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Abstract
There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates 
the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse 
problems are usually more critical as well as difficult in scientific applications as they seek to explore the causes that cannot 
be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, health care and 
materials science. Exploring the relationships from properties to microstructures is one of the inverse problems in material 
science. It is challenging to solve the microstructure discovery inverse problem, because it usually needs to learn a one-to-
many nonlinear mapping. Given a target property, there are multiple different microstructures that exhibit the target property, 
and their discovery also requires significant computing time. Further, microstructure discovery becomes even more difficult 
because the dimension of properties (input) is much lower than that of microstructures (output). In this work, we propose a 
framework consisting of generative adversarial networks and mixture density networks for inverse modeling of structure–
property linkages in materials, i.e., microstructure discovery for a given property. The results demonstrate that compared to 
baseline methods, the proposed framework can overcome the above-mentioned challenges and discover multiple promising 
solutions in an efficient manner.

Introduction

Understanding the relationships between processing, struc-
ture, properties, and performance (PSPP) [1, 2] is critical in 
material science. In general, there are two broad modeling 
paradigms: forward and inverse. Forward modeling is to 

predict the effects or results given a set of known causes, 
e.g., exploring the relationships from processing to perfor-
mance in materials. As different sets of inputs might cause 
the same result, forward modeling usually learns a many-to-
one mapping. Forward modeling has been widely studied in 
various fields of machine learning, such as object detection 
[3, 4], image segmentation [5, 6], machine translation [7, 8] 
and some prediction tasks in scientific computing [9–16]. 
Inverse modeling is the process to infer the causes based on 
results or observations, e.g., exploring the relationships from 
performance to processing in materials. Inverse problems 
are one of the most important problems in science as they 
can help us understand the unknown causes leading to the 
observations. Thus, it is extensively used in various scien-
tific fields, such as geophysics, health care and materials 
science [17–24]. Discovering microstructures that exhibit 
given properties is one of the inverse problems focused on 
structure–property linkage in materials, which is explored 
in this work. Variation in microstructure leads to a wide 
range of material properties, which in turn impacts the per-
formance. Thus, inferring possible microstructures for a 
given property can help domain scientists improve the mate-
rials’ performance and accelerate materials discovery, and 
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design. Traditional approaches [25, 26] for inverse modeling 
mainly rely on human analysis and experiments, which are 
extremely expensive in terms of cost and time. With the 
availability of large amounts of reliable data, data-driven 
methods have been tried to solve inverse problems. However, 
there are still many challenges for inverse modeling. The 
challenges for inverse modeling are threefold: (1) Inverse 
modeling usually requires learning a one-to-many nonlinear 
mapping. Because it is possible that different input combina-
tions from many causal factors might cause the same output, 
there may be more than one microstructure that has a given 
property. This lack of uniqueness makes it difficult to train 
inverse models. (2) Inverse models usually need to learn a 
mapping from low-dimension inputs to high-dimension out-
puts, which means important missing information needs to 
be recovered from less informational inputs to produce high 
informational outputs. Thus, if the inverse model directly 
learns the mapping from inputs to outputs, the outputs might 
have limited diversity and only cover a small portion of real 
data distribution, especially when the difference of dimen-
sionality between inputs and outputs is significant. In this 
work, the microstructures are represented by images, which 
are much more high-dimensional as compared to proper-
ties. (3) Traditional approaches for inverse modeling usually 
involve an iterative learning process, such as optimization, 
so that optimal or near-optimal solution can gradually be 
achieved by minimizing the error between candidate solu-
tion and target. However, due to the fact that the space of 
all possible causal factors can be extremely large, inverse 
modeling requires significant computing time. To over-
come the above challenges, we propose a framework that 
combines generative adversarial networks (GAN) [27] and 
mixture density networks (MDN) [28] for inverse modeling. 
More specifically, a GAN is first trained so that the high-
dimensional (i.e., high-resolution) microstructure image x 
can be represented by low-dimensional latent variable vector 
z. Then, we can utilize MDN, a neural network attempting 
to learn one-to-many nonlinear mapping (i.e., address chal-
lenge 1), to model the mapping from image property y to 
latent variable vector z instead of directly mapping from 
image property y to image x. Because latent variable vec-
tor z has similar dimensionality as the image property y, it 
is easier and more stable to train the MDN by using latent 
variable vector z as an immediate representation of image 
x (i.e., address challenge 2). Also, it is expected to increase 
the diversity of the outputs of the inverse model to cover 
a wider range of real data distribution. After the proposed 
framework is well trained, given a desired image property 
y, the MDN can produce various sets of latent variable vec-
tor z, which can be further used by GAN to generate cor-
responding images x to solve the inverse problem. Because 
the proposed framework is based on deep learning, it only 
requires one forward pass to produce various predictions, 

which means it can quickly produce possible solutions using 
modern computation resources (i.e., address challenge 3). 
We apply the proposed framework on a materials science 
inverse problem where microstructure images x need to be 
designed given a desired material’s optical absorption prop-
erty value y. Three baseline methods are used to evaluate the 
performance of the proposed framework: (1) Optimization-
based inverse modeling method; (2) Deep learning-based 
inverse modeling method that directly maps from material’s 
optical absorption property value y to microstructure images 
x; (3) The third baseline combines traditional dimensionality 
reduction, such as principal component analysis (PCA), and 
MDN to illustrate the advantage of using GAN. Compared 
with baseline methods, the results show that the proposed 
framework can not only generate solutions with properties 
closer to the target properties, but also produce more can-
didate solutions in an efficient manner. A conference ver-
sion of this work appeared in [29], and the current article 
significantly expands on the conference paper with more 
background and details on the framework, subsequent analy-
sis of results as well as significant insights and discussion.

Materials and Methods

Inverse Modeling

As described previously, modeling in science can be catego-
rized into forward modeling and inverse modeling. Forward 
modeling is to predict the responses given a set of causal 
factors, which usually is a many-to-one mapping. In other 
words, the same observation could be produced by different 
causal factors. The problem can be formulated as o = F(i) 
where F is the forward model, i is the vector of causal factors 
and o is the response. On the other hand, inverse modeling is 
to calculate from a set of observations the causal factors that 
produced them, which usually is a one-to-many mapping. It 
can be formulated as i = G(o) where G is the inverse model 
and G = F−1 . Inverse modeling is one of the most important 
problems in science, because it can explore the causal factors 
that cannot be observed directly.

Microstructural Materials Design

Microstructural materials design is one of the inverse prob-
lems in the field of materials science. It is the process to 
design materials microstructure to achieve a desired property 
of the resulting material. Microstructural materials design 
has revolutionarily changed the way to discover and design 
advanced materials [30]. In this work, we focus on the 
design of microstructure images with desired optical absorp-
tion property. Optical absorption is defined as the ability of 
the material to convert absorbed light into another energy 
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form such as heat. Materials with high optical absorption 
properties can be used in solar cell design.

Related Work

Inverse modeling, especially in the field of materials science, 
is usually developed based on either a forward model or an 
optimization method. In [31], forward models are trained 
and are subsequently used to scan millions of ternary com-
positions to screen for possible stable compounds. Forward 
models, as discriminative models, are incapable to generate 
new data. Thus, this method requires a significantly large 
amount of candidate data to be evaluated, and it cannot 
guarantee a possible solution existed in the candidate data. 
Therefore, the optimization method is commonly used for 
inverse modeling since it can usually produce possible solu-
tions. In [18, 19], a framework combining a GAN model 
and an optimization method is used to design microstructure 
images with optimal material’s property. In [32], the desired 
property is achieved by optimizing the hierarchical motif-
based topological fingerprints, which are used to reconstruct 
the molecular structures. However, optimization-based 
method can be very time-consuming, and it can only pro-
duce a limited number of solutions for the inverse problem.

Recently, deep learning has been used to solve inverse 
problems in several fields, and it can produce various 
possible solutions efficiently. For example, deep learning 
techniques have been actively researched for tomographic 
imaging, especially in the context of biomedicine, with 
impressive results and great potential [33]. In [34], authors 
use the deep residual learning for model-based iterative 
reconstruction. In [35], a model integrating mixture density 
networks and variational autoencoder is developed to pro-
duce an alloy composition given a partial phase diagram. 
However, the current study is different and more challenging 
compared to [35], because the microstructure images we 
aim to produce have much more degrees of freedom (i.e., 
high-resolution images) than alloy composition (i.e., a few 
numerical values) and our input material’s property (i.e., a 
float number) contains much less information than a partial 
phase diagram (i.e., a matrix).

In computer vision, [36, 37] implement GAN to generate 
images based on the description of the image. The differences 
between [36, 37] and our work are twofold. First, the image 
description (i.e., a sentence) contains much more information 
about the image than the material’s property. Second, the sce-
nario can be very different due to the possibly higher variabil-
ity across microstructure images compared to retinal images. 
[36, 37] pay more attention to local objects described in the 
image. For example, when the description is “this small bird 
has a pink breast and crown, and black primaries and second-
aries,” the generated image is considered as successful as long 
as the image contains the bird with described characteristics, 

and the location of the bird and the surroundings are less 
important. However, in other scientific fields, such as materials 
science, it is crucial to capture the global characteristics of the 
image, because a small change in any location of the micro-
structure image might significantly affect its property. For 
example in Fig. 3a, although five microstructure images are 
visually similar, the difference of volume fraction (i.e., ratio 
between white and black materials) and spatial distribution of 
materials (i.e., spatial distribution of white and black materi-
als) results in a significant difference in material’s property.

Generative Adversarial Networks

Generative adversarial networks (GAN) [27] are a deep learn-
ing technique that originated from game theory. GAN consists 
of two components: generator and discriminator. Specifically, 
generator G(z) produces samples xG from latent variable vector 
z to approximate samples xdata from real dataset, while dis-
criminator D(x) distinguishes the generated samples xG from 
real samples xdata . Essentially, GAN is defined as a minimax 
game, which can be formulated as the following equation,

where pz(z) is the prior distribution of the latent variable 
vector z, and pdata(x) is the distribution of the real data xdata . 
This minimax game would eventually lead to a convergence 
where the generator can generate data similar to real data 
that cannot be distinguished by the discriminator.

Mixture Density Networks

Mixture density network (MDN) [28] is a type of neural net-
work attempting to address the inverse problem. Instead of 
predicting a single value, the goal of MDN is to predict an 
entire probability distribution for the output (i.e., latent vari-
able vector z) based on input (i.e., optical absorption property 
value y). MDN is usually constructed by a neural network to 
parameterize a mixture model consisting of some predefined 
distributions. Generally, Gaussian distribution is used, and the 
output is modeled as a conditional probability P(z|y) calculated 
by a weighted sum of K Gaussian distributions � with differ-
ent means � and standard deviations � , which can be defined 
as follows.

where y and z are inputs and outputs, respectively. �k , �k and 
�k are the mixing coefficient, mean and standard deviation 
of the kth Gaussian distribution, respectively. The network 
is updated by minimizing the logarithm of the likelihood of 
the distribution versus the training data,

(1)
min
G

max
D

V(D,G) = �x∼pdata(x)
[logD(x)] + �

z∼pz(z)
[log(1 − D(G(z)))]

(2)P(z|y) =
K∑

k=1

�k(y)�(z|�k(y), �k(y)),

K∑

k=1

�k(y) = 1
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where N is the batch size, w is the weights of the MDN, yn is 
the nth instance in a batch and zn is the corresponding label.

Densely Connected Neural Network

Due to the flexible architecture and a large number of 
hyperparameters, deep learning models have striking learn-
ing capability. However, when the depth of a deep learn-
ing model reaches a certain point, it usually encounters the 
vanishing gradient problem where the accuracy becomes 
saturated and degrades rapidly as the depth of the model 
increases. To avoid this problem, [3] introduced residual 
networks (ResNet) where the networks have a so-called 
identity shortcut connection to skip one or more stacked lay-
ers. Later, [38] introduced the concept of densely connected 
convolutional network (DenseNet). In DenseNet, each layer 
is connected to every other layer in a feed-forward fashion. 
In other words, each layer obtains additional inputs from 
all preceding layers to calculate its outputs. DenseNet has 
several advantages that can alleviate the vanishing gradient 
problem and strengthen feature reuse. Thus, dense connec-
tions are used in the architecture of MDN.

Proposed Method

The flowchart of the proposed method is shown in Fig. 1. 
The proposed method consists of GAN and MDN where 
GAN is used to obtain the low-dimensional design repre-
sentations (i.e., latent variable vector) of the microstructure 
images, and the MDN models are used to obtain the map-
ping between latent variable vector and design objective 
(i.e., material’s optical absorption property). We utilize the 

(3)

minL(w) =
−1

N

N∑

n=1

log

(
∑

k

�k(yn,w)�(zn|�k(yn,w), �k(yn,w))

)

GAN trained in [18, 19], which is a fully convolutional neu-
ral network where both generator and discriminator have 
five layers. Specifically, each generator layer is a deconvo-
lutional layer attached with batch normalization (BN) opera-
tion and rectified linear unit (ReLU) activation, except the 
last layer which uses a tanh activation function to produce 
the bounded pixel values for generated images. The number 
of filters in the five deconvolutional layers is 128, 64, 32, 16 
and 1, respectively. Each discriminator layer consists of a 
convolutional layer, BN operation and leaky rectified linear 
unit activation, except the last layer which uses a sigmoid 
activation function to predict whether the image is fake or 
real. The number of filters in the five convolutional layers is 
16, 32, 64, 128 and 1, respectively. For both convolutional 
and deconvolutional layers, the filter size is 4 × 4 with stride 
2, except the last convolutional layer in the discriminator 
where the filter size is the same as the size of its input feature 
maps to produce probabilities. In order to avoid model col-
lapse and impose morphology constraints of the generated 
images, model collapse loss and style transfer loss are added 
in addition to adversarial loss (see [18, 19] for details about 
customized loss function).

As shown in Fig. 2, MDN is constructed by four densely 
connected fully connected layers and a mixture compo-
nent that models a mixture of Gaussian distributions. Each 
densely connected fully connected layer has 16 neurons 
followed by BN operation and ReLU activation, and each 
layer is connected with subsequent layers. In other words, 
each layer obtains additional inputs from all preceding lay-
ers (including the input layer) to calculate its outputs. The 

Fig. 1   The flowchart of the proposed method. The red path shows the 
flow of data generation, and the green path represents the training of 
the proposed densely connected MDN

Fig. 2   The architecture of the proposed MDN. MDN is constructed 
by four densely connected fully connected layers and a mixture com-
ponent that models a mixture of Gaussian distributions
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mixture component contains a mixture of 40 multivariate 
Gaussian distributions, which are parameterized by a fully 
connected layer. Assuming M denotes the dimension of the 
output (i.e., the dimension of latent variable vector of GAN), 
each multivariate Gaussian distribution needs one neuron for 
its mixing coefficient, two neurons for the mean and stand-
ard deviation of each dimension of latent variable vector. In 
particular, a linear activation function is used for the neu-
rons computing mixing coefficients and means, while the 
exponential linear unit (ELU) [39] is used for the neurons 
calculating standard deviations. Thus, the number of neurons 
in the mixture component is computed as follows,

where N is the number of neurons of the mixture component, 
and K is the number of multivariate Gaussian distributions 
used in MDN ( K = 40 in the proposed model). During pre-
diction time, we randomly select a distribution based on its 
mixture coefficient to sample the latent variable vectors. For 
MDN training, we use equation 3 as the loss function. Adam 
optimizer [40] with a batch size of 128 and learning rate of 
0.001 is used. Early stopping with a patience of 50 is applied 
so that the training process is terminated when the loss func-
tion on the validation set does not improve for 50 epochs.

Results

Datasets and Error Metric

In [18, 19], the GAN is trained on 5000 synthetic micro-
structure images, which are created using Gaussian Random 
Field (GRF) method. The parameters in GRF (i.e., mean, 
standard deviation, and volume fraction) are carefully con-
trolled to produce microstructures that cover the vast space 
of compositional and dispersive patterns, which corresponds 
to different processing conditions of the same material sys-
tem. Then, the GAN and physics simulation in [18, 19, 41] 
are used to generate two datasets used in this work. The size 
of microstructure image x and the latent variable vector z 
of one dataset are 96 × 96 and 3 × 3 (referred as Data-I), 
and of the other are 64 × 64 and 2 × 2 (referred as Data-II), 
respectively. More specifically, the latent variable vector z 
is randomly generated and passed through the generator to 
generate the corresponding microstructure x. Then, the opti-
cal absorption property y of the generated microstructure is 
simulated using physics simulation (i.e., the rigorous cou-
pled wave analysis [41]). Around 25000 data points are gen-
erated for each dataset, and the optical absorption property 
is distributed from 0.55 to 0.75. Thus, they could be used to 
train the proposed densely connected MDN to learn the map-
ping between latent variable vector z and optical absorption 

(4)N = K × (1 + 2 ×M)

property y. Particularly, 70% of each dataset is used as the 
training set and the rest is used as the validation set to select 
the optimal hyperparameters of neural networks.

Residual error percentage (REP) is used to evaluate the 
performance of models, which is defined as equation 5,

where ŷ and y are the optical absorption property of gener-
ated microstructure and target optical absorption property, 
respectively.

Baselines

An optimization-based inverse modeling method, a deep 
learning method based on MDN without GAN, and a method 
combining PCA (which is used to replace GAN) and MDN 
are selected as baseline methods in this work.

Optimization-Based Inverse Modeling: The inverse 
modeling method based on optimization in [18, 19] is con-
sidered as a baseline method in this work. More specifically, 
for each target optical absorption property, 250 sample pairs 
(z, y) are sampled in the design representations (i.e., latent 
variable vector of GAN) space to create the response surface 
between latent variable vector and materials optical absorp-
tion property. Then, metamodel-based Bayesian optimiza-
tion is conducted to iteratively explore the next potentially 
optimal design point. A total of 400 iterations of optimiza-
tion are conducted after initial sampling of 250 points to 
ensure the convergence of the optimization process.

MDN-Based Deep Learning Inverse Modeling: In 
order to illustrate that it is easier and more stable to learn 
the mapping from materials optical absorption property y to 
latent variable vector z of GAN instead of directly mapping 
from material’s optical absorption property y to microstruc-
tural images x, we use a deep learning inverse modeling 
solely based on MDN as another baseline. More specifically, 
MDN takes material’s optical absorption property y as input 
and directly produces microstructural images x. The MDN 
in this baseline is the same as the MDN in the proposed 
framework, except the number of neurons in the mixture 
component is different because each pixel in microstructure 
image x can be considered as one dimension of the output. 
Other hyperparameter settings and training strategy are the 
same as the proposed framework.

PCA- and MDN-Based Inverse Modeling (Referred as 
PCA-MDN Method): In order to illustrate the advantage of 
using GAN to obtain the low-dimensional design representa-
tions (i.e., latent variable vector) as compared to traditional 
dimensionality reduction methods, PCA is used to replace 
GAN and combined with MDN to produce microstruc-
ture images x given a desired materials optical absorption 

(5)REP =
∣ ŷ − y ∣

y
× 100%



642	 Integrating Materials and Manufacturing Innovation (2022) 11:637–647

1 3

property y. More specifically, MDN takes material’s optical 
absorption property y as input and generates a reduced set 
of principal components, which is used by PCA to inversely 
transform to corresponding microstructure images x. The 
dimension of a reduced set of principal components is the 
same as the dimension of the latent variable vector in the 
proposed framework, which is 9 for Data-I and 4 for Data-II. 
MDN is also exactly the same as the MDN in the proposed 
framework.

Results of Inverse Modeling

We select five target optical absorption properties (i.e., 0.55, 
0.60, 0.65, 0.70 and 0.75) to cover the range of possible opti-
cal absorption properties. For each target optical absorption 
property, we use the proposed densely connected MDN to 
sample 30 latent variable vectors z where we randomly select 
a distribution based on its mixture coefficient to sample the 
latent variable vectors. Each latent variable vector z is then 
passed through GAN [18, 19] to generate microstructure 
images. Finally, their corresponding optical absorption 
property can be simulated by physics simulation [18, 19, 
41] and compared with the target optical absorption prop-
erty. The same evaluation strategy is used for the baseline 
methods, MDN-based deep learning inverse modeling, and 
PCA-MDN method. For the inverse problem, discovering 
the microstructure with property closest to the target prop-
erty is the most important goal. Thus, min REP is the most 
important evaluation metric for inverse models. The abil-
ity to discover multiple and diverse microstructures is also 
important for microstructure discovery inverse problems. 
Average REP and standard deviation of REP could evaluate 
the performance of multiple microstructures that provided 
properties close to target property.

Results on Data-I: Table 1 shows the performance of 
the proposed framework on Data-I. We can observe that the 
min REP of the proposed method is lowest for most target 
properties and much less than 1%, which indicates that the 
proposed method can generate microstructures with opti-
cal absorption properties very close to the target property. 
Moreover, the average REPs of the proposed method are 
also the lowest for most target values, which indicates that 
the proposed method can generate multiple microstructures 
with properties close to the target property as compared to 
other methods. Figure 3a and c shows some examples of 
original microstructures and microstructures produced by 
the proposed GAN-MDN method that have the min REP 
w.r.t each target optical absorption property for Data-I. It 
shows that the proposed GAN-MDN method is capable of 
producing latent variable vectors z that generate visually 
similar microstructures as the original microstructures in 
the dataset. Further, it only takes around 10 s to produce the 
designed microstructural images.

The results of the PCA-MDN method are also shown in 
Table 1. We can observe that the proposed method has sig-
nificantly better min REP than the PCA-MDN method for 
low and high target optical absorption property values (i.e., 
0.55, 0.70 and 0.75). This might indicate that this baseline 
method is incapable to capture all the significant informa-
tion, so it fails to generate microstructures with property 
values close to the target property values since PCA can 
lose more information during the inverse transformation of 
the reduced set of principal components, i.e., latent variable 
vector z to microstructure images x, compared to GAN. Fig-
ure 3b shows some examples of microstructures produced 
by PCA-MDN for Data-I. Similar to the proposed method, it 
only takes a few seconds to produce microstructures.

Table 1 also shows the performance of MDN-based deep 
learning inverse modeling baseline method. The results 
show that both min REPs and average REPs are much higher 
than that of the proposed framework for most target values, 

Table 1   Performance of the GAN-MDN method, PCA-MDN-based 
baseline method, MDN-based deep learning inverse modeling base-
line method and optimization-based inverse modeling baseline 
method on Data-I

Bold values indicate the best values of the primary evaluation metric 
(min REP)

Value Min REP (%) Average REP 
(%)

Standard 
deviation of 
REP (%)

Running time

The GAN-MDN method
0.55 0.65 15.68 8.40 9.75 s
0.60 0.18 9.15 5.97 9.50 s
0.65 0.22 5.80 3.93 9.67 s
0.70 0.13 5.29 3.86 9.62 s
0.75 0.20 7.83 3.91 9.50 s
Baseline: PCA-MDN method
0.55 5.05 17.67 7.84 7.22 s
0.60 0.50 10.89 6.48 7.30 s
0.65 0.17 5.92 4.00 7.20 s
0.70 0.40 8.81 5.27 7.20 s
0.75 2.95 18.34 5.54 7.36 s
Baseline: MDN-based deep learning inverse modeling
0.55 0.84 9.07 3.14 175.27 s
0.60 4.70 14.40 4.08 187.86 s
0.65 9.35 20.04 4.06 177.60 s
0.70 12.29 25.18 4.21 147.23 s
0.75 17.73 26.81 3.55 178.70 s
Baseline: Optimization-based inverse modeling
0.55 - – – 4.4 h
0.60 1.08 – – 3.6 h
0.65 3.38 – – 5.8 h
0.70 – – – 10.6 h
0.75 – – – 8.9 h
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and REP increases as the target optical absorption property 
increases. This is because this baseline method mainly pro-
duces microstructure images with low optical absorption 
properties. In other words, this baseline method focuses 
more on the low optical absorption property range of real 
data distribution. Thus, it fails to generate possible micro-
structure images when the target optical absorption property 
is high. As discussed in the introduction section, the signifi-
cant difference of dimensionality between optical absorption 
property y and microstructure images x makes the training 
of the inverse model even more difficult. Thus, the diversity 
of the generated microstructure images is limited and only a 
small portion of real data distribution is covered by directly 
modeling the relationship between optical absorption prop-
erty and microstructure images. In contrast, by using the 
latent variable vector z as the immediate representation of 
microstructure images x, the proposed framework provides 
diverse microstructure images along with the entire range 
of optical absorption properties. Although this baseline is 
also based on deep learning, it takes more time to produce 
microstructures compared to the proposed method since it 

directly maps optical absorption property y to microstructure 
images x.

The performance of the optimization-based baseline 
method on Data-I is also listed in Table 1, and the first row 
in Fig. 4 shows the microstructure optimization history for 
each target optical absorption property. Since the optimiza-
tion method can only produce one candidate microstructure, 
the average and standard deviation of REP are not applica-
ble. For target properties 0.6 and 0.65, this baseline method 
reaches convergence around 65 and 105 epochs, respectively. 
However, this baseline method cannot converge when target 
properties are 0.55, 0.7 and 0.75. We can thus observe sig-
nificant advantages of the proposed framework because the 
optimization-based method could not get comparable perfor-
mance as the proposed method or even could not converge 
in some cases. The results indicate that optimization-based 
inverse modeling cannot successfully capture the relation-
ship between latent variable vector z and optical absorption 
property y and is incapable to generate microstructures with 
desired property for all values. In addition, optimization-
based inverse modeling can only produce a limited number 

Fig. 3   Examples of original 
microstructures and micro-
structures produced by the 
PCA-MDN approach and the 
proposed GAN-MDN approach 
for Data-I and Data-II. Row 
a and d are microstructures 
randomly selected in Data-I 
and Data-II. Row b and e are 
microstructures produced by 
PCA-MDN with minimum REP 
w.r.t. the target optical absorp-
tion properties. Row c and f are 
microstructures produced by 
the proposed GAN-MDN with 
minimum REP to the target 
optical absorption properties. 
The target optical absorption 
properties are 0.55, 0.60, 0.65, 
0.70 and 0.75 from left to right
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of candidate microstructures due to the nature of the opti-
mization method, while the proposed framework can sample 
as many candidate microstructures as the user wants. More 
importantly, it takes hours for optimization-based inverse 
modeling to optimize the microstructure for desired optical 
absorption property, while it only needs one forward pass for 
the proposed framework to produce microstructures, which 
only takes around 10 s using a Titan X GPU.

Results on Data-II: Table 2 shows the performance 
of the proposed framework on Data-II. The min REP and 
average REP for each target optical absorption property are 
extremely small, and the performance is comparable with 
that on Data-I. In addition, we can observe in Fig. 3d and f 
that the proposed framework can generate visually similar 
microstructures as microstructures in the dataset.

The results of the PCA-MDN method are also shown in 
Table 2. The results of the PCA-MDN method are compara-
ble to the proposed method, and it achieves a better average 
REP in some cases. This might be because the microstruc-
ture image in Data-II is smaller than in Data-I so PCA is able 
to capture enough information. However, the min REP of the 
PCA-MDN method is significantly worse for some target 
properties, which might indicate it is not stable to use PCA 
to obtain low-dimensional design representations compared 
to GAN. Figure 3e shows some examples of microstructures 
produced by PCA-MDN for Data-II. In addition, similar 
to Data-I, it only takes a few seconds for the PCA-MDN 
method to produce microstructures.

Table 2 presents the performance of MDN-based deep 
learning inverse modeling method, and the performance is 
much worse than that of the proposed framework. Similar to 
its performance on Data-I, it again focuses more on the low 
optical absorption property range of real data distribution, 

Fig. 4   The microstructure optimization history for each target optical 
absorption property for Data-I (i.e., first row) and Data-II (i.e., second 
row). The x axis shows the iteration number, and the y axis shows 
the absolute REP between the target optical absorption property and 

the optical absorption property of sampled microstructure. The target 
optical absorption properties of each plots are 0.55 a, 0.60 b, 0.65 c, 
0.70 d and 0.75 e 

Table 2   Performance of the proposed method, PCA-MDN-based 
baseline method, MDN-based deep learning inverse modeling base-
line method and optimization-based inverse modeling baseline 
method on Data-II

Bold values indicate the best values of the primary evaluation metric 
(min REP)

Value Min REP (%) Average REP 
(%)

Standard 
deviation of 
REP (%)

Running time

The proposed method
0.55 1.25 16.19 8.96 9.67 s
0.60 0.70 10.99 7.93 9.74 s
0.65 0.18 7.65 5.64 9.57 s
0.70 0.10 5.00 4.61 9.68 s
0.75 0.43 6.18 3.51 9.60 s
Baseline: PCA-MDN method
0.55 4.96 11.74 3.05 7.24 s
0.60 0.07 2.69 2.18 7.26 s
0.65 3.71 8.79 2.59 7.40 s
0.70 0.10 3.41 2.44 7.15 s
0.75 3.17 6.27 1.52 7.26 s
Baseline: MDN-based deep learning inverse modeling
0.55 2.85 12.78 3.89 23.21 s
0.60 7.87 14.95 3.56 24.05 s
0.65 11.00 17.33 2.63 24.14 s
0.70 3.03 15.62 4.09 23.90 s
0.75 8.44 12.73 3.20 23.34 s
Baseline: Optimization-based inverse modeling
0.55 15.51 − − 5.8 h
0.60 − − − 12.1 h
0.65 1.21% − − 4.2 h
0.70 − − − 18.8 h
0.75 − − − 3.2 h
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but it covers a wider property range since it performs better 
on high property values on Data-II. This may be because 
the microstructure image in Data-II is smaller than that in 
Data-I, so it might be easier for MDN to directly map from 
optical absorption property y to microstructure image x. This 
observation also supports our conclusion that it is easier 
and more stable to train the MDN by using latent variable 
vector z as an immediate representation of image x since the 
performance of the proposed framework on two datasets is 
similar. Since microstructure images in Data-II are smaller, 
it takes less time to produce microstructures compared to 
running time on Data-I.

The second row in Fig. 4 shows the optimization history 
of the optimization-based baseline method on Data-II. We 
can observe that when the target properties are 0.55 and 
0.65, the baseline method reaches convergence around 110 
and 70 epochs, respectively. However, it fails to converge 
when target properties are 0.6, 0.7 and 0.75. The perfor-
mance of the optimization-based inverse modeling method 
is also presented in Table 2. It shows that the performance 
of the proposed framework is much better than that of the 
optimization-based method. More importantly, it still takes 
hours for the optimization-based method to produce the 

solutions even though the dimension of the latent variable 
vector to be optimized for Data-II is smaller than that for 
Data-I, and it is much slower than the proposed framework.

Exploration of Material Property

Exploration is as important as exploitation, since it can 
lead to materials discovery with enhanced material prop-
erty. Table 3 and Table 4 show the performance of the 
proposed model and deep learning-based baseline meth-
ods in designing materials with optical absorption prop-
erty out of the range of training set on the two datasets, 
respectively. More specifically, optical absorption property 
values of 0.53 and 0.77 are used as target values to design 
material microstructures. From the results, we can see that 
overall the proposed method is better and more consistent 
than baseline methods considering both property values 
for both datasets. The min REPs (especially on Data-II) 
show better ability of the proposed method to expand the 
range of material’s property of training set by generating 
microstructures with property slightly outside of training 
set range. Then, the proposed model can potentially be 
fine-tuned with extended training set to capture the new 

Table 3   Performance of the 
proposed method, PCA-MDN-
based baseline method and 
MDN-based deep learning 
inverse modeling baseline 
method on Data-I

Bold values indicate the best values of the primary evaluation metric (min REP)

Value Min REP (%) Average REP (%) Standard deviation of 
REP (%)

Running time (s)

The proposed method
0.53 1.43 16.66 9.72 9.70 s
0.77 0.78 10.78 5.73 9.48 s
Baseline: PCA-MDN method
0.53 7.35 20.96 9.12 7.06 s
0.77 0.30 9.40 6.18 7.35 s
Baseline: MDN-based deep learning inverse modeling
0.53 0.44 7.42 3.31 23.12 s
0.77 16.00 28.49 4.05 22.87 s

Table 4   Performance of the 
proposed method, PCA-MDN-
based baseline method and 
MDN-based deep learning 
inverse modeling baseline 
method on Data-II

Bold values indicate the best values of the primary evaluation metric (min REP)

Value Min REP (%) Average REP (%) Standard deviation of 
REP (%)

Running time (s)

The proposed method
0.53 0.38 18.78 8.48 9.52 s
0.77 0.50 7.82 3.60 9.31 s
Baseline: PCA-MDN method
0.53 25.33 33.32 3.63 6.96 s
0.77 6.28 10.66 2.20 7.05 s
Baseline: MDN-based deep learning inverse modeling
0.53 12.49 19.02 3.77 23.51 s
0.77 16.15 25.27 3.26 23.04 s
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data distribution. The two steps can be iteratively repeated 
so that it provides an opportunity to explore materials with 
a wider range of properties.

Discussion

The proposed framework can generate more candidate 
microstructures in an efficient manner for desired prop-
erty, and it can be utilized in two main cases. (1) Materi-
als design: It is crucial to produce various possible micro-
structures in materials design because there are many other 
unknown factors that might affect material’s property, such 
as human operation and manufacturing technology, which 
might result in the difference between the property of the 
designed microstructures and manufactured ones. In other 
words, more possible solutions for materials design provide 
more possibilities to design the materials with the desired 
property. Moreover, by investigating the similarity and dif-
ferences of various candidate microstructures produced by 
the proposed framework, domain scientists can obtain more 
information about how to design the microstructures, which 
can help them to conduct experiments in a more informed 
way. (2) Materials discovery: It is difficult or even impos-
sible in many cases to obtain a large reliable dataset using 
traditional time-consuming research approaches, such as 
experiments. Using the proposed framework, domain sci-
entists can easily obtain a large number of microstructures 
with various property values. The huge dataset can pro-
vide an effective way to investigate the characteristics of 
microstructures with various properties. This can provide an 
opportunity to discover underlying characteristics of materi-
als for property improvement, which can in turn lead to the 
discovery of new advanced materials. In the future, we will 
try to extend the proposed framework to other inverse prob-
lems in materials science (e.g., processing-structure linkage) 
and possibly other scientific fields.
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