
Design and Evaluation of I/O Strategies for Parallel Pipelined STAP Applications

Wei-keng Liao
Alok Choudhary

ECE Department
Northwestern University

Evanston, IL 60208

Donald Weiner
Pramod Varshney

EECS Department
Syracuse University
Syracuse, NY 13244

Abstract

This paper presents experimental results for a parallel
pipeline STAP system with I/O task implementation using
the parallel file systems on the Intel Paragon and the IBM
SP. In our previous work, a parallel pipeline model was
designed for radar signal processing applications on par-
allel computers. Based on this model, we implemented a
real STAP application which demonstrated the performance
scalability of this model in terms of throughput and latency.
In this paper, we study the effect on system performance
when the I/O task is incorporated in the parallel pipeline
model. There are two alternatives for I/O implementation:
embedding I/O in the pipeline or having a separate I/O
task. From these two I/O implementations, we discovered
that the latency may be improved when the structure of the
pipeline is reorganized by merging multiple tasks into a sin-
gle task. All the performance results shown in this paper
demonstrated the scalability of parallel I/O implementation
on the parallel pipeline STAP system.

1. Introduction

In this paper we build upon our earlier work where we
devised strategies for high performance parallel pipeline
implementations, in particular, for Space-Time Adaptive
Processing (STAP) applications [2, 5]. A modified Pulse
Repetition Interval (PRI)-staggered post-Doppler STAP al-
gorithm [1, 6, 7] was implemented based on the parallel
pipeline model and scalable performance was obtained both
on the Intel Paragon and the IBM SP. Normally, this parallel
pipeline system does not include disk I/O costs, since most
radar applications require signal processing in real time.
Thus far we have assumed that the signal data collected by
radar is directly delivered to the pipeline system, as shown
in the overall radar signal processing system of Figure 1.

Task1 nTask0Task

Display
Target

RADAR Parallel Pipeline System

Parallel Computer

Figure 1. Data flow of a radar and signal pro-
cessing system using parallel computers.

In practice, the I/O can be done either directly from a
radar or through disk file systems. In this work we focus
on the I/O implementation of the parallel pipeline STAP al-
gorithm when I/O is carried out through a disk file system.
Using existing parallel file systems, we investigate the im-
pact of I/O on the overall pipeline system performance. Two
designs of I/O are employed: in the first design the I/O is
embedded in the pipeline without changing the task struc-
ture and in the other a separate task is created to perform
I/O operations. With different I/O strategies, we ran the
parallel pipeline STAP system portably and measured the
performance on the Intel Paragon at California Institute of
Technology and on the IBM SP at Argonne National Lab-
oratory (ANL.) The parallel file systems on both the Intel
Paragon and the IBM SP contain multiple stripe directo-
ries for applications to access disk files efficiently. On the
Paragon, two PFS file systems with different stripe factors
were tested and the results were analyzed to assess the ef-
fects of the size of the stripe factor on the STAP pipeline
system. On the IBM SP, the performance results were ob-
tained by using the native parallel file system, PIOFS, which
has 80 stripe directories.

Comparing the two parallel file systems with different
stripe sizes on the Paragon, we found that an I/O bottle-
neck results when a file system with smaller stripe size is
used. Once a bottleneck appears in a pipeline, the through-
put which is determined by the task with maximum exe-

0-7695-0574-0/2000 $10.00 � 2000 IEEE

2,4

SD 0,4

SD 0,3

1,3TD

CPI

TD

Data
Cube

Data from current time instance

CFAR

Processing

Reports
Detection

Data from previous time instance

Processing
Filter

Doppler

Weight
Computation
(Easy Case)

Weight
Computation
(Hard Case)

(Hard Case)

Beamforming

(Easy Case)

Beamforming

Compression

Pulse

P 11

P0 0(T)

2P

4P

P3

P5 6P

2

3

4

5 6(T)(T)

(T)

(T)

(T)

(T)

Figure 2. Implementation of parallel pipelined
STAP. Arrows connecting task blocks repre-
sent data transfer between tasks.

cution time degrades significantly. On the other hand, the
latency is not significantly affected by the bottleneck prob-
lem. This is because the latency depends on all the tasks in
the pipeline rather than the task with the maximum execu-
tion time. Furthermore, when evaluating the performance
results of the two I/O designs, we observed that the la-
tency can be improved by merging two tasks in the pipeline.
In this paper, we also examine the possibility of improv-
ing latency by reorganizing the task structure of the STAP
pipeline system.

The rest of the paper is organized as follows: in Sec-
tion 2, we briefly describe our previous work, the parallel
pipeline implementation on a STAP algorithm. The parallel
file systems tested in this work are described in Section 3.
The I/O design and implementation are presented in Sec-
tion 4 and their performance results are given in Section 5.
Section 6 presents the results when tasks are combined.

2. Parallel pipeline STAP system

In our previous work [2, 5], we described the parallel
pipelined implementation of a PRI-staggered post-Doppler
STAP algorithm. The parallel pipeline system consists of
seven tasks: 1) Doppler filter processing, 2) easy weight
computation, 3) hard weight computation, 4) easy beam-
forming, 5) hard beamforming, 6) pulse compression, and
7) CFAR processing. The design of the parallel pipelined
STAP algorithm is shown in Figure 2.

The input data set for the pipeline is obtained from a
phased array radar and is formed in terms of a coherent pro-
cessing interval (CPI). Each CPI data set is a 3-dimensional
complex data cube. The output of the pipeline is a report on
the detection of possible targets. Each taski, 0 � i < 7,
is parallelized by evenly partitioning its work load among
Pi compute nodes. The execution time associated with task

i is Ti. For the computation of the weight vectors for the
current CPI data cube, data cubes from previous CPIs are
used as input data. This introduces temporal data depen-
dency. Temporal data dependencies are represented by ar-
rows with dashed lines in Figure 2 whereTDi;j represents
temporal data dependency of taskj on data from taski. In
a similar manner, spatial data dependenciesSDi;j can be
defined and are indicated by arrows with solid lines.

Throughput and latency are two important measures for
performance evaluation on a pipeline system.

throughput =
1

max
0�i<7

Ti
: (1)

latency = T0 +max(T3; T4) + T5 + T6: (2)

The temporal data dependency does not affect the latency
because weight computation tasks use data from the previ-
ous time instance rather than the current CPI. The filtered
CPI data cube sent to the beamforming task does not wait
for the completion of its weight computation. This explains
why Equation (2) does not containT1 andT2.

3. Parallel file systems

We used the parallel I/O library developed by Intel
Paragon and IBM SP systems to perform read operations.
The Intel Paragon OSF/1 operating system provides a spe-
cial file system type called PFS, for Parallel File Sys-
tem, which gives applications high-speed access to a large
amount of disk storage [4]. In this work, two PFS file sys-
tems at Caltech were tested : one has 16 stripe directories
(stripe factor 16) and the other has a stripe factor of 64. We
used the Intel Paragon NX library to implement the I/O of
the parallel pipeline STAP system. Subroutinegopen()
was used to open CPI files globally with a non-collected I/O
mode,MASYNC, because it offers better performance and
causes less system overhead. In addition, we used asyn-
chronous I/O function calls:iread() andireadoff()
in order to overlap I/O with the computation and communi-
cation.

The IBM AIX operating system provides a parallel file
system called Parallel I/O File System (PIOFS) [3]. There
are a total of 80 slices (striped directories) in the ANL PI-
OFS file system. IBM PIOFS supports existing C read,
write, open and close functions. However, unlike the
Paragon NX library, asynchronous parallel read/write sub-
routines are not supported on IBM PIOFS. The overall per-
formance of the STAP pipeline system will be limited by
the inability to overlap I/O operations with computation and
communication.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

BF

P4 4(T)

P

Weight

P 5(T)

Pulse

(T)

Compr

5 6 6(T)

Hard

Detection

CPI 2

1

P

1

CFAR

2

Easy

(T)

P

CPI 0

CPI 1

CPI

Reports

System
File

Parallel

Filter
Doppler

2

3

P

Weight

Scheduling
Robin
Round

P3 3(T)

Hard

(T)

Easy
BF

00

Figure 3. I/O task is embedded in the Doppler
filter processing task.

4. Design and implementation

A total of four CPI data sets stored as four files in the
parallel file systems were used on both the Caltech Paragon
and the ANL SP. During each of the following steps after
the initialization, only nodes assigned to the first task per-
form read operations from the parallel file system. We as-
sume that the radar writes its collected CPI data into these
four files in a round-robin manner and, similarly, the STAP
pipeline system reads the four files in a round-robin fashion
but at times that are different from the times at which the
radar writes. In this manner, the problem of data inconsis-
tency for read/write operations between the radar and the
pipeline system can be minimized.

All nodes allocated to the first task (the I/O nodes) of
the pipeline read exclusive portions of each CPI file with
proper offsets. The read length and file offset for all the
read operations are set only during the STAP pipeline sys-
tem’s initialization and is not changed afterward. Therefore,
in each of the following iterations, only one read function
call is needed. On the Paragon, since asynchronous read
subroutines were used, an additional subroutine waiting for
the read’s completion was also required in each iteration.

4.1. I/O task implementation

Two designs for the I/O task were implemented in the
STAP pipeline system. The first one, shown in Figure 3,
embeds the parallel I/O in the first task of the pipeline, i.e.
in the Doppler filter processing task. The Doppler filter pro-
cessing task now consists of three phases, reading CPI data
from files, computation, and sending phases. The second
I/O implementation creates a new task for reading CPI data
and this task is added to the beginning of the pipeline. Fig-
ure 4 shows the structure of the overall pipeline system with
this implementation. The only job of this I/O task is to read
CPI data from the files and deliver it to the Doppler filter
processing task.

Scheduling

Doppler
Filter

Reports
Detection

Round

Hard
Weight

Parallel

Easy

File

Weight
Easy
BF

2

3

Hard

CPI

1CPI

Pulse
Compr

0CPI

CFAR

Robin

System

Parallel
Read

P0 0(T) P1 1(T)

P2 2(T)

P3 3(T)

P4 4(T)

P5 5(T)

P6 6(T) P7 7(T)

BF

CPI

Figure 4. A separate I/O task for reading CPI
data is added to the STAP pipeline system.

5. Performance results

Performance results are given for the two I/O implemen-
tations on the parallel pipeline STAP system. For each im-
plementation, parallel file systems on the Paragon and the
SP were tested. On both machines, the stripe unit for the
parallel file systems is 64K bytes. The size of each CPI data
file is 8M bytes that results in 128 stripe units distributed
across all stripe directories in all the parallel file systems.

5.1. I/O embedded in the first task

In the first I/O implementation on the Paragon, the
Doppler filter processing task reads its input from CPI files
using asynchronous read calls. Table 1 shows the timing
results for this implementation on two PFS and a PIOFS
file systems. For each parallel file system, three cases of
node assignments to all tasks in the pipeline system are
given, each doubles the number of nodes of another. Using
the Paragon PFS with 16 stripe directories, the throughput
scales well in the first two cases, but degrades when the total
number of nodes goes up to 224. In this case, we observe
that the timing results of the receive phase in the first task
are relatively higher than the other two phases, the compute
and send phases. The I/O operations for reading CPI data
files here become a bottleneck for the pipeline system and
this bottleneck forces the rest of the following tasks to wait
for their input data from their previous tasks.

When using the PFS with 64 stripe directories, both
throughput and latency showed linear speedups. In the first
two cases with 56 and 112 nodes, the results of throughput
and latency are approximately the same for both file systems
with 16 and 64 stripe directories. However, in the case with
224 nodes, we observe that the I/O bottleneck is relieved
by using 64 stripe directories. Therefore, the efficiency of
I/O operations plays an important role in the overall perfor-
mance of the pipeline system.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Table 1. Performance results with the I/O embedded in the Doppler filter processing task.

Paragon PFS stripe factor = 16

case 1: total number of nodes = 56 Time in seconds
nodes recv comp send total

Doppler filter 12 .0101 .2566 .0916 .3584
easy weight 3 .1317 .2214 .0002 .3534
hard weight 28 .0684 .2838 .0003 .3525

easy BF 3 .1451 .1921 .0003 .3375
hard BF 4 .1596 .1756 .0002 .3354

pulse compr 4 .1070 .1979 .0298 .3347
CFAR 2 .1983 .1361 - .3343

throughput 2.9560
latency 0.9804

case 2: total number of nodes = 112 Time in seconds
nodes recv comp send total

Doppler filter 24 .0178 .1292 .0663 .2134
easy weight 6 .0856 .1110 .0002 .1968
hard weight 56 .0483 .1423 .0059 .1965

easy BF 6 .0939 .0958 .0003 .1901
hard BF 8 .0906 .0885 .0003 .1795

pulse compr 8 .0648 .0993 .0150 .1792
CFAR 4 .1107 .0683 - .1790

throughput 5.4996
latency 0.5171

case 3: total number of nodes = 224 Time in seconds
nodes recv comp send total

Doppler filter 48 .0871 .0619 .0317 .1807
easy weight 12 .1056 .0557 .0002 .1616
hard weight 112 .0905 .0724 .0009 .1639

easy BF 12 .1080 .0482 .0003 .1565
hard BF 16 .1030 .0509 .0003 .1542

pulse compr 16 .0983 .0502 .0078 .1562
CFAR 8 .1217 .0343 - .1561

throughput 6.2708
latency 0.3292

Paragon PFS stripe factor = 64

case 1: total number of nodes = 56
nodes recv comp send total

12 .0314 .2461 .0916 .3691
3 .1262 .2216 .0002 .3480
28 .0628 .2840 .0003 .3471
3 .1397 .1921 .0003 .3321
4 .1537 .1756 .0002 .3295
4 .1011 .1977 .0298 .3286
2 .1920 .1363 - .3282

3.0111
0.9787

case 2: total number of nodes = 112
nodes recv comp send total

24 .0107 .1280 .0557 .1944
6 .0787 .1111 .0020 .1917
56 .0453 .1427 .0039 .1919
6 .0860 .0959 .0003 .1823
8 .0878 .0885 .0003 .1766
8 .0615 .0995 .0151 .1761
4 .1077 .0682 - .1759

5.6068
0.5143

case 3: total number of nodes = 224
nodes recv comp send total

48 .0069 .0673 .0309 .1052
12 .0510 .0559 .0002 .1071
112 .0355 .0733 .0019 .1106
12 .0526 .0483 .0003 .1013
16 .0471 .0515 .0003 .0989
16 .0407 .0503 .0080 .0990
8 .0642 .0343 - .0985

10.0262
0.2871

SP PIOFS stripe factor = 80

case 1: total number of nodes = 18
nodes recv comp send total

6 .1172 .0734 .1966 .3872
1 .2717 .1070 .0001 .3788
7 .1590 .2194 .0002 .3786
1 .2927 .0829 .0001 .3757
1 .2595 .1177 .0002 .3775
1 .2230 .1545 .0001 .3776
1 .2941 .0828 - .3770

2.6715
1.2353

case 2: total number of nodes = 30
nodes recv comp send total

8 .1109 .0543 .1031 .2683
1 .1471 .1045 .0002 .2518
14 .1523 .1072 .0002 .2597
2 .2189 .0412 .0001 .2602
2 .1999 .0606 .0001 .2606
2 .1801 .0777 .0001 .2579
1 .1801 .0801 - .2602

3.8319
0.7810

case 3: total number of nodes = 60
nodes recv comp send total

16 .1044 .0304 .0474 .1823
2 .1314 .0547 .0001 .1862
28 .1303 .0566 .0002 .1871
4 .1571 .0219 .0002 .1792
4 .1492 .0298 .0002 .1792
4 .1370 .0396 .0001 .1767
2 .1399 .0403 - .1802

5.5364
0.5004

On the other hand, a linear speedup was obtained for the
latency results. The I/O bottleneck problem does not affect
the latency significantly. We can observe that in the case
with 224 nodes, the latency of using 16 stripe directories is
slightly greater than using 64 stripe directories. This can be
explained by examining the throughput and latency equa-
tions, (1) and (2).Unlike the throughput depending on the
maximum of the execution times, the latency is determined
by the sum of the execution times of all the tasks except
for the tasks with temporal dependency. Therefore, even
though the execution time of the Doppler filter processing
task is increased, the delay does not contribute much to
the latency. Comparing the results of using two PFS file
systems, the latency did not degrade significantly and still
scaled well in the case with 224 nodes. Figure 5 shows the
performance results of this I/O design in bar charts.

Detailed timing results for the IBM SP at ANL are also
given in Table 1. The stripe factor of the PIOFS file sys-
tem is 80. Because PIOFS does not provide asynchronous
read/write subroutines, the I/O operations do not overlap
with computation and communication in the Doppler fil-
ter processing task. Hence, the performance results for
throughput and latency on the SP did not show the scalabil-
ity as on the Paragon, even though the SP has faster CPUs.

0

2

4

6

8

10

12

56 112 224
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

stripe factor = 16
stripe factor = 64

stripe factor = 16
stripe factor = 64

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes

L
at

en
cy

 (
se

c/
C

P
I)

56 112 224

Number of Nodes

Intel Paragon Intel Paragon

0

2

4

6

8

10

12

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
18 30 60

L
at

en
cy

 (
se

c/
C

P
I)

18 30 60

Number of Nodes

IBM SP IBM SP

Figure 5. Results corresponds to Table 1.

5.2. A new I/O task

In the second I/O task implementation, a new task is
added to the beginning of the pipeline. This new task only
performs the operations of reading CPI files and distribut-
ing CPI data to its successor task, Doppler filter processing
task. The STAP pipeline system then has a total of 8 tasks.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Table 2. Performance results with the I/O implemented as a separate task.

Paragon PFS stripe factor = 16

case 1: total number of nodes = 60 Time in seconds
nodes recv comp send total

Parallel read 4 .0191 - .3997 .4187
Doppler filter 12 .0122 .3240 .2375 .5738
easy weight 3 .2032 .2217 .0002 .4252
hard weight 28 .1390 .2846 .0003 .4239

easy BF 3 .2210 .1911 .0003 .4124
hard BF 4 .2327 .1753 .0003 .4083

pulse compr 4 .1800 .1977 .0295 .4072
CFAR 2 .2706 .1362 - .4068

throughput 2.4127
latency 1.9186

case 2: total number of nodes = 120 Time in seconds
nodes recv comp send total

Parallel read 8 .0559 - .1604 .2163
Doppler filter 24 .0254 .1221 .0839 .2313
easy weight 6 .0920 .1110 .0004 .2034
hard weight 56 .0526 .1432 .0045 .2003

easy BF 6 .1003 .0960 .0003 .1966
hard BF 8 .0918 .0928 .0003 .1849

pulse compr 8 .0727 .0999 .0151 .1877
CFAR 4 .1185 .0683 - .1867

throughput 5.3883
latency 0.9226

case 3: total number of nodes = 240 Time in seconds
nodes recv comp send total

Parallel read 16 .1269 - .0276 .1545
Doppler filter 48 .0833 .0463 .0245 .1541
easy weight 12 .0891 .0558 .0002 .1451
hard weight 112 .0749 .0724 .0004 .1477

easy BF 12 .0975 .0485 .0003 .1463
hard BF 16 .0924 .0516 .0003 .1443

pulse compr 16 .0869 .0502 .0077 .1448
CFAR 8 .1104 .0343 - .1447

throughput 6.8438
latency 0.3890

Paragon PFS stripe factor = 64

case 1: total number of nodes = 60
nodes recv comp send total

4 .0628 - .3391 .4019
12 .0085 .2670 .1755 .4510
3 .1425 .2217 .0002 .3645
28 .0763 .2847 .0003 .3613
3 .1621 .1914 .0003 .3537
4 .1740 .1759 .0002 .3501
4 .1213 .1980 .0296 .3489
2 .2125 .1362 - .3488

2.8234
1.7309

case 2: total number of nodes = 120
nodes recv comp send total

8 .0362 - .1685 .2047
24 .0280 .1084 .0786 .2151
6 .0816 .1111 .0024 .1951
56 .0461 .1438 .0003 .1903
6 .0914 .0959 .0003 .1877
8 .0891 .0908 .0003 .1802
8 .0672 .0999 .0151 .1822
4 .1131 .0683 - .1815

5.5262
0.9137

case 3: total number of nodes = 240
nodes recv comp send total

16 .0171 - .0617 .0788
48 .0073 .0502 .0290 .0864
12 .0503 .0558 .0002 .1063
112 .0305 .0724 .0029 .1057
12 .0491 .0489 .0004 .0984
16 .0417 .0540 .0004 .0961
16 .0393 .0502 .0078 .0973
8 .0629 .0343 - .0972

10.2111
0.5193

SP PIOFS stripe factor = 80

case 1: total number of nodes = 20
nodes recv comp send total

2 .1787 - .1413 .3200
6 .0045 .0724 .2548 .3316
1 .2269 .1047 .0001 .3317
7 .1165 .2150 .0013 .3329
1 .0641 .0822 .2082 .3545
1 .0416 .1179 .1874 .3469
1 .1459 .1538 .0656 .3653
1 .2926 .0801 - .3727

2.6670
2.6715

case 2: total number of nodes = 34
nodes recv comp send total

4 .1230 - .0594 .1823
8 .0264 .0549 .0913 .1726
1 .0639 .1043 .0001 .1683
14 .0598 .1090 .0003 .1692
2 .0576 .0415 .0814 .1805
2 .0593 .0596 .0579 .1768
2 .0278 .0784 .0803 .1864
1 .1092 .0804 - .1896

5.2819
1.2766

case 3: total number of nodes = 68
nodes recv comp send total

8 .1100 - .0185 .1285
16 .0455 .0283 .0631 .1369
2 .0901 .0535 .0001 .1437
28 .0839 .0554 .0001 .1395
4 .1158 .0208 .0035 .1401
4 .0813 .0483 .0089 .1385
4 .1008 .0391 .0054 .1453
2 .1074 .0404 - .1478

6.5063
0.6531

Table 2 gives the performance results for this I/O design.
Corresponding to Table 1, all tasks have the same numbers
of nodes assigned, except for the I/O task. Similarly, the
I/O bottleneck problem occurs when using the PFS with 16
stripe directories and the problem is solved by using the PFS
with 64 stripe directories. The bar charts shown in Figure 6
represent the throughput and latency results of Table 2.

Comparing the two I/O designs, we observe that the
throughput results are approximately the same . However,
the latency results for the separate I/O task design are worse
than the embedded one. This phenomenon can be explained
by examining the new throughput and latency equations:

throughput8 =
1

max
0�i<8

Ti
(3)

and

latency8 = T0 + T1 +max(T4; T5) + T6 + T7; (4)

whereTi is the execution time for the taski. The through-
put of a pipeline system is determined by the task with the
maximum execution time among all the tasks. Compared to

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

stripe factor = 16
stripe factor = 64

stripe factor = 16
stripe factor = 64

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
20 34 68

0

2

4

6

8

10

12

L
at

en
cy

 (
se

c/
C

P
I)

60 120 240

Number of Nodes

L
at

en
cy

 (
se

c/
C

P
I)

20 34 68

Number of Nodes

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
60 120 240

Intel Paragon Intel Paragon

IBM SP IBM SP

Figure 6. Results corresponds to Table 2.

Table 1, the throughput results have no significant change
because the tasks with the maximum execution time are the
same for every corresponding pair in all cases. The latency,
on the other hand, is the sum of the execution times of all the
tasks except for the tasks with temporal data dependency. In

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Table 3. Performance results with pulse compression and CFAR tasks combined.

Paragon PFS stripe factor = 16

case 1: total number of nodes = 56 Time in seconds
nodes recv comp send total

Doppler filter 12 .0094 .2589 .0908 .3591
easy weight 3 .1307 .2230 .0002 .3540
hard weight 28 .0660 .2868 .0003 .3531

easy BF 3 .1449 .1930 .0003 .3382
hard BF 4 .1616 .1756 .0003 .3375

PC + CFAR 6 .1517 .1863 - .3380
throughput 2.9243

latency 0.7913

case 2: total number of nodes = 112 Time in seconds
nodes recv comp send total

Doppler filter 24 .0194 .1294 .0656 .2145
easy weight 6 .0831 .1111 .0002 .1944
hard weight 56 .0468 .1427 .0046 .1940

easy BF 6 .0914 .0958 .0003 .1874
hard BF 8 .0892 .0887 .0004 .1784

PC + CFAR 12 .0869 .0935 - .1804
throughput 5.5340

latency 0.4221

case 3: total number of nodes = 224 Time in seconds
nodes recv comp send total

Doppler filter 48 .0953 .0623 .0323 .1900
easy weight 12 .1056 .0558 .0003 .1617
hard weight 112 .0930 .0726 .0004 .1661

easy BF 12 .1116 .0484 .0003 .1603
hard BF 16 .1063 .0513 .0004 .1579

PC + CFAR 24 .1079 .0513 - .1592
throughput 6.1478

latency 0.2948

Paragon PFS stripe factor = 64

case 1: total number of nodes = 56
nodes recv comp send total

12 .0319 .2485 .0915 .3718
3 .1265 .2218 .0002 .3485
28 .0631 .2839 .0003 .3473
3 .1400 .1921 .0003 .3324
4 .1533 .1756 .0003 .3292
6 .1449 .1860 - .3309

3.0027
0.7957

case 2: total number of nodes = 112
nodes recv comp send total

24 .0104 .1301 .0528 .1933
6 .0774 .1111 .0002 .1887
56 .0438 .1427 .0022 .1886
6 .0853 .0959 .0003 .1815
8 .0869 .0886 .0004 .1759
12 .0838 .0936 - .1773

5.6029
0.4197

case 3: total number of nodes = 224
nodes recv comp send total

48 .0071 .0676 .0306 .1054
12 .0522 .0559 .0002 .1083
112 .0347 .0730 .0031 .1108
12 .0533 .0482 .0004 .1018
16 .0481 .0512 .0003 .0997
24 .0489 .0514 - .1003

9.8853
0.2392

SP PIOFS stripe factor = 80

case 1: total number of nodes = 18
nodes recv comp send total

6 .1320 .0728 .1894 .3942
1 .2844 .1023 .0001 .3868
7 .1738 .2131 .0002 .3870
1 .3039 .0823 .0001 .3862
1 .2677 .1182 .0002 .3862
2 .2683 .1194 - .3877

2.5754
0.9388

case 2: total number of nodes = 30
nodes recv comp send total

8 .1105 .0550 .1055 .2710
1 .1711 .1026 .0002 .2739
14 .1570 .1077 .0002 .2649
2 .2225 .0417 .0001 .2644
2 .2051 .0608 .0002 .2661
3 .1878 .0793 - .2671

3.7492
0.6255

case 3: total number of nodes = 60
nodes recv comp send total

16 .1044 .0279 .0462 .1786
2 .1350 .0515 .0002 .1867
28 .1238 .0568 .0002 .1808
4 .1582 .0210 .0002 .1794
4 .1485 .0300 .0003 .1787
6 .1397 .0414 - .1810

5.5356
0.4207

the design with a separate I/O task, the latency contains one
more term than the embedded I/O design. Therefore, the
latency results become worse in this implementation.

6. Task combination

From the comparison of performance results for the two
I/O task implementations, we notice that the structure of
the STAP pipeline system can be reorganized to improve
the latency. The first implementation that embeds I/O in the
Doppler filter processing task can be viewed as combining
the first two tasks of the second implementation that uses a
separate task for I/O. As shown in Section 5.2, the first I/O
implementation has a better latency performance, while the
throughput results are approximately the same.

6.1. Improving latency

We investigate whether the latency can be further im-
proved by combining multiple tasks of the pipeline into a
single task. We consider Table 1 as an example and com-
bine the last two tasks, the pulse compression and CFAR
processing tasks, into a single task. In order to make a fair
comparison, the number of nodes assigned to this single
task is equal to the sum of the nodes assigned to the two
original tasks and the total number of nodes allocated to the

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

stripe factor = 16
stripe factor = 64

stripe factor = 16
stripe factor = 64

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
18 30 60

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
56 112 224

L
at

en
cy

 (
se

c/
C

P
I)

56 112 224

Number of Nodes

L
at

en
cy

 (
se

c/
C

P
I)

18 30 60

Number of Nodes

IBM SP IBM SP

Intel ParagonIntel Paragon

Figure 7. Results corresponds to Table 3.

whole pipeline system is kept the same. Table 3 gives the
timing results corresponding to Table 1 with the same total
number of nodes assigned to the pipeline system and Figure
7 shows the corresponding results in bar charts. The com-
parison of performance results of the STAP pipeline system
with and without task combining is given in Figure 8. We
observe that the latency improves for all cases on all parallel
file systems when the last two tasks are combined.

Before task combination, the latency equation for the

0-7695-0574-0/2000 $10.00 � 2000 IEEE

0

2

4

6

8

10

12

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
56 112 224

7 tasks
6 tasks

Paragon PFS Stripe factor = 16

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

7 tasks
6 tasks

L
at

en
cy

 (
se

c/
C

P
I)

56 112 224

Number of Nodes

Paragon PFS Stripe factor = 16

0

2

4

6

8

10

12

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
56 112 224

7 tasks
6 tasks

Paragon PFS Stripe factor = 64

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

7 tasks
6 tasks

L
at

en
cy

 (
se

c/
C

P
I)

56 112 224

Number of Nodes

Paragon PFS Stripe factor = 64

0

2

4

6

8

10

12

T
hr

ou
gh

pu
t

(C
P

I/
se

c)

Number of Nodes
30 60

7 tasks
6 tasks

18

SP PIOFS

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

7 tasks
6 tasks

L
at

en
cy

 (
se

c/
C

P
I)

18 30 60

Number of Nodes

SP PIOFS

Figure 8. Performance comparison of the
pipeline system with and without task com-
bining.

STAP pipeline system with 7 tasks is

latency7 = T0 +max(T3; T4) + T5 + T6: (5)

LetW5 andW6 be the workloads for tasks 5 and 6, respec-
tively. The execution times for task 5 and 6 are

T5 =
W5

P5
+ C5 + V5 and T6 =

W6

P6
+ C6 + V6 (6)

whereCi andVi represent the communication time and the
other parallelization overhead for taski, respectively. Sim-
ilarly, let T5+6 be the execution time of the task that com-
bines tasks 5 and 6 running onP5 + P6 nodes:

T5+6 =
W5 +W6

P5 + P6
+ C5+6 + V5+6: (7)

By subtracting Equation (6) from Equation (7), we have

T5+6 � (T5 + T6) =
W5 +W6

P5 + P6
�

W5

P5
�

W6

P6
+ C5+6 � C5 � C6

+ V5+6 � V5 � V6 (8)

Table 4. Percentage of latency improvement
when the Pulse compression and CFAR tasks
are combined into a single task.

Paragon: PFS
nodes 56 112 224

16 stripe dir 19.3% 18.4% 10.4%
64 stripe dir 18.7% 18.4% 16.7%

SP: PIOFS
nodes 18 30 60

80 stripe dir 24.0% 19.9% 15.9%

where

W5 +W6

P5 + P6
�

W5

P5
�

W6

P6
=
�W5P

2
6 �W6P

2
5

P5P6(P5 + P6)
< 0: (9)

Communication for the combined task occurs only when
receiving data from tasks 3 and 4. Prior to the task combi-
nation, the same communication takes place in the receive
phase of task 5. The difference is the number of nodes used
between the two tasks. SinceP5+6 > P5, the data size for
each received message from tasks 3 and 4 to the combined
task is smaller than that for task 5. Besides, in task 5,C5

includes the communication cost of sending messages from
task 5 to task 6 which does not occur in the combined task.
Hence, we have

C5+6 < C5: (10)

The remaining overhead,Vi, is due to parallelization of task
i. Since the operations in tasks 5 and 6 are sets of indi-
vidual subroutines which require no communication within
each single task, parallelization is carried out by evenly par-
titioning these subroutines among the nodes assigned. Due
to this computational structure, the overhead for these two
tasks becomes negligible compared to their communication
costs. From Equations (8), (9), and (10) we can conclude
that

T5+6 < T5 + T6: (11)

Therefore, the new latency equation of the STAP pipeline
system with the last two tasks combined becomes

latency6 = T0 +max(T3; T4) + T5+6 < latency7: (12)

Combining the last two tasks, therefore, reduces the latency.
Table 4 gives the percentage of improvement in latency

when the last two tasks are combined. These improvements
were made without adding any extra nodes to the pipeline
system. We observe that the percentage decreases as the
number of nodes goes up. Normally, scalability of the paral-
lelization tends to decrease when more processors are used.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

This also explains the trend for the percentage improvement
shown in Table 4. Notice that the tasks that can be combined
to improve the latency do not include tasks with temporal
data dependency. It is because only those tasks with spatial
data dependency contribute to the latency.

6.2. Improving throughput

The throughput results, on the other hand, do not change
significantly when the two tasks are combined. This is be-
cause the task with the maximum execution time among all
the tasks is still the maximum in the new pipeline system.
Assuming thatTmax is the maximum execution time before
task combination:

Tmax = max
0�i<7

Ti � max(T5; T6)

From Equations (6) and (7), the execution time of the new
combined task becomes

T5+6 �
P5T5 + P6T6

P5 + P6

�
P5 max(T5; T6) + P6 max(T5; T6)

P5 + P6

= max(T5; T6) (13)

and the new maximum execution time

T 0
max = max(T0; T1; T2; T3; T4; T5+6)

� max(T0; T1; T2; T3; T4; T5; T6) = Tmax:

Therefore, the throughput will not decrease after task com-
bination because

throughput6 =
1

T 0
max

�
1

Tmax

= throughput7: (14)

Both latency and throughput can be improved simulta-
neously when one of the combined tasks determines the
throughput of the pipeline system. Suppose that either task
5 or task 6 has the maximum execution time among all the
7 tasks in the STAP pipeline system, that is,

Tmax = max(T5; T6) > max
0�i�4

Ti: (15)

Notice that none of these two tasks has temporal data depen-
dency. From Equation (12), we have latency improvement
when tasks 5 and 6 are combined. From Equations (14) and
(15), the throughput is increased. The reduction of execu-
tion time of both tasks 5 and 6 contributes to the latency as
well as to the throughput. Therefore, not only the through-
put can be increased, but the latency can be also reduced.
Note that in our experiment results shown in the previous
section, the task with the maximum execution time is nei-
ther task 5 nor task 6, that is,Tmax > max (T5; T6).

7. Conclusions

In this work, we studied the effects of parallel I/O im-
plementation for a modified PRI-staggered post-Doppler
STAP algorithm. The parallel pipeline STAP system was
run portably on Intel Paragon and IBM SP using the ex-
isting parallel file systems. On the Paragon, we found
that a pipeline bottleneck can result when using a parallel
file system with a relatively smaller stripe factor. With a
larger stripe factor, a parallel file system can deliver higher
efficiency of I/O operations and, therefore, improve the
throughput performance.

This paper presented two I/O designs which are incorpo-
rated into the parallel pipeline STAP system. One embed-
ded I/O in the original pipeline and the other used a sepa-
rate I/O task. By comparing the results of these designs, we
found that the task structure of the pipeline can be reorga-
nized to further improve the latency. Without adding any
compute nodes, we obtained performance improvement in
the latency when the last two tasks were combined. We also
analyzed the possibility of further improvement by examin-
ing the throughput and latency equations. The performance
results demonstrate that the parallel pipeline STAP system
scaled well even with a more complicated I/O implementa-
tion.

8. Acknowledgments

This work was supported by Air Force Materials Com-
mand under contract F30602-97-C-0026. We acknowledge
the use of the Intel Paragon at California Institute of Tech-
nology and the IBM SP at Argonne National Laboratory.

References

[1] R. Brown and R. Linderman. Algorithm Development for an
Airborne Real-Time STAP Demonstration. InProceedings of
the IEEE National Radar Conference, 1997.

[2] A. Choudhary, W. Liao, D. Weiner, P. Varshney, R. Linder-
man, and M. Linderman. Design, Implementation and Eval-
uation of Parallel Pipelined STAP on Parallel Computers.In-
ternational Parallel Processing Symposium, 1998.

[3] IBM Corp. IBM AIX Parallel I/O File System: Installation,
Administration, and Use, October 1996.

[4] Intel Corporation.Paragon System User’s Guide, Apr. 1996.
[5] W. Liao, A. Choudhary, D. Weiner, and P. Varshney. Multi-

Threaded Design and Implementation of Parallel Pipelined
STAP on Parallel Computers with SMP Nodes.International
Parallel Processing Symposium, 1999.

[6] M. Linderman and R. Linderman. Real-Time STAP Demon-
stration on an Embedded High Performance Computer. In
Proceedings of the IEEE National Radar Conference, 1997.

[7] M. Little and W. Berry. Real-Time Multi-Channel Airborne
Radar Measurements. InProceedings of the IEEE National
Radar Conference, 1997.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

