IO. As mentioned earlier, we employ collective I/O between disk and memory. In a write
call the direction of data-flow is reversed. Figure 5(b) shows the corresponding storage
levels for each action described in the following sections.

To store the information about the file and the chunks, we are currently using the Postgres95
database [21]. When a new file is created, the user may enter the necessary information
about the chunks. The detailed information about the file creation is given in Section 5.
Then this meta-data is stored in the database for later usage. When a user opens a previously
created file, the corresponding meta-data about the file and the chunks are read from the
database and cached in the memory. Then the following accesses uses this meta-data. The
database is informed about the changes when the file is closed. In other words, the database
is accessed only in file open and file close.

5 User Interface
The routines in the library can be divided into four major groups based on their functionality
– Initialization/Finalization Routines, File Manipulation Routines, Array Access Routines,
and Stage/Migration Routines. Table 1 lists some of the basic routines in the library and
their functionalities. All the routines listed here are the low level instructions, which should
explicitly be called by the user. We are currently adding high level routines to our library,
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Table 1: Some of the library routines.

Initialization/Finalization Routines
Routine Functionality

T INITIALIZE Initializes the library structures
T FINALIZE Finalizes the library structures

File Manipulation Routines
Routine Functionality

T OPEN Opens a tape-resident global file for read/write
T CLOSE Closes a tape-resident global file
T REMOVE Removes both the sub-files of the file and the corresponding info.

Array Access Routines
Routine Functionality

T READ SECTION Reads a rectilinear section
T WRITE SECTION Writes a rectilinear section

Stage/Migration Routines
Routine Functionality

T STAGE SECTION Stages a rectilinear file section from tape to disk
T STAGE WAIT Waits for a Stage to complete
T PREFETCH SECTION Pre-fetchs a rectilinear file section from tape (or disk) to memory
T PREFETCH WAIT Waits for a Pre-fetch to complete
T MIGRATE SECTION Migrates a rectilinear file section from disk to tape

which will call the low level routines implicitly.

Initialization/Finalization Routines: These routines are used to initialize the library buffers
and meta-data structures and finalize them when all the work is done. The routine to ini-
tialize the system has the format

int T INITIALIZE ().
This routine initializes the connections to the HPSS and the database. It returns a positive
number upon successful completion. Similarly, int T FINALIZE () closes the above men-
tioned connections.

File Manipulation Routines: These routines are used for creating files, opening existing
files, closing open files and removing all the chunks and the information related to a global
file. T OPEN is used for creating new files and for opening existing files. It returns a file
handle for later referral to the file. The synopsis of T OPEN is as follows:

T FILE T OPEN (char *filename, char *mode, T INFO *tapeinfo).
‘Filename’ stands for the name of the file to be opened. ‘Mode’ indicates whether the file
is opened for read, write, or read/write. ‘Tapeinfo’ is the structure used for entering the
necessary information about the file and chunks. It has fields for the elementsize, number
of dimensions, the size of each dimension of the chunk and the size of each dimension of
the global file.

Array Access Routines: These routines handle the movement of data to and from the tape
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int main(int argc, char **argv)
f
T FILE exfile;
T INFO exinfo;
int start[2];
int end[2];

/* Initialize the library */
T INITIALIZE();

/* Open the file for read. The exinfo will be filled by the library.
For creating the file (i.e. if the file is opened for the first time),
information about the file should be supplied to T OPEN via exinfo.*/
exfile = T OPEN ("file 1","r", &exinfo);

start[0] = 0;
start[1] = 0;
end[0] = 24000;
end[1] = 80;

/* Perform the operation */
T READ SECTION (&exfile, &buf, starts, ends);

/* Close the file */
T CLOSE (&exfile);

T FINALIZE();
g

Figure 6: An example code for reading from a two dimensional file.

subsystem. An arbitrary rectilinear portion of a tape-resident array can be read or written
using these access routines. Let us focus now on T READ SECTION. The signature of
this routine is

int T READ SECTION (T FILE *fd, void *buffer, int *start coordinate,
int *end coordinate)

‘fd’ is the file descriptor returned by T OPEN. ‘Start coordinate’ and ‘end coordinate’ are
arrays that hold the boundary coordinates for the section to be read. There are as many
elements as the dimensionality of the associated tape-resident global array. This command
reads the corresponding elements and stores them in ‘buffer’. As discussed earlier, what
actually happens here is that the relevant sub-files are read from tape to disk (if they are
not on the disk already), and the required sections are read from these sub-files on disk
and forwarded to the corresponding positions in the buffer in main memory. An example
code for T READ SECTION is given in Figure 6. In this example, a 24000�80 portion of
the file is read to the buffer. The syntax for the T WRITE SECTION routine is almost the
same except that the direction of the transfer is reversed.

Stage/Migration Routines: These routines are used to stage and migrate the data between
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the tapes and the disk sub-system. The command
int T STAGE SECTION (T FILE *fd, int *start coordinate, int *end coordinate)

immediately returns and starts a data staging operation in the background from tape to
disk. It returns an integer to the application which can be interpreted as a descriptor for
the associated pre-stage operation. Note that what is actually performed here is to bring
the relevant sub-files from tape to disk. Note also that there is no ‘buffer’ parameter in the
signature. The routine

int T STAGE WAIT (int pre-stage descriptor)
can be used to wait for a previously initiated pre-stage operation to complete.

int T PREFETCH SECTION (T FILE *fd, void *buffer, int *start coordinate,
int *end coordinate)

is used to start a pre-fetch operation from disk to memory. The parameters are the same as
for T READ SECTION. It returns an integer which can be used as a pre-fetch descriptor
in a later T PREFETCH WAIT call.

int T MIGRATE SECTION (T FILE *fd, int *start coordinate, int *end coordinate)
starts to migrate the relevant sub-files (i.e., those corresponding to the section described in
the signature) from disk to tape. It should be used with care as these sub-files may contain
portions of data that will be requested by a later library call.

6 Experiments
The experiments are performed using the HPPS at the San Diego Supercomputing Cen-
ter (SDSC). We have used the low level routines of the SDSC Storage Resource Broker
(SRB) to access the HPSS files. SRB is a client-server middleware that provides a uniform
interface for connecting to heterogeneous data resources over a network and accessing
replicated data sets [22].

We experimented with different access patterns in order to evaluate the benefits of the li-
brary. Table 2 gives the start and end coordinates (on a two dimensional global array) as
well as the number elements read/written for each access pattern (A through H). Note that
the coordinate (0,0) corresponds to the upper-left corner of the array. In each case, the ac-
cessed array consists of 50000�50000 floating point elements (10 GB total data). We used
two different sub-file (chunk) sizes: small (1000�1000 elements) and large (2000�2000
elements).

Table 3 shows the performance results obtained. For each operation (read or write) we
give the response times (in seconds) for a naive access strategy and the gains obtained
against it using our library which employs sub-filing. The naive strategy reads/writes the
required portion from/to the array directly, i.e., it does not use sub-filing and the entire
50000�50000 array is stored as a single large file. For the sub-filing cases we show the
percentage reduction in response time of the naive scheme. For example, in access pattern
A, the sub-filing with small chunk size improved (reduced) the response time for the read
operation by 85.2%. Figures 7 and 8 show the results obtained in graphical form. Note that
the y-axes on the figures are logarithmically scaled.
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Table 2: Access patterns.

Pattern Information
Access Start End Total
Pattern Coordinate Coordinate floating

points
A (0,0) (1000,1000) 1 � 106

B (0,0) (4000,1000) 4 � 106

C (0,0) (24000,1000) 24 � 106

D (5000,5000) (6000,6000) 1 � 106

E (0,0) (50000,80) 4 � 106

F (0,0) (80,50000) 4 � 106

G (0,0) (1000,4000) 4 � 106

H (6000,6000) (8000,8000) 4 � 106

Table 3: Execution times and percentage gains.

Write Operations Read Operations
Acc. Times Small Large Times Small Large
Ptr. w/o Chunk Chunk w/o Chunk Chunk

chunking Gain (%) Gain (%) chunking Gain (%) Gain (%)
A 2774.0 96.1 94.5 784.7 85.2 77.1
B 2805.9 83.8 84.9 810.1 43.2 55.6
C 2960.3 8.8 37.9 793.3 -240.5 -172.4
D 3321.2 96.7 95.4 798.4 84.1 79.7
E 151.7 -3525.1 -2437.6 165.2 -3229.3 -2623.9
F 138723.3 96.0 97.2 39214.1 85.9 88.5
G 11096.3 95.9 96.4 3242.9 88.3 88.6
H 5095.2 91.2 96.5 1612.9 76.6 89.9
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Figure 7: Execution times for write operations.
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Figure 8: Execution times for read operations.

In the patterns A and D, where a 4 MB square chunk is accessed on the left corner and
around the middle, respectively, the small chunk size outperforms the large chunk size as
the latter accesses extra data elements that do not belong to the required portion. In the
pattern H, on the other hand, increasing the chunk size reduces the number of I/O calls
which in turn results in the best response time. In B and G, 16 MB of data are accessed in
orthogonal directions. In G, since we access a sub-column portion of a row-major array,
we need to issue 4000 I/O calls in the naive case. In B, the naive strategy issues only 1000
I/O calls to access the same volume of data. Consequently, the impact of sub-filing is more
pronounced in G. By comparing the response times of A, B, C, and E, we note that the re-
sponse times are dominated by the number of I/O calls (in the naive version) and of chunks
(in the sub-filed versions–that also corresponds to I/O calls–) rather than by the volume of
data accessed. Finally, in the pattern F (whose response time in the naive case was calcu-
lated using interpolation from A and G), the sub-filing strategy has the best performance of
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all and brings a 97.2% improvement in write calls.

In access pattern E, however, the naive strategy outperforms the sub-filing. The sub-filing
strategy has two drawbacks for this access pattern. First, the naive strategy completes the
whole access with a single I/O call, whereas the sub-filing strategy requires 50 calls to
different sub-files to satisfy the access. Secondly, a high percentage of data read by the
sub-filing is not used to satisfy the request. As a result of these two drawbacks, the naive
strategy performs better than the sub-filing for this access pattern. However, we show in
Section 6.1 that by chosing an appropriate sub-file size, the sub-filing strategy can perform
as good as the naive strategy even for the access pattern E. Note that, HPSS allows the
users to access portions of the data residing in tape. The response time of the naive solu-
tion for the access pattern E will increase dramatically for the tape architectures, where the
granularity of access is a file, because the whole file should be brought to the disk from tape.

An important aspect of our library is its handling of random I/O accesses. When we com-
pare the times for the access patterns A and D, we see that there is a 20% increase in the
response time of the naive strategy for the write operation. On the other hand, the times for
sub-filed versions remains the same.

Overall, the sub-filing strategy performs very well compared to the naive strategy which
performs individual accesses to a large file, except for the cases where the access pattern
and the storage pattern of the array match exactly. For large chunk size the average im-
provement for writing is 93.48%, and for reading it is 73.48%. These data show that, in
average our library brings substantial amount of improvement over the naive strategy. The
next section shows even in the case where the access and storage pattern match exactly, a
suitable chunk shape allows our scheme to match the response time of the naive strategy.

6.1 Adaptive Chunk Size
The preliminary results show that our library can bring substantial amount of improvement
over the naive case. In the access pattern E, however, the naive strategy performs better. In
this section, we experiment with a different chunk size to explore the possibility of match-
ing the performance of the naive scheme in this access pattern.

In the new experiments, the chunk size is set to 50000�80 floating points, which is similar
to the access pattern E. The other parameters remain as in Section 6. The response time for
write operation drops to 148.9 seconds, which is 1.85% better than the naive scheme. For
read operation, the response time is 166.2 seconds, which is 0.61% worse than the naive
scheme. These results show that our library can perform as good as the naive scheme even
in cases, where the access pattern and storage pattern exactly match.

7 Conclusions and Future Work
We presented a portable interface to the tape-resident data. The interface makes it easier
for the user to specify the tape I/O required in sequential and parallel applications. The
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experience gained during its design and development will, hopefully, also help in reaching
a set of standard routines for accessing the tape-resident data. We are in the process of
implementing the library. We completed the read, write, pre-stage, and pre-fetch routines
and made some initial experiments with them. We are currently implementing different mi-
gration routines and collective I/O strategies and will later experiment with I/O-intensive
applications that manipulate tape-resident data.
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