Appeasin thelnternationalConfeenceon Parallel Processing?003

Scalablelmplementations of MPI Atomicity for Concurrent Overlapping I/O

Wei-kengLiaof, Alok Choudhary, KeninColomd, GeogeK. Thiruvathukat,
LeeWard', Eric Russelt, andNeil Pundit

t ECEDepartment
NorthwesterrUniversity

Abstract

For concurent I/O opemtions, atomicity definesthe
results in the overlapping file regions simultaneously
read/writtenby requestingprocesses.Atomicity has been
well studiedat the file systemlevel, suc as POSIXstan-
dard. In this paper we investigatethe problemsarising
from the implementatiorof MPI1 atomicity for concurent
overlappingwrite accessand providetwo programmingso-
lutions. Sincethe MPI definition of atomicity differs from
the POSIXong animplementatiorthat simplyrelieson the
POSIXfile systemsloesnot guaranteecorrectMPI seman-
tics. To havea correctimplementatiomf atomicl/O in MPI,
we examinethe efficiencyof threeappmades: 1) file lock-
ing, 2) graph-coloring and 3) process-ankordering Per-
formancecompleity for thesemethodsare analyzedand
their experimentalresultsare presentedor file systemsn-
cludingNFS,SGI's XFS,andIBM’s GPFS.

1. Intr oduction

Concurrenfile accesasbeenan active researchopic
for mary years. Efforts were contributedin both software
developmentaswell ashardwaredesignto improvethel/O
bandwidthbetweencomputationalunits and storagesys-
tems. While most of theseworks only considerexclu-
sive file accessamongthe concurrentl/O requestsmore
scientific applicationsnowadaysrequire data partitioning
with overlapamongthe requestingorocessefl, 6, 9, 10].
For instance, ghost cells are commonly usedin multi-
dimensionahrraypartitioningsuchthatthe sub-arrayparti-
tionedin oneprocessoverlapswith its neighborsnearthe
boundary A coupleof examplesthat use this ghosting
techniqueare large scalesimulationsin earthclimateand
N-body astrophysicshydrodynamicsising Laplaceequa-
tions, both wherea strongspatialdomainpartitioning re-
lationshipis present. Figure 1 illustratesan example of

t CSDepartment
Loyola University

* ScalableComputing
Systemdepartment
SandiaNationalLaboratories

a two-dimensionahrrayin a block-blockpartitioning pat-

ternin which aghostcell representslata’owned” by more
than one process. A typical run of this large-scaletype

of applicationscantake from daysto monthsand usually
outputdataperiodicallyfor the purpose®f check-pointing
aswell as progressie visualization. During checkpoint-

ing, the outputof ghostcells createsoverlappingl/O from

all processesoncurrently The outcomeof the overlapped
file regionsfrom a concurrent/O is commonlyreferredas
atomicity.

In this paper we examinethe implementatiorissuedor
concurrentoverlappingl/O operationghat abidethe MPI
atomicity semanticsWe first differentiatethe MPI atomic-
ity semanticdrom the definitionin POSIX standard.The
POSIXdefinition only considersatomicity at the granular
ity of read()/write() callsin which only a contigu-
ousfile spacecanbe specifiedin a singlel/O request.In
MPI, a processcan definea non-contiguousile view us-
ing MPI derived datatypesand subsequent/O calls can
thenimplicitly accesson-contiguoudile regions. Since
the POSIX definition is not aware of non-contiguoud/O
accessit alonecannotguarante@tomicaccess$n MPI, and
additionalefforts areneededborethefile systento ensure
the correctimplementatiorof atomic MPI access.In this
work, we studytwo approache$or atomicityimplementa-
tion: usingbyte-rangdile locking anda proceshandshak-
ing stratgy. Usinga byte-rangefile locking mechanisms
a straightforvard methodto ensurethe atomicity, In mary
situationshowever, file locking canserializewhatwerein-
tendedo beconcurrent/O callsand,thereforejt is neces-
saryto explorealternatveapproacherocesfiandshaking
usesinter-processcommunicatiorto determinethe access
sequencer agreemenon the overlaps,in which two meth-
odsarestudied: graph-coloringand process-rankrdering
methods.Thesetwo methodsorderthe concurrent/O re-
guestdn asequencauchthatno two overlappingrequests
canperformat ary instance Experimentaperformancee-
sultsare provided for runninga testcodeusinga column-

Appeasin thelnternationalConfeenceon Parallel Processing?003

Accessed by 4 processes concurrently
Accessed byP; and P

PP P

' Piua

Pra \ P P

E Ghost cells oij

Figure 1. A 2D array partitioned with over-
laps. The ghost cells of P; overlaps with its 8
neighbor s resulting in some areas accessed
by more than one process.

wise partitioning patternon three machineplatforms: an
Linux clusterrunninganextended\FSfile systeman SGl
Origin2000running XFS, andan IBM SPrunning GPFS.
Theresultsshaw that,in generalusingfile locking gener
atesthe worst performanceandusingthe process-ranior-
deringperformsthe beston all threemachines.

The restof the paperis organizedasfollows. Section2
describeshedifferencebetweerPOSIXandMPI atomicity
semanticsWe explorethreepotentialapproachefr imple-
mentingMPI atomicityin depthin Section3. In Section4,
we presenperformanceesultsandthe paperis concluded
in Section5.

2. Concurrent Overlapping 1/0

The concurent overlappingl/O referredto in this pa-
per occurswhenl/O requestdrom multiple processesre
issuedsimultaneouslyto the file systemand overlapsex-
ist amongthe file regions accessedy theserequests. If
all the requestsare readrequeststhe file systemcanuse
the disk cacheto duplicatethe overlappeddatafor the re-
guestingprocesseandno conflictwill existwhenobtaining
file dataamongthe processesHowever, whenoneor more
I/O requestsare write requeststhe outcomeof the over
lappedregions, eitherin file or in process memory can
vary dependingon the implementatiorof the file system.
This problemis commonlyreferredasthe /O atomicity,

2.1 POSIX Atomicity Semantics

POSIXstandardiefinesatomicity suchthatall thebytes
from a singlefile 1/O requestthat start out togetherend

up together without interleaving from other 1/0O requests
[3, 4]. Thel/O operationsconfinedby this definition in-

clude the systemcalls that operateon regular files, such
asopen(),read(),wite(),chmod(), | seek(),

cl ose(), andsoon. In this paperwe focuson the effect

of thereadandwrite callsonthe atomicity.

The POSIX definition canbe simply interpretedasthat
eitherall or noneof the datawritten by a processs visible
to otherprocesses.The nonecasecanbe eitherthe write
datais cachedn a systembuffer and hasnot beenflushed
to the disk or the datais flushedbut over-written by other
processesHence whenPOSIXsemanticss appliedto the
concurrenibverlappingl/O operationsthe dataresultedin
the overlappedregionsin disk shall consistof datafrom
only one of the write requests.In otherwords, no mixed
datafrom two or more requestsshall appearin the over-
lappedregions. Otherwise,n non-atomicmode,theresult
of the overlappedegion is undefinedj.e. it may comprise
mixed datafrom multiple requests Many existing file sys-
temssupportthe POSIXatomicitysemanticssuchasNFS,
UFS,IBM PIOFS,GPFS |ntel PFS,andSGI XFS.

POSIXatomicitymainly considerdhe I/O callsdefined
within the POSIX scopein which its readand write calls
shareacommoncharacteristiconel/O requestanonly ac-
cessa contiguoudile region specifiedby afile pointerand
theamountof datastartingfrom the pointer Thereforethe
overlappediatawritten by two or morePOSIXI/O callscan
only be a contiguousregion in file. Many POSIXfile sys-
temsimplementthe atomic /O by serializingthe process
of the requestssuchthat the overlappedregions can only
be accessedby one processat ary moment. By consider
ing only the contiguoudile accessthe POSIX definitionis
suitablefor file systemghatmainly handlenon-parallel/O
requests.For 1/0O requestdrom parallel applicationsthat
frequentlyissuenon-contiguoudile accesgequestdrom
multiple processesPOSIX atomicity may improperly de-
scribesuchparallelaccesatternsand imposelimitation
for thel/O parallelism.

2.2 MPI Atomicity Semantics

MPI standard.0[5] extendstheatomicitysemanticdy
takinginto consideratiorf the parallell/O operationsThe
MPI atomicmodeis definedas: in concurrenbverlapping
MPI I/O operationsthe resultsof the overlappedregions
shall containdatafrom only oneof the MPI processethat
participatesn the I/O operations. Otherwise,in the MPI
non-atomianode theresultof theoverlappedegionsis un-
defined. The differenceof the MPI atomicity from POSIX
definitionliesontheuseof MPI file view, anew file concept
introducedin MPI 2.0. A processfile view is createdby
callingMPI _Fi | e_set _vi ew() throughan MPI derived
datatype thatspecifieghe visible file rangeto the process.

Appeasin thelnternationalConfeenceon Parallel Processing?003

Y

X
Process 0's file view on array A

Overlapped
Region

non-atomig
mode

Process 1’s file view on array A

Figure 2. A 2D column-wise partitioning with
overlaps on 2 processes. In MPI atomic
mode, overlapped data can only come from
either Pq or P;. Otherwise , the result is unde-
fined, for example, interlea ved.

Whenusedin messag@assingthe MPI derived datatype
is a powerful mechanisnfor describingthe memorylay-

out of a messageuffer. This corvenienttool is extended
in MPI1 2.0 for describingthe file layout for process’file

view. Sincea derived datatype canspecifya list of non-
contiguousdfile segments the visible datato a processcan
alsobenon-contiguousln anMPI I/O operationall visible

segmentdo arequestingrocesarelogically considereds
acontinuousdatastreamfrom/to thefile system.

In MPI atomicity semantics, a call to
MPI Filereadxxx()/ Ml _Filewit xxx() is
regardedasa singlel/O operation.A singlecollective MPI

I/O operationcancontainrequestérom multiple processes.

Sinceeachprocessandefinesits own file view with a list
of non-contiguougile segmentstheoverlappedile regions
betweentwo processesanalsobe non-contiguousn file.
If the underlying MPI 1/O implementationconsidersthe
accesso eachfile sgmentasasingler ead() /write()
call, thentherewill be multiple callsissuedsimultaneously
from aprocesgo thefile system Althoughthe atomicity of
accessingo a contiguousoverlappedregion is guaranteed
in the POSIX compliantfile systemsthe MPI atomicity
which demandsatomicity acrossone or more regions
of overlap cannotsimply rely on the POSIX I/O calls.
Additional effort is requiredto implementa correctMPI
atomicity semantics.The factthat MPI derived datatypes
provide more programming flexibility when specifying
non-contiguousfile layout increasesthe compleity of
enforcingatomicityin MPI.

Figure 2 shavs an exampleof a concurrentwrite from
two processein MPI atomicandnon-atomicmodes. The

file views of bothprocessesonsistof 6 non-contiguousile
segments,assuminghe two-dimensionahrrayis storedin
row major. If writing eachof the file sggmentusesa sin-
glecalltow i t e(), thentherewill be 12 write callsis-
suedin total Sincethe processingrderof thesel2 callsin
thefile systemcanbearbitrary theresultin the overlapped
columnscan containinterleaved data, asillustratedin the
MPI non-atomicmode. The sameoutcomewill occurin a
POSIXfile systemsince POSIX atomicity only considers
theread()/wite() callindividually. Thereforethe
MPI implementatiorcannotsimply rely on the file system
to provide the correctfile atomicity.

3 Implementation Strategies

Thedesignof existing file systemseldomconsidercon-
currentoverlappingl/O requestsand mary optimization
stratgiescanactuallyhinderthe parallelismof overlapping
I/0O. For example,in mostclient-serertype of file systems,
read-aheadndwrite-behindstratgyiesareadoptedn which
read-aheagre-fetcheseveralfile blocksfollowing thedata
actualrequestedo theclient’s systemcachen anticipation
of programs sequentialreadingpatternand write-behind
accumulateseveral requestdn orderto betterutilize the
availablel/O bandwidth.The read-aheadndwrite-behind
policiesoftenwork againsthe goalsof ary file systemre-
lying on random-accessperationswhich are usedcom-
monly in parallell/O operationsUnderthesetwo policies,
two overlappingprocessem aconcurrent/O operatiorcan
physicallycachemoreoverlappingdatathanlogically over-
lapsin their file views. It is also possiblethat the over-
lappingdataof two processess cachedby a third process
becaus®f thereadahead.

The cacheconsisteng problemhasbeenstudiedexten-
sively in mary client-sener basedfile systems.The most
commonlyimplementedcachingschemeis to consultthe
sener'smodificationtime for the datacachecntheclients
beforeissuingthe 1/0O requests. Obviously, communica-
tion overheadbetweensener andclientsfor cachevalida-
tion andrefreshingcanbecomesignificantfor a concurrent
overlappingl/O requestdueto the unnecessargatatrans-
fers. Althoughthis problemcanbe alleviatedby disabling
the useof read-ahead/write-througthe performancegain
of thereducedverheadnaynotoffsettheperformancéoss
of disablingcaching.In thiswork, our discussioris notlim-
ited to specificfile systemsandwe assumehe general/O
requestanstartat arbitraryfile space.We now examine
two potentialimplementatiorstratgiesfor MPI atomicity
andanalyzetheir performanceompleity:

1. Using byte-range file locking — This approachuses
the standardJnix byte-rangefile locking mechanism
to wrap the read/writecall in eachprocesssuchthat

Appeasin thelnternationalConfeenceon Parallel Processing?003

the exclusive accesgermissionof the overlappedre-
gion canbegrantedto therequestingprocessWhile a
file regionislocked,all read/writerequestso it will di-
rectly goto thefile sener. Thereforethewritten data
of aprocesss visible to otherprocessesafterleaving
thelockingmodeandthesubsequentadrequestsvill
always obtainfresh datafrom the senersbecausef
theuseof thereadlocks.

2. Using processhandshaking — This approachuses
MPI communicatiorto performinter-processnegoti-
ation for writing to the overlappedfile regions. The
ideais a preferablealternatve to using file locking.
However, for file systemghatperformread-aheadnd
write-behind,a file synchronizatiorcall immediately
following every write call mayberequiredto flushout
all informationassociateavith the writesin progress.
Cachenvalidationmayalsobe neededeforereading
from the overlappedregionsto ensurethe fresh data
comingfrom theseners.Underthis stratgy cateyory,
we further discusstwo negotiation methods: graph-
coloringandprocess-rankrdering.

In order to help describethe above three approachesn

termsof dataamountandfile layouts,we usetwo concur

rent overlappingl/O casesas examples. Thesetwo cases
employ commonlyseenaccesyatternsin mary scientific
applications:row-wise and column-wisepartitioningon a

two-dimensionabrray

3.1 Row and Column-wise 2D Array Partitioning

Given P processegarticipatinga concurrentl/O op-
eration, the row-wise partitioning patterndivides a two-
dimensionakrrayalongits mostsignificantaxis while the
column-wisedividesit alongthe leastsignificantaxis. To
simplify thediscussionweassumall /O requestsrewrite
requestandthefollowing assumptionarealsomade:

e All P processesoncurrentlywrite their sub-arrayso
asinglesharedile.

e Thelayoutsof the2-dimensionahrrayin bothmemory
anddisk storagearein row-majororderwhereaxisY
is themostsignificantaxisand X is theleast.

e The sub-arraygpartitionedin every two consecutie
processesverlap with each other for a few rows/
columnson theboundaryalongthe partitioningaxis.

e Theglobalarrayis of size M x N andthe numberof
overlappedows/columnsds R, whereR < M/P and
R< N/P.

Figure3 illustratesthe two partitioningpatternson P = 4
processedn therow-wisecasethefile view of processP;

T F— N— l—’ X m: Overlapped region

Py Y

] E— } iR - N u

Pl [PO 4, [P2 —

A==l

P,

{ """"""" T JL —— P — F—P3—
1 l R

(a) Row-wise partitioning (b) column-wise partitioning

Figure 3. Row-wise and column-wise par ti-
tioning on a 2D array. The file views of every
two consecutive processes overlap with each
other in R rows/columns along Y/X axis.

is a sub-arrayof size M' x N, where M’ = % + R, if
0 < i < P—1. Inthecolumn-wisecasethefile view of P;
is of sizeM x N', whereN’' = ¥ + Rfor0 < j < P—1.
Both Py and Pp_; contains% rows/columnslessin row
andcolumn-wisecasesrespectiely.

3.2 Byte-rangeFile Locking

The byte-rangdile locking is a mechanisnprovided by
a file systemwithin its locking protocol. This mechanism
canbe usedto ensurethe exclusive accesdo a lockedfile
region. If asetof concurrent/O callscontainsonly readre-
gueststhelocking protocolis usuallyimplementedo allow
a sharedreadlock sothat morethanoneprocessanread
thelockeddatasimultaneouslyif atleastoneof thel/O re-
guestss awrite requestthewrite lock is oftengrantedex-
clusively to the requestingorocessesMost of the existing
locking protocolsare centrallymanagedandits scalability
is, hence,limited. A distributedlocking protocol usedin
the IBM GPFSfile systemrelievesthe bottleneckby hav-
ing a processmanagsits grantediockedfile region for the
furtherrequestdrom otherprocessef8]. Whenit comeso
the overlappingrequestshowever, concurrentvritesto the
overlappeddatamustbestill sequential.

Row-wise Partitioning We now usethe row-wise parti-
tioning exampleshovn in Figure3(a)to describeheatom-
icity implementationusing file locking. In this example,
the file view of a processoverlapsR rows with its previ-
ousandsuccessie processesSincethefile storagdayout
is assumedo be in a row-major order, i.e. eachrow of
size N is storedconsecutiely to its previous and succes-
sive row, every processfile view actually coversa single

Appeasin thelnternationalConfeenceon Parallel Processing?003

contiguousfile space. Therefore,the concurrentoverlap-
ping I/O canbeimplementedisingasinglewr i t e() call
in eachprocess.On the file systemthat supportsonly the
atomicmode,atomicfile resultsareautomaticallyguaran-
teedfor therow-wisepartitioningcase.Onfile systemghat
do no supportthe atomic mode, wrappingthe 1/O call in
eachprocesswith byte-rangdocking of thefile region will
also generateatomicresults. ROMIO, an MPI-IO imple-
mentatiordevelopedat ArgonneNationalLaboratoryrelies
on the useof byte-rangdile locking to implementthe cor-
rectMPI atomicityin which processemustobtaina exclu-
sivewrite lock to theoverlappedile regionsbeforeperform
thewrite [11, 12].

Column-wisePartitioning In the column-wisepartition-
ing caseshown in Figure 3(b), the file view of eachpro-

cessis asub-arrayof size M x N’ overlappingR columns
with its left andright processesNote that eachof the M

rows of size N’ in the file view is not contiguouswith its

previous or successie row in thefile storagelayout. The
distancebetweerthefirst elementof two consecutie rows

in eachprocessfile view is N. Therefore the overlapped
file regionsof two consecutre processesonsistof M non-
contiguousrows of size R each. Figure 4 shavs an MPI

codefragmentthat createsthe file view for eachprocess
usinga derived datatypeto specifythe column-wiseparti-

tioning patternandusesacollectve MPI-10 call to perform
theconcurrentvrite.

An intuitive implementationfor the column-wisecase
is to regard each contiguous1/O requestas a single
read()/wite() call. This approachresultsiM write
calls from each processand PM calls in total. On a
POSIXfile system,if all PM requestsre processedon-
currentlywithoutary specificorder, interleavedresultsmay
occurin the overlappedegions. Sinceprocessingrderof
thesewrite requestEanbe arbitrary the samescenariccan
alsooccuron otherfile systemsevenif file locking wraps
aroundeachl/O call. Enforcingthe atomicity of individual
read()/wite() callsis notsuficientto enforceMPI
atomicity One solutionis for eachprocessto obtain all
M locks beforeperformingary write calls. However, this
approachcaneasily causedeadlock whenwaiting for the
requestindocksto begranted An alternatveis thatthefile
lock startsat the processs first file offset and endsat the
very lastfile offsetthe procesawill write, virtually the en-
tire file. In thisway, all M rows of the overlappedregion
will beaccessedtomically

Though POSIX definesa function, | i o_l i stio(),
to initiate a list of non-contiguoudile accessei a sin-
gle call, it doesnot explicitly indicateif its atomicity se-
manticsare applicable. If POSIX atomicity is extended
tolioldistio(), the MPI atomicity can be guaran-
teedby implementingthe non-contiguouscces®on top of

MPI_File_open(comm, filename, io_mode, info, &fh);

MPI_File_set_atomicity(fh, 1);

sizes[0] = M; sizes[1] = N;

sub_sizes[0] = M; sub_sizes[1]=N/P;

if (rank == 0 || rank == P-1) sub_sizes[1] -= R/2;

starts[0] = 0; starts[1] = (rank == 0) ? 0 : rank * (N/P - R/2);

MPI_Type_create_subarray(2, sizes, sub_sizes, starts, MPI_ORDER_C,
MPI_CHAR, &filetype);

MPI_Type_commit(&filetype);

MPI_File_set_view(fth, disp, MPI_CHAR, filetype, "native", info);

MPI_File_write_all(fh, buf, buffer_size, etype, &status);

MPI_File_close(&fh);

© ©® No ks wwDdR

PR e
N B oo

Figure 4. An MPI code fragment that performs
the column-wise access. The shade area il-
lustrates the construction of the derived data
type, to define process’s file view.

liolistio(). Otherwiseadditionaleffort suchasfile
locking is necessaryo ensurehe MPI atomicity.

3.3 ProcessomtHandshaking

An alternatve approachto avoid using file locking is
throughprocessandshakingn which theoverlappingpro-
cessesigyotiatewith eachotherto obtainthe desirableac-
cesssequencéo theoverlappedegions.In this sectionwe
discusgwo possibleéimplementationsf proceshandshak-
ing: graph-coloringandprocess-rankrderingmethods.

3.3.1 Graph-coloring Approach

GivenanundirectedgraphG = (V, E) in which V repre-
sentsa setof verticesand E represents setof edgesthat
connectthe vertices,a k-coloringis a functionC : V. —
{1,2, ...k} suchthatfor all u,v € V, if C(u) = C(v), then
(u,v) ¢ E;thatis,noadjacenverticeshavethesamecolor.
Thegraph-coloringproblemis to find theminimumnumber
of colors,k, to coloragivengraph.Solvingthe MPI atom-
icity problemcanbe viewed asa graph-coloringproblem
if the l/O requestingprocesseareregardedasthe vertices
andthe overlappingbetweentwo processesepresentshe
edge.Whenapplyinggraphcoloringto the MPI atomicity
implementationthe I/O processesrefirst divided into &
groups(colors)in which no two processes a groupover-
lap their file views. Then,the concurrent/O is carriedout
in k steps.Notethat processsynchronizatiorbetweernary
two stepss necessario ensurghatno processn onegroup
can proceedwith its 1/0O beforethe previous group’s I/O
completesThegraph-coloringapproachulfills therequire-
mentof MPI atomicity while maintainingat leasta degree
of I/O parallelism.

Thegraph-coloringnethodologys aheuristicwhichhas

Appeasin thelnternationalConfeenceon Parallel Processing?003

Given an overlapping & P matrix, W, where
WIilj]= { 1 if procgss ioverlapsjanéi |
0 otherwise

R; :the i row of W

R’ : an array of size P

R, [j] :the jth element oR,
C : an array of size P, initial all -1

1. maxColor <~ 0

2. for eachrowi=0...P-1

3 for j=0...P-1

4. if WI[i]J[j]=0 and C[i]<0 then
5 C[j] < maxColor

6 break

7 R < R,

8 for k=j+1...P-1

9. if R'[k]=0and C[k]<O then
10. C[k] €< maxColor

11. R < RV R

12. maxColor <— maxColor + 1

13. myColor <— C/[self]

Figure 5. A greedy graph-coloring algorithm
that finds the color id for each I/O process in
variable myColor.

beenstudiedfor alongtime andis provedto be NP-hardfor
generalgraphs[2]. Becausehe overlappingl/O patterns
presenin mostof the scienceapplicationsarehardly arbi-
trary, a greedysolutionmay suffice. Figure5 givesa sim-
ple greedygraph-coloringalgorithmthatfirstusesa P x P
overlappingmatrix, W, to indicateif thereis anoverlapbe-
tweentwo processesnd startscoloring the processedby
lookingfor thelowestrankedprocessewhosefile views do
not overlapwith any processn thatcolor. Let's now con-
siderthecolumn-wisepartitioningexample.Figure6 shavs
theoverlappingmatrix usingthis greedyalgorithm.lt is ob-
viousthattwo colorsareenougho maintainMPI1 atomicity:
the even-ranlked processegerformtheir I/O requestprior
to theodd-ranledprocesses.

3.3.2 Process-rankOrdering

Anotherprocess-handshakirapproachis to have all pro-
cessesmgreeon a certainaccesgriority to the overlapped
file regions.An exampleis to usea policy wherethehigher
ranked processwins the right to accesghe overlappedre-
gionswhile otherssurrendetheir writes. A coupleof im-
mediateadvantage®f this approacharethe eliminationof
overlappingaccessothatall I/O requestganproceedcon-
currentlyandthe reductionof the overall /O amount.The
overheadof this methodis the re-calculationof eachpro-
cesss file view by marking down the overlappedregions
with all higherrank processesfile views. Considering
the column-wisepartitioningexample,Figure 7 illustrates
the new processesfile views generatedrom the process-

1 N 1
Overlapping matrix —Py—+ P,
0100 a : : :
_|1010
W=lo101 l
0010 Step 1: Even-ranked processes write
P1—> -—Pg—»
[]: coloro ; ;
[: color1

Step 2: Odd-ranked processes write

Figure 6. For the 2D column-wise access, the
graph-coloring algorithm divides the 1/O re-
quests into 2 steps: even-ranked processes
write first follo wed by the odd-ranked.

rank orderingapproach.The new file view for processP;,
0<i<P-1,isaM x % sub-arraywhile thefile views
for Py andPp_; areM x (¥ — £y andM x (X + £), re-
spectvely. Comparedo Figure6, eachprocesssurrenders
its write for theright-mostR columns.

3.4. Scalability Analysis

In the column-wisepartition case,the file locking ap-
proachresultsin M N — (N — N') bytes,nearlythe entire
file, beinglocked while eachprocessis writing. In fact,
onceaprocesss grantedts write locking requestno other
processesanaccesdo thefile. As a result, using byte-
rangefile locking serializesthe I/O and dramaticallyde-
gradeghe performanceThe purposeof proposingthe two
process-handshakirepproachess trying to maintainthe
I/O scalability without the useof file locking. The over
headof the graph-coloringapproachs the constructionof
theoverlappingmatrixusingall processedile views. In the
column-wisepartitioningcasethegraph-coloringapproach
maintainshalf of thel/O parallelism.In theprocess-rankr-
deringapproachthe exactoverlappedoyte rangesmustbe
known in orderto generateéhenew localfile view. Oncethe
new file views areobtained /O requestsanproceedwith
full parallelism. The overheadof both approacheds ex-
pectedto be nggligible whencomparedo the performance
improvementresultingfrom theremoval of all overlapping
requests.Additionally, the overall I/O amounton the file
systemis reducedsincethe lower-rank processesurrender
theiraccessew the overlappedegions.

4 Experiment Results

We implementedhe column-wisepartitioningexample
usingstandardJnix I/O callsandobtainedexperimentate-

Appeasin thelnternationalConfeenceon Parallel Processing?003

oz =z

I

N
P

ez
'UTZ

w@J?qu
0|z

=

-~ Po P Py — Pp.1

New process file views

Figure 7. The new process file views for the
column-wise overlapping /O resulted from
the process-rank ordering approach.

sultsfrom threeparallelmachines ASCI Cplant,anAlpha
Linux clusterat SandiaNational Laboratory;the SGI Ori-

gin 2000 at the National Centerfor Supercomputing\p-

plications(NCSA); andBlue Horizon, the IBM SPat San
Diego Supercomputin@enter(SDSC).The machinecon-
figurationsare briefly describedin Table 1. Cplantis a
Linux clusterrunning the ExtendedNetwork File System
(ENFS)in which eachcomputenodeis mappedo one of

the /O senersin a round-robinselectionschemeat boot
time [7]. Basically ENFSis anNFSfile systemwith a few

changesThemostnotableis theabsencef file locking on

Cplant. Accordingly, our performanceesultson Cplantdo
notincludetheexperimentghatusefile locking. ENFSalso
performsthe optimizationthatNFSusuallydoes,including
read-aheadndwrite-behind.

We ran the experimentswith the three array sizes:
4096 x 8192 (32MB), 4096 x 32768 (128MB), and4096 x
262144 (1GB). Onall threemachinesywe used4, 8, and16
processorsindthe resultsareshavn in Figure8. Notethe
performancef file locking is theworstof theimplementa-
tions of MPI atomicity. The poorresultsarealsoexpected
asdiscussedn Section3.2thatfile locking hindersthe l/O
concurreng. In mostof thecasestheprocess-rankrdering
stratgy out-performedgraph-coloring. The overheadsof
calculatingthe overlappingmatrix for both graph-coloring
andprocess-rankrderingapproachesrelessthanl per
centof theexecutiontime in all the experiments.

5 Conclusions

In this paper we examinedthe atomicity semanticgor
both the POSIX and MPI specifications. The difference
betweenthemis the numberof non-contiguousegionsin
eachl/O requests.While POSIX considersonly one con-
tiguousfile spacel/O, a single MPI 1/O requestcan ac-
cessnon-contiguousile spaceusingMPI’s file view facil-

Table 1. System configurations for the three
parallel machines on whic h the experimental
results were obtained.

Cplant | Origin2000 | I1BM SP ||

File system ENFS XFS GPFS
CPUtype Alpha R10000 Power3

CPUSpeed| 500MHz 195MHz 375MHz

: Gigabit Colory

Network Myrinet Ethernet switch

I/O seners 12 - 12
Peakl/O

bandwidth 50MB/s 4 GB/s 1.5GBI/s

ity. We compareda few implementatiorstratejiesfor en-

forcing atomicwritesin MPI includingfile locking, graph-
coloring, and process-rankrdering. The experimentalre-

sults shaved that using file locking performedthe worst

whenrunninga two-dimensionatolumn-wisepartitioning

case. Sincefile locking is basically a central managed
mechanismthe parallelismof concurrent/O requestses-

pecially for overlappingl/O, canbe significantlydegraded
by usingit. The two alternatves proposedin this pa-

pernegotiateprocesseO requesbrderof accesgpriority

throughprocesshandshaking Without usinga centralized
locking mechanismthesetwo approachegreatlyimprove

thel/O performance.

Thestratgiesof graph-coloringandprocess-rankrder
ing requireevery processwareof all the processegpartic-
ipatedin a concurrent/O operation.In the scopeof MPI,
only collective calls have this property NotethatMPI col-
lective 1/O is differentfrom the concurrent/O in which a
concurrent/O is for moregeneral/O case.An MPI non-
collective I1/0O operationcanalsobe concurrent.File lock-
ing seemsto be the only way to ensureatomic resultsin
non-collectve I/0 callsin MPI, sincethe concurrentpro-
cesseareunknown. Otherwisegiventheparticipatingpro-
cessesl/O optimizationssuchasthe processhandshaking
approactproposedn this papercanbe appliedto improve
performance.

6 Acknowledgments

This work was supportedn partby DOE laboratories,
SNL, LANL andLLNL undersubcontractNo. PO28264
andin partby NSFEIA-0103023.1t wasalsosupportedn
partby NSF cooperatie agreemenfACl-9619020through
computing resourcesprovided by the National Partner
shipfor AdvancedComputationalnfrastructureat the San
Diego SupercomputeCenter We alsoacknavledgetheuse
of the SGI Origin2000at NCSA.

=
o

1/0 bandwidth (MB/sec)
o N I (o)) [oe]

1/0 bandwidth (M

Appeasin thelnternationalConfeenceon Parallel Processing?003

CPlant Array size: 4096 x 8192 12 Origin2000 Array size: 4096 x 8192 25 IBM SP Array size: 4096 x 8192
[graph-coloring § W file locking) é W file locking .
r process—rank ordering @ 10 W graph-coloring | 720 m graph-coloring
7 2 g process-rank ordering = process—rank orderin
i = =15}
56 3
L = = 10
T 4 k<]
c c
r I g 2 8 54
° il e
=0 =0 lJ
4 8 16 4 8 16 4 8 16
number of processes number of processes number of processes
CPlant Array size: 4096 x 32768 20 Origin2000 Array size: 4096 x 32768 IBM SP Array size: 4096 x 32768
| m graph—coloring § m file locking | file locking
process-rank ordering & 15 | graph-coloring] W graph—coloring]
r S 0r process—rank ordering process—rank orderin
[=
L S 10t
L 2
©
i g 5t
o]
’ = IJ IJ
=0
4 16 4 8 16 4 8 16
number of processes number of processes number of processes
CPlant Array size: 4096 x 262144 20 Origin2000 Array size: 4096 x 262144 5 IBM SP Array size: 4096 x 262144
| m graph—coloring § MW file locking W file locking
process-rank ordering @ 45 | graph-coloring B graph-coloring
r s o1 process—rank ordering process—rank orderin
[=
L S 10
L 2
2
7 I m 5 7 I Ij
’ 0 [1l
[] Q, I N
4 8 16 4 8 16 4 8 16

number of processes

number of processes

number of processes

Figure 8. Performance results of running the column-wise partitioning experiments on aLinux Cluster,
an IBM SP, and an SGI Origin200. Three file sizes were used: 32 MB, 128 MB, and 1GB.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

P. Crandall,R. Aydt, A. Chien,andD. Reed. Input-Output
Characteristicef ScalableParallel Applications. In Super
computing95, Dec1995.

M. Garegy andD. Johnson.Computes and Intractability: A
Guideto the Theoryof NP-CompletenesswW.H. Freeman,
New York, 1979.

IEEE Std.1003.1-2001 Systeminterfaces2001.
IEEE/ANSI Std.1003.1. Portable Operating Systerninter-
face(POSIX)-Rurt 1: SystemfpplicationProgramInterface
(API) [C Language], 1996.

Message Passing Interface Forum. MPI-2: Exten-
sionsto the Messge Passinginterface http://wwwmpi-
forum.og/docs/docs.htmluly 1997.

N. Nieuwejaar D. Kotz, A. PurakayasthaC. Ellis, and
M. Best. File-AccessCharacteristicof Parallel Scientific
Workloads. |[EEE Transactionson Parallel and Distributed
Systems7(10):1075-10890ct 1996.

Sandia National Laboratories. Computational Plant
http://www.cs.sandia.gd Cplant.

(8]

El

[10]

[11]

[12]

F. SchmuckandR. Haskin. GPFS:A Shared-Dislile Sys-
tem for Large ComputingClusters. In the Confeenceon

File and Storlage Tedhnolayies (FAST'02) pages231-244,
Jan2002.

E. Smirni, R. Aydt, A. Chien,andD. Reed. I/O Require-
mentsof Scientific Applications: An Evolutionary View.

In the Fifth IEEE International Symposiunon High Perfor-

manceDistributedComputing pages49-59,1996.

E. SmirniandD. Reed.Lessondrom Characterizingheln-

put/OutpuBehavior of ParallelScientificApplications.Per-

formanceEvaluation: An InternationalJournal, 33(1):27—
44,Jun1998.

R. Thakur W. Gropp, and E. Lusk. Users Guide for

ROMIO: A High-RerformancePortable MPI-IO Implemen-
tation. Mathematicsand ComputerScienceDivision, Ar-

gonneNational Laboratory Oct. 1997. TechnicalReport
ANL/MCS-TM-234.

R. Thakur W. Gropp,andE. Lusk. OnImplementingVPI-

10 Portablyandwith High Performanceln the Sixth\Work-

shopon I/O in Parallel and Distributed Systemspages23—
32,May 1999.

