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Abstract

For concurrent I/O operations, atomicity definesthe
results in the overlapping file regions simultaneously
read/writtenby requestingprocesses.Atomicityhas been
well studiedat the file systemlevel, such as POSIXstan-
dard. In this paper, we investigatethe problemsarising
from the implementationof MPI atomicity for concurrent
overlappingwrite accessandprovidetwoprogrammingso-
lutions. Sincethe MPI definitionof atomicitydiffers from
thePOSIXone, an implementationthatsimplyrelieson the
POSIXfile systemsdoesnotguaranteecorrectMPI seman-
tics. To havea correctimplementationofatomicI/O in MPI,
weexaminetheefficiencyof threeapproaches:1) file lock-
ing, 2) graph-coloring, and3) process-rankordering. Per-
formancecomplexity for thesemethodsare analyzedand
their experimentalresultsare presentedfor file systemsin-
cludingNFS,SGI’sXFS,andIBM’sGPFS.

1. Intr oduction

Concurrentfile accesshasbeenanactive researchtopic
for many years. Efforts werecontributedin both software
developmentaswell ashardwaredesignto improvetheI/O
bandwidthbetweencomputationalunits and storagesys-
tems. While most of theseworks only considerexclu-
sive file accessamongthe concurrentI/O requests,more
scientific applicationsnowadaysrequire data partitioning
with overlapamongthe requestingprocesses[1, 6, 9, 10].
For instance,ghost cells are commonly used in multi-
dimensionalarraypartitioningsuchthatthesub-arrayparti-
tionedin oneprocessoverlapswith its neighborsnearthe
boundary. A couple of examplesthat use this ghosting
techniqueare large scalesimulationsin earthclimateand
N-body astrophysics,hydrodynamicsusingLaplaceequa-
tions, both wherea strongspatialdomainpartitioningre-
lationship is present. Figure 1 illustratesan exampleof

a two-dimensionalarrayin a block-blockpartitioningpat-
ternin which a ghostcell representsdata”owned”by more
than one process. A typical run of this large-scaletype
of applicationscantake from daysto monthsandusually
outputdataperiodicallyfor thepurposesof check-pointing
aswell as progressive visualization. During checkpoint-
ing, theoutputof ghostcells createsoverlappingI/O from
all processesconcurrently. Theoutcomeof theoverlapped
file regionsfrom a concurrentI/O is commonlyreferredas
atomicity.

In this paper, we examinetheimplementationissuesfor
concurrentoverlappingI/O operationsthat abidethe MPI
atomicitysemantics.We first differentiatetheMPI atomic-
ity semanticsfrom the definition in POSIX standard.The
POSIXdefinitiononly considersatomicityat thegranular-
ity of read()/write() calls in which only a contigu-
ousfile spacecanbe specifiedin a single I/O request. In
MPI, a processcan definea non-contiguousfile view us-
ing MPI derived datatypesand subsequentI/O calls can
then implicitly accessnon-contiguousfile regions. Since
the POSIX definition is not aware of non-contiguousI/O
access,it alonecannotguaranteeatomicaccessin MPI, and
additionaleffortsareneededabovethefile systemto ensure
the correctimplementationof atomicMPI access.In this
work, we studytwo approachesfor atomicity implementa-
tion: usingbyte-rangefile locking anda processhandshak-
ing strategy. Usinga byte-rangefile locking mechanismis
a straightforwardmethodto ensuretheatomicity. In many
situations,however, file lockingcanserializewhatwerein-
tendedto beconcurrentI/O callsand,therefore,it is neces-
sarytoexplorealternativeapproaches.Processhandshaking
usesinter-processcommunicationto determinethe access
sequenceor agreementon theoverlaps,in which two meth-
odsarestudied:graph-coloringandprocess-rankordering
methods.Thesetwo methodsorderthe concurrentI/O re-
questsin a sequencesuchthatno two overlappingrequests
canperformat any instance.Experimentalperformancere-
sultsareprovidedfor runninga testcodeusinga column-
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Figure 1. A 2D array par titioned with over-
laps. The ghost cells of ��� overlaps with its 8
neighbor s resulting in some areas accessed
by more than one process.

wise partitioning patternon threemachineplatforms: an
Linux clusterrunninganextendedNFSfile system,anSGI
Origin2000runningXFS, andan IBM SPrunningGPFS.
Theresultsshow that, in general,usingfile locking gener-
atesthe worst performanceandusingthe process-rankor-
deringperformsthebestonall threemachines.

Therestof thepaperis organizedasfollows. Section2
describesthedifferencebetweenPOSIXandMPI atomicity
semantics.Weexplorethreepotentialapproachesfor imple-
mentingMPI atomicityin depthin Section3. In Section4,
we presentperformanceresultsandthepaperis concluded
in Section5.

2. Concurrent Overlapping I/O

The concurrent overlappingI/O referredto in this pa-
per occurswhenI/O requestsfrom multiple processesare
issuedsimultaneouslyto the file systemand overlapsex-
ist amongthe file regions accessedby theserequests. If
all the requestsare readrequests,the file systemcan use
the disk cacheto duplicatethe overlappeddatafor the re-
questingprocessesandnoconflictwill existwhenobtaining
file dataamongtheprocesses.However, whenoneor more
I/O requestsare write requests,the outcomeof the over-
lappedregions,either in file or in process’s memory, can
vary dependingon the implementationof the file system.
Thisproblemis commonlyreferredastheI/O atomicity.

2.1. POSIX Atomicity Semantics

POSIXstandarddefinesatomicitysuchthatall thebytes
from a single file I/O requestthat start out togetherend

up together, without interleaving from other I/O requests
[3, 4]. The I/O operationsconfinedby this definition in-
clude the systemcalls that operateon regular files, such
asopen(), read(), write(), chmod(), lseek(),
close(), andsoon. In this paper, we focuson theeffect
of thereadandwrite callson theatomicity.

The POSIXdefinitioncanbe simply interpretedasthat
eitherall or noneof thedatawritten by a processis visible
to otherprocesses.The nonecasecanbe either the write
datais cachedin a systembuffer andhasnot beenflushed
to the disk or the datais flushedbut over-written by other
processes.Hence,whenPOSIXsemanticsis appliedto the
concurrentoverlappingI/O operations,thedataresultedin
the overlappedregions in disk shall consistof datafrom
only oneof the write requests.In otherwords,no mixed
datafrom two or more requestsshall appearin the over-
lappedregions. Otherwise,in non-atomicmode,theresult
of theoverlappedregion is undefined,i.e. it maycomprise
mixeddatafrom multiple requests.Many existing file sys-
temssupportthePOSIXatomicitysemantics,suchasNFS,
UFS,IBM PIOFS,GPFS,Intel PFS,andSGIXFS.

POSIXatomicitymainly considerstheI/O callsdefined
within the POSIX scopein which its readandwrite calls
shareacommoncharacteristic:oneI/O requestcanonly ac-
cessa contiguousfile region specifiedby a file pointerand
theamountof datastartingfrom thepointer. Therefore,the
overlappeddatawrittenby two ormorePOSIXI/O callscan
only bea contiguousregion in file. Many POSIXfile sys-
temsimplementthe atomic I/O by serializingthe process
of the requestssuchthat the overlappedregionscan only
be accessedby oneprocessat any moment. By consider-
ing only thecontiguousfile access,thePOSIXdefinitionis
suitablefor file systemsthatmainlyhandlenon-parallelI/O
requests.For I/O requestsfrom parallel applicationsthat
frequentlyissuenon-contiguousfile accessrequestsfrom
multiple processes,POSIX atomicity may improperlyde-
scribesuchparallelaccesspatternsand imposelimitation
for theI/O parallelism.

2.2. MPI Atomicity Semantics

MPI standard2.0[5] extendstheatomicitysemanticsby
takinginto considerationof theparallelI/O operations.The
MPI atomicmodeis definedas: in concurrentoverlapping
MPI I/O operations,the resultsof the overlappedregions
shallcontaindatafrom only oneof theMPI processesthat
participatesin the I/O operations.Otherwise,in the MPI
non-atomicmode,theresultof theoverlappedregionsis un-
defined.Thedifferenceof theMPI atomicity from POSIX
definitionliesontheuseof MPI file view, anew file concept
introducedin MPI 2.0. A process’file view is createdby
callingMPI File set view() throughanMPI derived
datatypethatspecifiesthevisible file rangeto theprocess.
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Figure 2. A 2D column-wise par titioning with
overlaps on 2 processes. In MPI atomic
mode , overlapped data can onl y come from
either ��� or �	� . Otherwise , the result is unde-
fined, for example , interlea ved.

Whenusedin messagepassing,theMPI deriveddatatype
is a powerful mechanismfor describingthe memorylay-
out of a messagebuffer. This convenienttool is extended
in MPI 2.0 for describingthe file layout for process’file
view. Sincea derived datatype canspecifya list of non-
contiguousfile segments,the visible datato a processcan
alsobenon-contiguous.In anMPI I/O operation,all visible
segmentsto arequestingprocessarelogically consideredas
acontinuousdatastreamfrom/to thefile system.

In MPI atomicity semantics, a call to
MPI File read xxx()/ MPI File writ xxx() is
regardedasa singleI/O operation.A singlecollective MPI
I/O operationcancontainrequestsfrom multipleprocesses.
Sinceeachprocesscandefinesits own file view with a list
of non-contiguousfile segments,theoverlappedfile regions
betweentwo processescanalsobe non-contiguousin file.
If the underlying MPI I/O implementationconsidersthe
accessto eachfile segmentasasingleread()/write()
call, thentherewill bemultiple callsissuedsimultaneously
from aprocessto thefile system.Althoughtheatomicityof
accessingto a contiguousoverlappedregion is guaranteed
in the POSIX compliantfile systems,the MPI atomicity
which demandsatomicity acrossone or more regions
of overlap cannot simply rely on the POSIX I/O calls.
Additional effort is requiredto implementa correctMPI
atomicitysemantics.The fact that MPI deriveddatatypes
provide more programmingflexibility when specifying
non-contiguousfile layout increasesthe complexity of
enforcingatomicityin MPI.

Figure2 shows an exampleof a concurrentwrite from
two processesin MPI atomicandnon-atomicmodes.The

file viewsof bothprocessesconsistof 6 non-contiguousfile
segments,assumingthe two-dimensionalarrayis storedin
row major. If writing eachof the file segmentusesa sin-
gle call to write(), thentherewill be 12 write calls is-
suedin total Sincetheprocessingorderof these12 calls in
thefile systemcanbearbitrary, theresultin theoverlapped
columnscancontaininterleaved data,as illustratedin the
MPI non-atomicmode. Thesameoutcomewill occurin a
POSIX file systemsincePOSIX atomicity only considers
the read()/write() call individually. Therefore,the
MPI implementationcannotsimply rely on thefile system
to providethecorrectfile atomicity.

3 Implementation Strategies

Thedesignof existingfile systemsseldomconsidercon-
current overlappingI/O requestsand many optimization
strategiescanactuallyhindertheparallelismof overlapping
I/O. For example,in mostclient-servertypeof file systems,
read-aheadandwrite-behindstrategiesareadoptedin which
read-aheadpre-fetchesseveralfile blocksfollowing thedata
actualrequestedto theclient’s systemcachein anticipation
of program’s sequentialreadingpatternand write-behind
accumulatesseveral requestsin order to betterutilize the
availableI/O bandwidth.Theread-aheadandwrite-behind
policiesoftenwork againstthegoalsof any file systemre-
lying on random-accessoperationswhich are usedcom-
monly in parallelI/O operations.Underthesetwo policies,
two overlappingprocessesin aconcurrentI/O operationcan
physicallycachemoreoverlappingdatathanlogically over-
laps in their file views. It is also possiblethat the over-
lappingdataof two processesis cachedby a third process
becauseof thereadahead.

Thecacheconsistency problemhasbeenstudiedexten-
sively in many client-server basedfile systems.The most
commonlyimplementedcachingschemeis to consultthe
server’smodificationtimefor thedatacachedontheclients
before issuing the I/O requests. Obviously, communica-
tion overheadbetweenserver andclientsfor cachevalida-
tion andrefreshingcanbecomesignificantfor a concurrent
overlappingI/O requestdueto theunnecessarydatatrans-
fers. Althoughthis problemcanbealleviatedby disabling
the useof read-ahead/write-through,the performancegain
of thereducedoverheadmaynotoffsettheperformanceloss
of disablingcaching.In thiswork,ourdiscussionis notlim-
ited to specificfile systemsandwe assumethegeneralI/O
requestscanstartat arbitraryfile space.We now examine
two potentialimplementationstrategiesfor MPI atomicity
andanalyzetheirperformancecomplexity:

1. Using byte-range file locking – This approachuses
the standardUnix byte-rangefile locking mechanism
to wrap the read/writecall in eachprocesssuchthat
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the exclusive accesspermissionof the overlappedre-
gioncanbegrantedto therequestingprocess.While a
file regionis locked,all read/writerequeststo it will di-
rectly go to thefile server. Therefore,thewritten data
of a processis visible to otherprocessesafter leaving
thelockingmodeandthesubsequentreadrequestswill
alwaysobtainfreshdatafrom the serversbecauseof
theuseof thereadlocks.

2. Using processhandshaking – This approachuses
MPI communicationto performinter-processnegoti-
ation for writing to the overlappedfile regions. The
idea is a preferablealternative to using file locking.
However, for file systemsthatperformread-aheadand
write-behind,a file synchronizationcall immediately
following everywrite call mayberequiredto flushout
all informationassociatedwith thewrites in progress.
Cacheinvalidationmayalsobeneededbeforereading
from the overlappedregions to ensurethe freshdata
comingfrom theservers.Underthisstrategy category,
we further discusstwo negotiation methods: graph-
coloringandprocess-rankordering.

In order to help describethe above three approachesin
termsof dataamountandfile layouts,we usetwo concur-
rent overlappingI/O casesasexamples. Thesetwo cases
employ commonlyseenaccesspatternsin many scientific
applications:row-wise andcolumn-wisepartitioningon a
two-dimensionalarray.

3.1. Row and Column-wise2D Array Partitioning

Given 
 processesparticipatinga concurrentI/O op-
eration, the row-wise partitioning patterndivides a two-
dimensionalarrayalongits mostsignificantaxiswhile the
column-wisedividesit alongthe leastsignificantaxis. To
simplify thediscussion,weassumeall I/O requestsarewrite
requestsandthefollowing assumptionsarealsomade:

� All 
 processesconcurrentlywrite their sub-arraysto
asinglesharedfile.

� Thelayoutsof the2-dimensionalarrayin bothmemory
anddisk storagearein row-majororderwhereaxis �
is themostsignificantaxisand 
 is theleast.

� The sub-arrayspartitionedin every two consecutive
processesoverlap with each other for a few rows/
columnson theboundaryalongthepartitioningaxis.

� Theglobalarrayis of size ����� andthenumberof
overlappedrows/columnsis � , where ��������
 and
��������
 .

Figure3 illustratesthe two partitioningpatternson 
�� �
processes.In therow-wisecase,thefile view of process
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Figure 3. Row-wise and column-wise par ti-
tioning on a 2D array. The file views of every
two consecutive processes overlap with each
other in � rows/columns along � / 
 axis.

is a sub-arrayof size �$#%�&� , where �$#'�)( *,+-� , if. �0/%�0
2143 . In thecolumn-wisecase,thefile view of 
65
is of size �)�7�8# , where�4#9�;:* +<� for

. �>=7�0
�123 .
Both 
 � and 
 *@? � contains A B rows/columnslessin row
andcolumn-wisecases,respectively.

3.2. Byte-rangeFile Locking

Thebyte-rangefile locking is a mechanismprovidedby
a file systemwithin its locking protocol. This mechanism
canbeusedto ensurethe exclusive accessto a lockedfile
region. If asetof concurrentI/O callscontainsonly readre-
quests,thelockingprotocolis usuallyimplementedtoallow
a sharedreadlock so that morethanoneprocesscanread
thelockeddatasimultaneously. If at leastoneof theI/O re-
questsis a write request,thewrite lock is oftengrantedex-
clusively to the requestingprocesses.Most of theexisting
locking protocolsarecentrallymanagedandits scalability
is, hence,limited. A distributed locking protocolusedin
the IBM GPFSfile systemrelievesthe bottleneckby hav-
ing a processmanageits grantedlockedfile region for the
furtherrequestsfrom otherprocesses[8]. Whenit comesto
theoverlappingrequests,however, concurrentwritesto the
overlappeddatamustbestill sequential.

Row-wise Partitioning We now usethe row-wise parti-
tioningexampleshown in Figure3(a)to describetheatom-
icity implementationusing file locking. In this example,
the file view of a processoverlaps � rows with its previ-
ousandsuccessive processes.Sincethefile storagelayout
is assumedto be in a row-major order, i.e. eachrow of
size � is storedconsecutively to its previous andsucces-
sive row, every process’file view actuallycoversa single
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contiguousfile space. Therefore,the concurrentoverlap-
ping I/O canbeimplementedusinga singlewrite() call
in eachprocess.On the file systemthat supportsonly the
atomicmode,atomicfile resultsareautomaticallyguaran-
teedfor therow-wisepartitioningcase.Onfile systemsthat
do no supportthe atomicmode,wrappingthe I/O call in
eachprocesswith byte-rangelocking of thefile regionwill
alsogenerateatomic results. ROMIO, an MPI-IO imple-
mentationdevelopedatArgonneNationalLaboratory, relies
on theuseof byte-rangefile locking to implementthecor-
rectMPI atomicityin whichprocessesmustobtainaexclu-
sivewrite lock to theoverlappedfile regionsbeforeperform
thewrite [11, 12].

Column-wisePartitioning In thecolumn-wisepartition-
ing caseshown in Figure3(b), the file view of eachpro-
cessis a sub-arrayof size �C���4# overlapping� columns
with its left andright processes.Note that eachof the �
rows of size �8# in the file view is not contiguouswith its
previous or successive row in the file storagelayout. The
distancebetweenthefirst elementsof two consecutiverows
in eachprocess’file view is � . Therefore,theoverlapped
file regionsof two consecutiveprocessesconsistof � non-
contiguousrows of size � each. Figure4 shows an MPI
codefragmentthat createsthe file view for eachprocess
usinga deriveddatatypeto specifythecolumn-wiseparti-
tioningpatternandusesacollectiveMPI-IO call to perform
theconcurrentwrite.

An intuitive implementationfor the column-wisecase
is to regard each contiguous I/O request as a single
read()/write() call. This approachresults � write
calls from each processand 
D� calls in total. On a
POSIXfile system,if all 
D� requestsareprocessedcon-
currentlywithoutany specificorder, interleavedresultsmay
occurin theoverlappedregions. Sinceprocessingorderof
thesewrite requestscanbearbitrary, thesamescenariocan
alsooccuron otherfile systemseven if file locking wraps
aroundeachI/O call. Enforcingtheatomicityof individual
read()/write() calls is not sufficient to enforceMPI
atomicity. One solution is for eachprocessto obtain all
� locksbeforeperformingany write calls. However, this
approachcaneasilycausedeadlock whenwaiting for the
requestinglocksto begranted.An alternativeis thatthefile
lock startsat the process’s first file offset andendsat the
very last file offset theprocesswill write, virtually theen-
tire file. In this way, all � rows of the overlappedregion
will beaccessedatomically.

Though POSIX definesa function, lio listio(),
to initiate a list of non-contiguousfile accessesin a sin-
gle call, it doesnot explicitly indicateif its atomicity se-
manticsare applicable. If POSIX atomicity is extended
to lio listio(), the MPI atomicity can be guaran-
teedby implementingthenon-contiguousaccesson top of

sizes[0] = M;

sub_sizes[0] = M; sub_sizes[1] = N / P;

sizes[1] = N;

MPI_Type_commit(&filetype);

MPI_Type_create_subarray(2, sizes, sub_sizes, starts, MPI_ORDER_C,

MPI_File_set_view(fh, disp, MPI_CHAR, filetype, "native", info);

MPI_File_write_all(fh, buf, buffer_size, etype, &status);

MPI_File_close(&fh);

MPI_CHAR, &filetype);

starts[0] = 0; starts[1] = (rank == 0) ? 0 : rank * (N/P - R/2);

if (rank == 0 || rank == P-1)   sub_sizes[1]  -=  R/2;

MPI_File_set_atomicity(fh, 1);

MPI_File_open(comm, filename, io_mode, info, &fh);

7.

12.
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8.

6.
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Figure 4. An MPI code fragment that perf orms
the column-wise access. The shade area il-
lustrates the construction of the derived data
type , to define process’ s file view.

lio listio(). Otherwise,additionaleffort suchasfile
locking is necessaryto ensuretheMPI atomicity.

3.3. ProcessorHandshaking

An alternative approachto avoid using file locking is
throughprocesshandshakingin which theoverlappingpro-
cessesnegotiatewith eachotherto obtainthedesirableac-
cesssequenceto theoverlappedregions.In thissection,we
discusstwo possibleimplementationsof processhandshak-
ing: graph-coloringandprocess-rankorderingmethods.

3.3.1. Graph-coloring Approach

Givenanundirectedgraph EF�HGJI�KMLON in which I repre-
sentsa setof verticesand L representsa setof edgesthat
connectthe vertices,a P -coloring is a function QSRTISUV 3WKMXYK[Z\Z]Z^P`_ suchthatfor all abKdc7efI , if QgGhaiN%��QgGjcYN , then
Gja"KkcYNl�e�L ; thatis,noadjacentverticeshavethesamecolor.
Thegraph-coloringproblemis to find theminimumnumber
of colors, P , to colora givengraph.SolvingtheMPI atom-
icity problemcanbe viewed asa graph-coloringproblem
if the I/O requestingprocessesareregardedasthevertices
andthe overlappingbetweentwo processesrepresentsthe
edge.Whenapplyinggraphcoloring to theMPI atomicity
implementation,the I/O processesarefirst divided into P
groups(colors)in which no two processesin a groupover-
lap their file views. Then,theconcurrentI/O is carriedout
in P steps.Note thatprocesssynchronizationbetweenany
two stepsis necessarytoensurethatnoprocessin onegroup
can proceedwith its I/O beforethe previous group’s I/O
completes.Thegraph-coloringapproachfulfills therequire-
mentof MPI atomicitywhile maintainingat leasta degree
of I/O parallelism.

Thegraph-coloringmethodologyis aheuristicwhichhas
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thenR’ [ k ] = 0  and  C [ k ] < 0if9.
k = j+1 . . . P-1for8.

jR’         R7.
break6.
C [ j ]          maxColor5.

myColor           C [ self ]13.
maxColor           maxColor + 112.

kR’          R’        R 11.
C [ k ]          maxColor10.

thR   [ j ]  : the j    element ofi iR

C : an array of size P, initial all -1R’ : an array of size P

0   otherwise

1   if process i overlaps j and i     jW [ i ][ j ] = 

P matrix, W, wherexGiven an overlapping P

th

4. thenW [ i ][ j ] = 0  and  C [ i ] < 0if
3. for j = 0 . . . P-1
2. for each row i = 0 . . . P-1

maxColor           01.

iR   : the i    row of W

Figure 5. A greed y graph-coloring algorithm
that finds the color id for each I/O process in
variab le myColor.

beenstudiedfor alongtimeandis provedto beNP-hardfor
generalgraphs[2]. Becausethe overlappingI/O patterns
presentin mostof thescienceapplicationsarehardlyarbi-
trary, a greedysolutionmaysuffice. Figure5 givesa sim-
plegreedygraph-coloringalgorithmthatfirst usesa 
m�n

overlappingmatrix, o , to indicateif thereis anoverlapbe-
tweentwo processesand startscoloring the processesby
lookingfor thelowestrankedprocesseswhosefile viewsdo
not overlapwith any processin thatcolor. Let’s now con-
siderthecolumn-wisepartitioningexample.Figure6 shows
theoverlappingmatrixusingthisgreedyalgorithm.It is ob-
viousthattwo colorsareenoughto maintainMPI atomicity:
theeven-rankedprocessesperformtheir I/O requestsprior
to theodd-rankedprocesses.

3.3.2. Process-rankOrdering

Anotherprocess-handshakingapproachis to have all pro-
cessesagreeon a certainaccesspriority to the overlapped
file regions.An exampleis to useapolicy wherethehigher
rankedprocesswins the right to accessthe overlappedre-
gionswhile otherssurrendertheir writes. A coupleof im-
mediateadvantagesof this approacharetheeliminationof
overlappingaccesssothatall I/O requestscanproceedcon-
currentlyandthereductionof theoverall I/O amount.The
overheadof this methodis the re-calculationof eachpro-
cess’s file view by marking down the overlappedregions
with all higher-rank processes’file views. Considering
the column-wisepartitioningexample,Figure7 illustrates
the new processes’file views generatedfrom the process-
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Step 2: Odd-ranked processes write

Step 1: Even-ranked processes write
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1
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0
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Figure 6. For the 2D column-wise access, the
graph-coloring algorithm divides the I/O re-
quests into 2 steps: even-ranked processes
write fir st follo wed by the odd-ranked.

rankorderingapproach.Thenew file view for process
 ! ,. �p/q��
-1�3 , is a �C��:* sub-arraywhile thefile views
for 
b� and 
 *@? � are �r�sG[: * 1 A B�N and �r��Gt: * + A B"N , re-
spectively. Comparedto Figure6, eachprocesssurrenders
its write for theright-most� columns.

3.4. Scalability Analysis

In the column-wisepartition case,the file locking ap-
proachresultsin �$�H1�Gu�H12�4#]N bytes,nearlytheentire
file, being locked while eachprocessis writing. In fact,
onceaprocessis grantedits write locking request,noother
processescan accessto the file. As a result, using byte-
rangefile locking serializesthe I/O and dramaticallyde-
gradestheperformance.Thepurposeof proposingthetwo
process-handshakingapproachesis trying to maintainthe
I/O scalabilitywithout the useof file locking. The over-
headof thegraph-coloringapproachis theconstructionof
theoverlappingmatrixusingall processes’file views. In the
column-wisepartitioningcase,thegraph-coloringapproach
maintainshalf of theI/O parallelism.In theprocess-rankor-
deringapproach,theexactoverlappedbyterangesmustbe
known in orderto generatethenew localfile view. Oncethe
new file views areobtained,I/O requestscanproceedwith
full parallelism. The overheadof both approachedis ex-
pectedto benegligible whencomparedto theperformance
improvementresultingfrom theremoval of all overlapping
requests.Additionally, the overall I/O amounton the file
systemis reducedsincethelower-rankprocessessurrender
theiraccessesto theoverlappedregions.

4 Experiment Results

We implementedthe column-wisepartitioningexample
usingstandardUnix I/O callsandobtainedexperimentalre-
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Figure 7. The new process file views for the
column-wise overlapping I/O resulted from
the process-rank ordering approach.

sultsfrom threeparallelmachines:ASCI Cplant,anAlpha
Linux clusterat SandiaNationalLaboratory;theSGI Ori-
gin 2000 at the NationalCenterfor SupercomputingAp-
plications(NCSA); andBlue Horizon, the IBM SPat San
Diego SupercomputingCenter(SDSC).Themachinecon-
figurationsare briefly describedin Table 1. Cplant is a
Linux clusterrunning the ExtendedNetwork File System
(ENFS)in which eachcomputenodeis mappedto oneof
the I/O servers in a round-robinselectionschemeat boot
time [7]. Basically, ENFSis anNFSfile systemwith a few
changes.Themostnotableis theabsenceof file lockingon
Cplant.Accordingly, our performanceresultson Cplantdo
notincludetheexperimentsthatusefile locking.ENFSalso
performstheoptimizationthatNFSusuallydoes,including
read-aheadandwrite-behind.

We ran the experimentswith the three array sizes:
� .wvWx �zy{3 v X (32MB), � .wvwx �O|}XW~ x y (128MB), and � .Wvwx �
X x X{3t�W� (1GB).Onall threemachines,weused4, 8, and16
processorsandtheresultsareshown in Figure8. Note the
performanceof file locking is theworstof theimplementa-
tionsof MPI atomicity. Thepoor resultsarealsoexpected
asdiscussedin Section3.2 thatfile locking hinderstheI/O
concurrency. In mostof thecases,theprocess-rankordering
strategy out-performedgraph-coloring. The overheadsof
calculatingtheoverlappingmatrix for bothgraph-coloring
andprocess-rankorderingapproachesare lessthan1 per-
centof theexecutiontime in all theexperiments.

5 Conclusions

In this paper, we examinedthe atomicity semanticsfor
both the POSIX and MPI specifications. The difference
betweenthemis the numberof non-contiguousregionsin
eachI/O requests.While POSIX considersonly onecon-
tiguousfile spaceI/O, a single MPI I/O requestcan ac-
cessnon-contiguousfile spaceusingMPI’s file view facil-

Table 1. System configurations for the three
parallel machines on whic h the experimental
results were obtained.

Cplant Origin 2000 IBM SP

File system ENFS XFS GPFS
CPUtype Alpha R10000 Power3

CPUSpeed 500MHz 195MHz 375MHz
Gigabit ColonyNetwork Myrinet
Ethernet switch

I/O servers 12 - 12
PeakI/O

bandwidth
50MB/s 4 GB/s 1.5GB/s

ity. We compareda few implementationstrategiesfor en-
forcing atomicwritesin MPI includingfile locking,graph-
coloring,andprocess-rankordering. Theexperimentalre-
sults showed that using file locking performedthe worst
whenrunninga two-dimensionalcolumn-wisepartitioning
case. Since file locking is basically a central managed
mechanism,theparallelismof concurrentI/O requests,es-
pecially for overlappingI/O, canbesignificantlydegraded
by using it. The two alternatives proposedin this pa-
pernegotiateprocessesI/O requestorderof accesspriority
throughprocesshandshaking.Without usinga centralized
locking mechanism,thesetwo approachesgreatlyimprove
theI/O performance.

Thestrategiesof graph-coloringandprocess-rankorder-
ing requireevery processawareof all theprocessespartic-
ipatedin a concurrentI/O operation.In thescopeof MPI,
only collective callshave this property. NotethatMPI col-
lective I/O is differentfrom the concurrentI/O in which a
concurrentI/O is for moregeneralI/O case.An MPI non-
collective I/O operationcanalsobeconcurrent.File lock-
ing seemsto be the only way to ensureatomic resultsin
non-collective I/O calls in MPI, sincethe concurrentpro-
cessesareunknown. Otherwise,giventheparticipatingpro-
cesses,I/O optimizationssuchasthe processhandshaking
approachproposedin this papercanbeappliedto improve
performance.

6 Acknowledgments

This work wassupportedin part by DOE laboratories,
SNL, LANL andLLNL undersubcontractNo. PO28264
andin partby NSFEIA-0103023.It wasalsosupportedin
part by NSFcooperative agreementACI-9619020through
computing resourcesprovided by the National Partner-
shipfor AdvancedComputationalInfrastructureat theSan
DiegoSupercomputerCenter. Wealsoacknowledgetheuse
of theSGIOrigin2000atNCSA.

7



Appears in theInternationalConferenceonParallel Processing2003

IBM SP       Array size: 4096 x 262144

graph−coloring
process−rank ordering

4 8 16
number of processes

CPlant               Array size: 4096 x 8192

process−rank ordering

file locking
graph−coloring

4 8 16
number of processes

Origin2000       Array size: 4096 x 8192

process−rank ordering

file locking
graph−coloring

4 8 16
number of processes

IBM SP           Array size: 4096 x 8192

process−rank ordering

file locking
graph−coloring

4 8 16
number of processes

IBM SP       Array size: 4096 x 32768

process−rank ordering

file locking
graph−coloring

4 8 16
number of processes

Origin2000     Array size: 4096 x 262144

process−rank ordering

file locking
graph−coloring

4 8 16
number of processes

Origin2000     Array size: 4096 x 32768

graph−coloring
process−rank ordering

4 8 16
number of processes

CPlant           Array size: 4096 x 262144

graph−coloring
process−rank ordering

4 8 16
number of processes

CPlant           Array size: 4096 x 32768

process−rank ordering

file locking
graph−coloring

4 8 16
number of processes

8

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

0

5

10

15

20

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

0

12

10

0

5

10

15

20

5
10
15
20

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

25

0
2
4
6
8

10
12
14
16

30
35
40
45

8

6

4

2

0I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

0

25

2
4
6

10

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

12
14
16

20

15

10

5

0

0
5

10
15
20
25
30
35
40
45

10

8

I/O
 b

an
dw

id
th

 (
M

B
/s

ec
)

6

4

2

0

Figure 8. Performance results of running the column-wise par titioning experiments on a Lin ux Cluster ,
an IBM SP, and an SGI Origin200. Three file sizes were used: 32 MB, 128 MB, and 1GB.
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