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Abstract. Current approaches to parallel I/O demand extensive user ef-
fort to obtain acceptable performance. This is in part due to difficulties in
understanding the characteristics of a wide variety of I/O devices and in
part due to inherent complexity of I/O software. While parallel I/O sys-
tems provide users with environments where large datasets can be shared
between parallel processors, the ultimate performance of I/O-intensive
codes depends largely on the relation between data access patterns and
storage patterns of data in files and on disks. Collective I/O is one of the
most popular methods to access the data when the storage and access
patterns do not match. In this strategy, each processor does I/O on behalf
of other processors if doing so improves the overall performance. While
it is generally accepted that collective I/O and its variants can bring im-
pressive improvements as far as the I/O performance is concerned, it is
difficult for the programmer to use collective I/O effectively. In this pa-
per, we propose and evaluate a compiler-directed collective I/O approach
which detects the opportunities for collective I/O and inserts the neces-
sary I/O calls in the code automatically. An important characteristic of
the approach is that instead of applying collective I/O indiscriminately,
it uses collective I/O selectively, only in cases where independent parallel
I/O would not be possible. We have conducted several experiments us-
ing an IBM SP-2 distributed-memory message-passing machine with 128
nodes. Our compiler directed collective I/O scheme was able to perform
18% better in average than an indiscriminate collective I/O scheme in
our base configuration.

1 Introduction

Todays’ parallel architectures comprise fast microprocessors, powerful network
interfaces, and storage hierarchies that typically have multi-level caches, local
and remote main memories, and secondary and tertiary storage devices. In go-
ing from upper levels of a storage hierarchy to lower levels, average access times
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increase dramatically. Because of their cost effectiveness, magnetic disks have
dominated the secondary storage market for the last several decades. Unfortu-
nately, their access times have not kept pace with performance of the processors
used in parallel architectures. Consequently, a large performance gap between
secondary storage access times and processing unit speeds has emerged.

To address this imbalance, hardware designers focus on improving parallel
I/O capabilities using multiple disks, I/O processors, and large bandwidth I/O
busses [6]. An optimized I/O software can also play a major role in bridging this
performance gap. In order to eliminate the difficulty in using a parallel file system
directly, several research groups proposed high-level parallel I/O libraries and
runtime systems that allow programmers to express access patterns of their codes
using program-level data structures such as rectilinear array regions [4,13,5].
While all these software supports provide an invaluable help to boost the I/O
performance in parallel architectures, it remains still programmer’s responsibility
to select appropriate I/O calls to use, to insert these calls in appropriate locations
within the code, and to manage the data flow between parallel processors and
parallel disks.

One of the most important optimizations in MPI-IO [5] is collective I/O, an
optimization that allows each processor to do I/O on behalf of other processors
[4]. This optimization has many variants [12,11,13]; the one used in this study is
two-phase I/O. In this implementation, I/O is performed in two phases: an I/O
phase and a communication phase. In the I/O phase, processors perform I/O in
a way that is most beneficial from the storage layout point of view. In the second
phase, they engage in a many-to-many type of communication to ensure that each
piece of data arrives in its final destination. While collective I/O and its variants
are very beneficial if used properly, almost all previous studies considered a user-
oriented approach in applying collective I/O. For example, Thakur et al. suggest
programmers to use collective I/O interfaces of MPI-IO instead of easy-to-use
Unix-like interfaces [14]. Apart from determining the most suitable collective
I/O routine and its corresponding parameters, this also requires, on the user
part, analyzing access patterns of the code, detecting parallel I/O opportunities,
and finally deciding a parallel I/O strategy.

In this paper, we propose and evaluate a compiler-directed collective I/O
strategy whereby an optimizing compiler and MPI-IO cooperate to improve I/O
performance of scientific codes. The compiler’s responsibility in this work is to
analyze the data access patterns of individual applications and determine suit-
able file storage patterns and I/O strategies. Our approach is selective because it
activates collective I/O selectively, only when necessary. In other cases, it ensures
that processors perform independent parallel I/O, which has almost the same I/O
performance as collective I/O but without extra communication overhead.

The remainder of this paper is organized as follows. In the next section,
we review collective I/O. In Section 3, we explain our compiler analyses to de-
tect access patterns and suitable storage patterns for multidimensional datasets
considering multiple, related applications together. In Section 4, we describe
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our experimental framework, our benchmarks, and different code versions, and
present our experimental results. In Section 5, we present our conclusions.

2 Collective I/O

In many I/O-intensive applications that access large, multidimensional, disk-
resident datasets, the performance of I/O accesses depends largely on the layout
of data in files (storage pattern) and distribution of data across processors (access
pattern). In cases where these patterns are the same, potentially, each processor
can perform independent parallel I/O. However, the term ‘independent parallel
I/O’ might be misleading, as, depending on the I/O network bandwidth, the
number of parallel disks available, and the data striping strategies employed by
the parallel file system, two processors may experience a conflict in accessing
different data pieces residing on the same disk [6]. What we mean by ‘indepen-
dent parallel I/O’ instead is that the processors can read/write their portions
of the dataset (dictated by the access pattern) using only a few I/O requests
in the code, each for a large number consecutive data items in a file. These in-
dependent source-level I/O calls to files are broken up into several system-level
calls to parallel disks. This last aspect, however, is architecture and operating
system dependent and is not investigated in this paper. Note that, in indepen-
dent parallel I/O, there is no interprocessor communication or synchronization
during I/O.

In cases where storage and access patterns do not match, allowing each pro-
cessor to perform independent I/O will cause processors to issue many I/O
requests, each for a small amount of consecutive data. In this paper, an ac-
cess pattern which is the same as the corresponding storage pattern is called a
conforming access pattern. Collective I/O can improve the performance in non-
conforming cases by first reading the dataset in question in a conforming (storage
layout friendly) manner and then redistributing the data among the processors
to obtain the target access pattern. Of course, in this case, the total data access
cost should be computed as the sum of I/O cost and communication cost. The
idea is that the communication cost is typically small as compared to I/O cost,
meaning that the cost of accessing a dataset becomes almost independent from
its storage pattern.

Consider Figure 1 that shows both independent parallel I/O and collective
I/O for a four processor case using a single disk-resident two-dimensional dataset.
In Figure 1(a), the storage pattern is row-major (each circle represents an array
element and the arrows denote the linearized file layout of elements) and the
access pattern is row-wise (i.e., each of the four processors accesses two full-rows
of the dataset). Since the access pattern and the storage pattern match, each
processor can perform independent parallel I/O without any need of communi-
cation or synchronization. Figure 1(b), on the other hand, shows the case where
collective I/O is required. The reason is that in this figure the storage pattern
is row-major and the access pattern does not match it. As explained earlier, the
I/O is performed in two phases. In the first phase, each processor accesses the
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data row-wise, as if this was the original access pattern), and in the second step,
an all-to-all communication is performed between the processors and each data
item is delivered to its final destination.

Collective I/OInterprocessor
Communication

(b) Storage PatternAccess Pattern

Independent I/O

(a)
Storage PatternAccess Pattern

Fig. 1. (a) Independent parallel I/O and (b) Collective (two-phase) I/O.
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Fig. 2. Scientific working environment.

3 Compiler Analysis

Our approach to collective I/O utilizes a directed graph called weighted commu-
nication graph (WCG). Each node of a weighted communication graph is a code
block, which can be defined as a program fragment during which we can keep the
datasets in memory; however, between executions of code blocks, the datasets
should be stored on disks. Depending on the applications, the datasets in ques-
tion, and the available memory, a code block can be as small as a loop nest or
can be as large as a full-scale application. An example for the latter is shown in
Figure 2 that depicts a typical scenario from a scientific working environment.
There is a directed edge, e1,2, between two nodes, cd1 and cd2, of the WCG if
and only if there exists at least a dataset that is produced (i.e., created and
stored on disk) in cd1 and used (i.e., read from disk) in cd2. In such a case cd1

is called producer and cd2 is called consumer. The weight associated with e1,2

(written as w1,2) corresponds to total number of dynamic control-flow transi-
tions between code blocks cd1 and cd2 (e.g., how many times cd2 is run after cd1

in a typical setup). Depending on the granularity of code blocks, these weights
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can be calculated using profiling with typical input sets, can be approximated
using weight estimation techniques, or can be entered by a user who observed
the scientific working environment for a sufficiently long period of time.

3.1 Access Pattern Detection

Access patterns exhibited by each code block can be determined by considering
individual loop nests that make up the code block. The crucial step in this process
is taking into account the parallelization information [2]. Individual nests can
either be parallelized explicitly by programmers using compiler directives [1,3],
or can be parallelized automatically (without user intervention) as a result of
intra-procedural and inter-procedural compiler analyses [2,8,9]. In either case,
after the parallelization step, our approach determines the data regions (for a
given dataset) accessed by each processor involved.

For each array reference in each loop nest, our compiler determines an access
pattern. Afterwards, it utilizes a conflict resolution scheme to resolve intra-nest
and inter-nest access pattern conflicts. To achieve a reasonable conflict resolu-
tion, we associate a count with each reference indicating (or approximating) the
number of times that this reference is touched in a typical execution. In addition
to that, for each access pattern that exists in the code block, we associate a
counter that is initialized to zero and incremented by a count amount each time
we encounter a reference with that access pattern. In this way, for a given array,
we determine the most preferable (or most prevalent) access pattern (also called
representative access pattern) and mark the code block with that information.
Although, at first glance, it seems that, in a typical large-scale application, there
will be a lot of conflicting patterns that would make compiler’s job of favoring
one of them over the others difficult, in reality, most scientific codes have a few
preferable access patterns.

3.2 Storage Pattern Detection

Having determined an access pattern for each disk-resident dataset, the next
step is to select a suitable storage pattern for each dataset in its producer code
block. We have built a prototype tool to achieve this.1

For a given dataset, the tool takes the representative access patterns detected
in the previous step by the compiler for each code block and runs a storage layout
detection algorithm. Without loss of generality, in the following discussion, we
focus only on a single dataset. The first step in our approach is to determine
producer-consumer subgraphs (PCSs) of WCG for the dataset in question. A PCS
for a dataset consists of a producer node and a number of consumer nodes that
use the data produced by this producer. In the second step, we associate a count

1 Note that building a separate tool is necessary only if the granularity of code blocks
is a full-application. If, on the other hand, the granularity is a single nested-loop
or a procedure, the functionality of this tool can be embedded within the compiler
framework itself.
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with each possible access pattern and initialize it to zero. Then, we traverse all
the consumer nodes in turn and for each consumer node add its weight to the
count of its access pattern. At the end of this step, for each access pattern, we
obtain a count value. In the third step, we set the storage pattern in the producer
node to the access pattern with the highest count. Note that, for a given dataset,
we need to run the storage pattern detection algorithm multiple times, one for
each producer node for this dataset.

The next step is to determine suitable I/O strategies for each consumer node.
Let us again focus on a specific dataset. If the access pattern (for this dataset)
of a consumer node is the same as the storage pattern in the producer node,
we perform independent parallel I/O in this consumer node. Otherwise, that is,
if the access and storage patterns are different, we perform collective I/O. We
perform this step for each dataset and each PCS. Once the suitable I/O strategies
have been determined, the compiler automatically inserts corresponding MPI-IO
calls in each code block.

3.3 Discussion

Although, our approach is so far mainly discussed for a setting where individ-
ual code blocks correspond to individual applications, it is relatively easy to
adapt it to different settings as well. If we consider each code block as a pro-
cedure in a given application, then a WCG can be processed using algorithms
similar to those utilized in processing weighted call graphs [7], where each node
represents a procedure and an edge between two nodes correspond to dynamic
control-flow transitions (e.g., procedure calls and returns) between the proce-
dures represented by these two nodes. In an out-of-core environment, on the
other hand, each node may represent an individual loop nest and edges might
represent dynamic control-flow between nests; in this case, the WCG is similar
to a control-flow graph.

Another important issue that needs to be addressed is what to do (inside a
code block) when we come across a reference whose access pattern is not the same
as the representative (prevalent) access pattern for this code block. Recall that
we assumed that, within a code block, we should be able to keep the datasets in
memory. When the access pattern of an individual reference is different from the
representative access pattern determined for a code block, we can re-shuffle the
data in memory. This is not a correctness issue for shared-memory machines but
it may cause performance degradation. In distributed-memory message-passing
architectures, on the other hand, this data re-shuffling in memory is necessary
to ensure the correct data accesses in subsequent computations.

4 Experiments

In this section, we first describe the experimental environment. Afterwards, we
explain the setups for the experiments. Then, the results for the base configura-
tion is given. Finally, we give results for different number of processors and data
sizes.
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Fig. 3. Setups (communication graphs) used in the experiments.

4.1 Experimental Environment

We used the MPI-2 library and an IBM SP-2 in Argonne National Laboratories
to evaluate our scheme proposed in this paper. The IBM SP-2 used in the exper-
iments has 128 processors, 8 of which are I/O processors. The compute nodes are
RS/6000 Model 370 processors with 128 MB memory, whereas the I/O nodes are
RS/6000 Model 970 processors with 256 MB memory. The nodes are connected
via 100 Mbs Ethernet, 155 Mbs ATM and 800 Mbs HiPPI networks. Each I/O
server has a 9 GB of storage space resulting in 72 GB of total disk space. The
operating system on each node is AIX 4.2.1. PIOFS provides the parallel access
to files. It distributes a file across multiple I/O server nodes.

4.2 Setups

To evaluate the possible improvements with our scheme, we have designed 8 dif-
ferent setups (communication graphs), each built up using 8 different benchmark
codes in different ways. We have selected 4 benchmarks from Specfp (tomcatv
(cb0), vpenta (cb1), btrix (cb2), and mxm (cb3)), 2 codes from the Perfect Club
benchmark suite (tis (cb4) and eflux (cb5)), 1 from Nwchem suite (transpose
(cb6)) and a miscellaneous code (cholesky (cb7)). The setups built from these
benchmarks are given in Figure 3.2

2 Although Setup 1 and Setup 2 look the same, they differ in the access and storage
patterns they employ for different benchmarks. Similarly, Setup 7 and Setup 8 differ
in their access and storage patterns. The details are omitted due to lack of space.
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Figure 6: Execution times for the base experiments                                Figure 7: Execution times for 4 processors

                         Figure 8: Execution times for 16 processors             Figure 9: Execution times for larger data size (Data size is doubled)

Three bars for each setup represents the following access strategies, from left to right: naïve
strategy (no collective I/O), indiscriminate collective I/O, compiler directed collective I/O
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4.3 Base Experiments

For the base experiments, we have executed the setup explained in Section 4.2
using 8 processors of the IBM SP-2. In our experiments we are comparing the
execution times of three different code versions as explained below.

Version 1 In this version, each processor performs independent (non-collec-
tive) I/O regardless whether the access pattern and the storage pattern are the
same or not. We call this version the naive I/O strategy.

Version 2 This version performs indiscriminate collective I/O.
Version 3 This is the strategy explained in this paper. The collective I/O is

performed selectively, only if the access pattern and the storage pattern do not
match. In all other cases, we perform independent parallel I/O.

In Figures 6 through 9, the left-most bar represents the total execution time
of version 1, the middle bar represents the total execution time of version 2 and
the right-most bar represents the total execution time of version 3.

The results for 8 processors are given in Figure 6. The average improvement
over the indiscriminate collective I/O strategy is 18.01%. For setups 5 and 6, we
are able to gain more than 21% over the version 2, which performs indiscriminate
collective I/O. These two setups give the best results, because a change of the
storage pattern effects the most applications. For example, when cb0 in Setup 1
changes its storage pattern, the weights of the favoring applications add up to
50% of the sum of all weights, whereas in Setup 6, the sum of weights of the
favoring applications constitutes 60% of all the weights. So, there are 10% more
favoring applications in Setup 6. Therefore, the improvement of Setup 6 is more
than Setup 1 with our scheme.

Note that, both the indiscriminate and selective collective I/O strategies
perform well compared to a naive strategy, which does not use collective I/O at
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all. The improvement of indiscriminate collective I/O is 74.19% over the naive
strategy, whereas our scheme brings 78.84% improvement.

4.4 Sensitivity Analysis

We have performed a second set of experiments to see how our strategy is affected
by the number of processors and the data size. Figures 7 and 8 give the results
for 4 and 16 processors, respectively. For 4 processors, our scheme brings 16.42%
improvement over the indiscriminate collective I/O version, and 40.23% over the
naive strategy. For 16 processors, on the other hand, our scheme brings an 26.27%
improvement over the indiscriminate collective I/O version, and 80.74% over the
naive strategy. As the number of processors increase, the improvement of our
scheme increases, because with larger number of processors, the synchronization
and communication costs increase.

Figure 9 gives the results for a larger data size. For this experiment, we have
doubled the size of the input and/or output data of all the benchmarks. When
the data size is increased, the synchronization overhead is reduced. Similarly,
communication and I/O can be better overlapped because the I/O calls are
longer, so the overall communication cost also reduces. These factors decrease
the percentage improvements of our scheme, but, it still performs the best by far.
It brings a 13.57% improvement over the indiscriminate collective I/O version,
and 75.21% improvement over the naive strategy.

5 Conclusions

In this paper, we present and evaluate a compiler-directed collective I/O strat-
egy. Collective I/O plays a major role in parallel I/O systems. Therefore, in-
creasing its performance is very important for many of data-intensive parallel
applications. By adopting a selective collective I/O strategy, we are able to bring
significant amounts of improvements. In average, our scheme performs 18.01%
better than an indiscriminate collective I/O strategy in our base configuration.
The scheme performs better as the number of processors increases. Although the
improvement decreases with the increased data size, the scheme is still able to
perform more than 13% better than an indiscriminate collective I/O strategy.

The interface for parallel I/O systems are usually complex, and they are
getting more complex, because the information required by the I/O calls in-
creases. So, it becomes harder for an average user to detect the best possible
I/O call for an application. Therefore, detecting the best possible storage and
access patterns automatically is very useful for many programmers and increases
the performance of I/O-intensive applications significantly.
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