Design and Evaluation of I/O Strategies for Parallel Pipelined STAP Applications

Wei-keng Liao Donald Weiner
Alok Choudhary Pramod Varshney
ECE Department EECS Department
Northwestern University Syracuse University
Evanston, IL 60208 Syracuse, NY 13244
Abstract Parallel Computer
This paper presents experimental results for a parallel &_V Task, ‘Taskl R
pipeline STAP system with I/O task implementation using
the parallel file systems on the Intel Paragon and the IBM RADAR Parallel Pipeline System

SP. In our previous work, a parallel pipeline model was
designed for radar signal processing applications on par-
allel computers. Based on this model, we implemented a
real STAP application which demonstrated the performance
scalability of this model in terms of throughput and latency.
In this paper, we study the effect on system performance
when the 1/O task is incorporated in the parallel pipeline In practice, the I/O can be done either directly from a
model. There are two alternatives for I/O implementation: radar or through disk file systems. In this work we focus
embedding /O in the pipeline or having a separate 1/0 on the I/O implementation of the parallel pipeline STAP al-
task. From these two I/O implementations, we discoveredgorithm when 1/O is carried out through a disk file system.
that the latency may be improved when the structure of theUsing existing parallel file systems, we investigate the im-
pipeline is reorganized by merging multiple tasks into a sin- pact of /0 on the overall pipeline system performance. Two
gle task. All the performance results shown in this paper designs of I/O are employed: in the first design the 1/O is
demonstrated the scalability of parallel I/O implementation embedded in the pipeline without changing the task struc-
on the parallel pipeline STAP system. ture and in the other a separate task is created to perform
I/O operations. With different I/O strategies, we ran the
parallel pipeline STAP system portably and measured the
performance on the Intel Paragon at California Institute of
Technology and on the IBM SP at Argonne National Lab-
oratory (ANL.) The parallel file systems on both the Intel

In this paper we build upon our earlier work where we Paragon and the IBM SP contain multiple stripe directo-
devised strategies for high performance parallel pipelineries for applications to access disk files efficiently. On the
implementations, in particular, for Space-Time Adaptive Paragon, two PFS file systems with different stripe factors
Processing (STAP) applications [2, 5]. A modified Pulse were tested and the results were analyzed to assess the ef-
Repetition Interval (PRI)-staggered post-Doppler STAP al- fects of the size of the stripe factor on the STAP pipeline
gorithm [1, 6, 7] was implemented based on the parallel System. On the IBM SP, the performance results were ob-
pipeline model and scalable performance was obtained botHained by using the native parallel file system, PIOFS, which
on the Intel Paragon and the IBM SP. Normally, this parallel has 80 stripe directories.
pipeline system does not include disk 1/O costs, since most Comparing the two parallel file systems with different
radar applications require signal processing in real time.stripe sizes on the Paragon, we found that an 1/O bottle-
Thus far we have assumed that the signal data collected byeck results when a file system with smaller stripe size is
radar is directly delivered to the pipeline system, as shownused. Once a bottleneck appears in a pipeline, the through-
in the overall radar signal processing system of Figure 1. put which is determined by the task with maximum exe-

Figure 1. Data flow of a radar and signal pro-
cessing system using parallel computers.

1. Introduction

0-7695-0574-0/2000 $10.00 © 2000 IEEE

cP P T i is T;. For the computation of the weight vectors for the

Data

Cube A R current CPI data cube, Qa.ta cubes from previous CPls are
¢ /4 Eaycen | Ao o o o o used as input data. This mtroduc'es temporal data depen-
(Easy Case) dency. Temporal data dependencies are represented by ar-
Dopper SDos Puse | | CFAR rows with dashed lines in Figure 2 wher®; ; represents
Processing oo N /(compresson Processing temporal data dependency of taskn data from task. In
Po (To) v (Ha,dca; ¢ a similar manner, spatial data dependen&®s; can be
Compeation | 709 eion defined and are indicated by arrows with solid lines.
(Hard Cao Pe T Reports Throughput and latency are two important measures for
P2 (T2) performance evaluation on a pipeline system.

— - - -» Datafrom previoustimeinstance

—— Data from current timeinstance 1
throughput = Q)
max T;
Figure 2. Implementation of parallel pipelined 07
STAP. Arrows connecting task blocks repre-
sent data transfer between tasks. latency = Ty + max(Ts,Ty) + Ts + Tg. 2)

The temporal data dependency does not affect the latency
cution time degrades significantly. On the other hand, thebecause weight computation tasks use data from the previ-
|atency is not Significanﬂy affected by the bottleneck prob- ous time instance rather than the current CPI. The filtered
lem. This is because the latency depends on all the tasks if-P! data cube sent to the beamforming task does not wait
the pipeline rather than the task with the maximum execu- for the completion of its weight computation. This explains
tion time. Furthermore, when evaluating the performance Why Equation (2) does not contali andT>.
results of the two I/O designs, we observed that the la-
tency can be improved by merging two tasks in the pipeline.
In this paper, we also examine the possibility of improv-
ing latency by reorganizing the task structure of the STAP

pipeline system. We used the parallel 1/O library developed by Intel

The rest of the paper is organized as follows: in Sec- paragon and IBM SP systems to perform read operations.
tion 2, we bl’lefly describe our preViOUS Work, the parallel The Intel Paragon OSF/1 Operating System provides a spe-
pipeline implementation on a STAP algorithm. The parallel ¢jg| file system type called PFS, for Parallel File Sys-
file systems tested in this work are described in Section 3.tem, which gives app”cations high_speed access to a |arge
The I/0O design and implementation are presented in Sec-gmount of disk storage [4]. In this work, two PFS file sys-
tion 4 and their performance results are given in Section 5.tems at Caltech were tested : one has 16 stripe directories
Section 6 presents the results when tasks are combined. (stripe factor 16) and the other has a stripe factor of 64. We

used the Intel Paragon NX library to implement the 1/O of
2. Parallel pipeline STAP system the parallel pipeline STAP system. Subroutgepen()
was used to open CPI files globally with a non-collected I/O

In our previous work [2, 5], we described the parallel mode,MASYNGC because it offers better performance and
pipelined implementation of a PRI-staggered post-Doppler causes less system overhead. In addition, we used asyn-
STAP algorithm. The parallel pipeline system consists of chronous I/O function callsread() andireadoff()
seven tasks: 1) Doppler filter processing, 2) easy Weightil’] order to overlap 1/0 with the computation and communi-
computation, 3) hard weight computation, 4) easy beam-cation.
forming, 5) hard beamforming, 6) pulse compression, and The IBM AlX operating system provides a parallel file
7) CFAR processing. The design of the parallel pipelined system called Parallel I/O File System (PIOFS) [3]. There
STAP algorithm is shown in Figure 2. are a total of 80 slices (striped directories) in the ANL PI-

The input data set for the pipeline is obtained from a OFS file system. IBM PIOFS supports existing C read,
phased array radar and is formed in terms of a coherent prowrite, open and close functions. However, unlike the
cessing interval (CPI). Each CPI data set is a 3-dimensionalParagon NX library, asynchronous parallel read/write sub-
complex data cube. The output of the pipeline is a report onroutines are not supported on IBM PIOFS. The overall per-
the detection of possible targets. Each tash < i < 7, formance of the STAP pipeline system will be limited by
is parallelized by evenly partitioning its work load among the inability to overlap I/O operations with computation and
P; compute nodes. The execution time associated with taskcommunication.

3. Parallel file systems

0-7695-0574-0/2000 $10.00 © 2000 IEEE

Round
Robin
Scheduling Py (Ty)

Round

Robin

Scheduling Py (To)
N\

Ps (Te) Pz (T7)
Pulse
Compr CFAR

Detection
Reports

Ps (Ts)

Pulse
Compr

Pe (Te)

CFAR

Detection
Reports

(EEEEO
2

P (T2) P3 (T3)
Parallel Pa;ﬁlelei
e System
Figure 3. 1/0O task is embedded in the Doppler Figure 4. A separate 1/0 task for reading CPI
filter processing task. data is added to the STAP pipeline system.
4. Design and implementation 5. Performance results

A tOtal of four CPI data sets Stored as four fi|eS in the Performance results are given for the two |/O implemen_
parallel file systems were used on both the Caltech ParagoRations on the parallel pipeline STAP system. For each im-
and the ANL SP. During each of the following steps after plementation, parallel file systems on the Paragon and the
the initialization, only nodes assigned to the first task per- sp were tested. On both machines, the stripe unit for the
form read operations from the parallel file system. We as- parallel file systems is 64K bytes. The size of each CPI data
sume that the radar writes its collected CPI data into thesefjle is 8M bytes that results in 128 stripe units distributed
four files in a round-robin manner and, similarly, the STAP across all stripe directories in all the parallel file systems.
pipeline system reads the four files in a round-robin fashion
but at tlmes that are different from the times at WhICh the 5.1 1/O embedded in the first task
radar writes. In this manner, the problem of data inconsis-
tency for read/write operations between the radar and the
pipeline system can be minimized. In the first I/O implementation on the Paragon, the

All nodes allocated to the first task (the 1/0 nodes) of Doppler filter processing task reads its input from CPI files
the pipeline read exclusive portions of each CPI file with Using asynchronous read calls. Table 1 shows the timing
proper offsets. The read length and file offset for all the results for this implementation on two PFS and a PIOFS
read operations are set 0n|y during the STAP pipe"ne Sys_ﬁle SyStemS. For each pal’allel file System, three cases of
tem’s initialization and is not changed afterward. Therefore, Node assignments to all tasks in the pipeline system are
in each of the following iterations, only one read function given, each doubles the number of nodes of another. Using
call is needed. On the Paragon, since asynchronous reaéh€ Paragon PFS with 16 stripe directories, the throughput
subroutines were used, an additional subroutine waiting forscales wellin the first two cases, but degrades when the total

the read’s completion was also required in each iteration. Nnumber of nodes goes up to 224. In this case, we observe
that the timing results of the receive phase in the first task

4.1. 1/0 task implementation are relatively higher than the other two phases, the compute
and send phases. The I/O operations for reading CPI data
Two designs for the I/O task were implemented in the files here become a bottleneck for the pipeline system and
STAP pipeline system. The first one, shown in Figure 3, this bottleneck forces the rest of the following tasks to wait
embeds the parallel I/O in the first task of the pipeline, i.e. for their input data from their previous tasks.
in the Doppler filter processing task. The Doppler filter pro- ~ When using the PFS with 64 stripe directories, both
cessing task now consists of three phases, reading CPI datthroughput and latency showed linear speedups. In the first
from files, computation, and sending phases. The secondwo cases with 56 and 112 nodes, the results of throughput
I/O implementation creates a new task for reading CPI dataand latency are approximately the same for both file systems
and this task is added to the beginning of the pipeline. Fig- with 16 and 64 stripe directories. However, in the case with
ure 4 shows the structure of the overall pipeline system with 224 nodes, we observe that the I/O bottleneck is relieved
this implementation. The only job of this I/O task is to read by using 64 stripe directories. Therefore, the efficiency of
CPI data from the files and deliver it to the Doppler filter 1/O operations plays an important role in the overall perfor-
processing task. mance of the pipeline system.

0-7695-0574-0/2000 $10.00 © 2000 IEEE

Table 1. Performance results with the I/O embedded in the Doppler filter processing task.

Paragon PFS stripe factor = 16 Paragon PFS stripe factor = 64 SP PIOFS stripe factor = 80
case 1: total number of nodes = 56 Time in seconds case 1: total number of nodes = 56 case 1: total number of nodes = 18
I [nodes] recv [comp | send [total | [nodes| recv | comp [send [[total | [nodes| recv | comp | send]| total |
Doppler filter 12 .0101 | .2566 | .0916 .3584 12 .0314 | .2461 | .0916 .3691 6 1172 | .0734 | .1966 .3872
easy weight 3 1317 | 2214 | .0002 .3534 3 1262 | .2216 | .0002 .3480 1 2717 | .1070 | .0001 .3788
hard weight 28 .0684 | .2838 | .0003 .3525 28 .0628 | .2840 | .0003 3471 7 .1590 | .2194 | .0002 .3786
easy BF 3 1451 | .1921 | .0003 .3375 3 1397 | .1921 | .0003 3321 1 2927 | .0829 | .0001 .3757
hard BF 4 1596 | .1756 | .0002 .3354 4 1537 | .1756 | .0002 .3295 1 2595 | 1177 | .0002 3775
pulse compr 4 .1070 | .1979 | .0298 .3347 4 1011 | .1977 | .0298 .3286 1 2230 | .1545 | .0001 .3776
CFAR 2 1983 | .1361 - .3343 2 .1920 | .1363 - .3282 1 .2941 | .0828 - .3770
throughput 2.9560 3.0111 2.6715
latency 0.9804 0.9787 1.2353
case 2: total number of nodes = 112 Time in seconds case 2: total number of nodes = 112 case 2: total number of nodes = 30
I [nodes] recv | comp [send [[total | [nodes] recv | comp [send][total | [nodes] recv | comp [send [[total]
Doppler filter 24 .0178 | .1292 | .0663 .2134 24 .0107 | .1280 | .0557 .1944 8 1109 | .0543 | .1031 .2683
easy weight 6 .0856 | .1110 | .0002 .1968 6 .0787 | .1111 | .0020 1917 1 1471 | .1045 | .0002 .2518
hard weight 56 .0483 | .1423 | .0059 .1965 56 .0453 | .1427 | .0039 1919 14 1523 | .1072 | .0002 .2597
easy BF 6 .0939 | .0958 | .0003 .1901 6 .0860 | .0959 | .0003 .1823 2 .2189 | .0412 | .0001 .2602
hard BF 8 .0906 | .0885 | .0003 1795 8 .0878 | .0885 | .0003 .1766 2 .1999 | .0606 | .0001 .2606
pulse compr 8 .0648 | .0993 | .0150 1792 8 .0615 | .0995 | .0151 1761 2 .1801 | .0777 | .0001 .2579
CFAR 4 .1107 | .0683 - 1790 4 1077 | .0682 - 1759 1 .1801 | .0801 - .2602
throughput 5.4996 5.6068 3.8319
latency 0.5171 0.5143 0.7810
case 3: total number of nodes = 224 Time in seconds case 3: total number of nodes = 224 case 3: total number of nodes = 60
I [nodes] recv [comp | send [total | [nodes| recv | comp [send [[total | [nodes| recv | comp | send | total]|
Doppler filter 48 .0871 | .0619 | .0317 .1807 48 .0069 | .0673 | .0309 .1052 16 .1044 | .0304 | .0474 .1823
easy weight 12 .1056 | .0557 | .0002 .1616 12 .0510 | .0559 | .0002 1071 2 1314 | .0547 | .0001 .1862
hard weight 112 .0905 | .0724 | .0009 .1639 112 .0355 | .0733 | .0019 .1106 28 .1303 | .0566 | .0002 1871
easy BF 12 .1080 | .0482 | .0003 .1565 12 .0526 | .0483 | .0003 11013 4 1571 | .0219 | .0002 1792
hard BF 16 .1030 | .0509 | .0003 .1542 16 .0471 | .0515 | .0003 .0989 4 1492 | .0298 | .0002 1792
pulse compr 16 .0983 | .0502 | .0078 .1562 16 .0407 | .0503 | .0080 .0990 4 .1370 | .0396 | .0001 1767
CFAR 8 1217 | .0343 - .1561 8 .0642 | .0343 - .0985 2 .1399 | .0403 - .1802
throughput 6.2708 10.0262 5.5364
latency 0.3292 0.2871 0.5004
. . —~ 12 2
On the other hand, a linear speedup was obtained for theg ol Intel Paragon =18 Intel Paragon
= o 16}
latency results. The 1/O bottleneck problem does not aﬁect% g mstripefactor = 16 O 14] m stripefactor = 16
. . . o ipef =64 1.2} ipef =64
the latency significantly. We can observe that in the caseZ o "™ 82 @ siripetactor
with 224 nodes, the latency of using 16 stripe directories is £ 4 206
slightly greater than using 64 stripe directories. This can be 3 2 IH ® 05l IH I
explained by examining the throughput and latency equa-- ° & 112 224 R 112 224

tions, (1) and (2).Unlike the throughput depending on the Number of Nodes Number of Nodes
maximum of the execution times, the latency is determinedg
by the sum of the execution times of all the tasks exceptz | 1BM SP
for the tasks with temporal dependency. Therefore, even® o
though the execution time of the Doppler filter processing si al

2

0

IBM SP

Latency (sec/CPI)

0000 PRk
oNvPOIORNMOION

task is increased, the delay does not contribute much to3
the latency. Comparin.g the results of _usi_ng two PFS fil_e (= s P s m » s
systems, the latency did not degrade significantly and still Number of Nodes Number of Nodes
scaled well in the case with 224 nodes. Figure 5 shows the _

performance results of this I/O design in bar charts. Figure 5. Results corresponds to Table 1.

Detailed timing results for the IBM SP at ANL are also

given in Table 1. The stripe factor of the PIOFS file sys- 5.2. Anew I/O task

tem is 80. Because PIOFS does not provide asynchronous

read/write subroutines, the 1/0 operations do not overlap In the second I/O task implementation, a new task is
with computation and communication in the Doppler fil- added to the beginning of the pipeline. This new task only
ter processing task. Hence, the performance results foperforms the operations of reading CPI files and distribut-
throughput and latency on the SP did not show the scalabil-ing CPI data to its successor task, Doppler filter processing
ity as on the Paragon, even though the SP has faster CPUstask. The STAP pipeline system then has a total of 8 tasks.

0-7695-0574-0/2000 $10.00 © 2000 IEEE

Table 2. Performance results with the I/O implemented as a separate task.
SP PIOFS stripe factor = 80

case 1: total number of nodes = 20

Paragon PFS stripe factor = 16

case 1: total number of nodes = 60

Paragon PFS stripe factor = 64

Time in seconds case 1: total number of nodes = 60

I [nodes] recv [comp | send [total | [nodes| recv | comp [send [[total | [nodes| recv | comp | send]| total |
Parallel read 4 .0191 - .3997 .4187 4 .0628 - .3391 .4019 2 1787 - 1413 .3200
Doppler filter 12 .0122 | .3240 | .2375 .5738 12 .0085 | .2670 | .1755 .4510 6 .0045 | .0724 | .2548 .3316
easy weight 3 .2032 | .2217 | .0002 4252 3 1425 | .2217 | .0002 .3645 1 .2269 | .1047 | .0001 .3317
hardweight | 28 | .1390 | .2846 | .0003 || .4239 28 | .0763 | .2847 | .0003 || .3613 7 1165 | .2150 | .0013 || .3329

easy BF 3 2210 | 1911 | .0003 || 4124 3 1621 | 1914 | .0003 || .3537 1 0641 | .0822 | .2082 || .3545
hard BF 7 2327 | 1753 | .0003 || 4083 1 1740 | 1759 | .0002 || .3501 1 0416 | 1179 | .1874 || .3469
pulse compr | 4 1800 | .1977 | .0295 || .4072 1 1213 | 1980 | .0296 || .3489 1 1450 | .1538 | .0656 || .3653
CFAR 2 .2706 | .1362 - .4068 2 2125 | .1362 - .3488 1 .2926 | .0801 - 3727
throughput 2.4127 2.8234 2.6670
latency 1.9186 1.7309 2.6715
case 2: total number of nodes = 120 Time in seconds case 2: total number of nodes = 120 case 2: total number of nodes = 34

I [nodes] recv [comp | send [total | [nodes| recv | comp [send [[total [nodes] recv [comp [send [[total]|
Parallel read | 8 0550 | - 1604 || 2163 8 0362 | - 1685 || 2047 1 1230 | - 0594 || 1823
Doppler filter 24 .0254 | .1221 | .0839 .2313 24 .0280 | .1084 | .0786 2151 8 .0264 | .0549 | .0913 1726
casyweight | 6 :0920 | 1110 | .0004 || .2034 6 0816 | 1111 | .0024 || .1951 il 10639 | .1043 | .0001 || .1683
hardweight | 56 | .0526 | .1432 | .0045 || .2003 56 | .0461 | .1438 | .0003 || .1903 T4 | .0598 | .1090 | .0003 || .1692

casy BF 6 1003 | .0960 | .0003 || .1966 6 0014 | 0959 | .0003 || .1877 2 0576 | .0415 | .0814 || .1805
hard BF 8 0918 | .0928 | .0003 || .1849 8 0891 | .0908 | .0003 || .1802 2 0593 | .0596 | .0579 || .1768
pulse compr | 8 0727 | .0999 | 0151 || .1877 8 0672 | .0999 | 0151 || .1822 2 0278 | .0784 | .0803 || .1864
CFAR 7 1185 | .0683 | - 1867 1 1131 | 0683 | - 1815 1 1092 | 0804 | - 1896
throughput 5.3883 5.5262 5.2819
latency 0.9226 0.9137 1.2766
case 3: total number of nodes = 240 Time in seconds case 3: total number of nodes = 240 case 3: total number of nodes = 68

I [nodes] recv [comp | send [total | [nodes| recv | comp [send [total [nodes] recv [comp [send [[total]|
Paralleltead | 16 | .1269 | - 0276 || .1545 6 | 0171] - 0617]| 0788 8 1100 - 0185 || .1285
Doppler filter | 48 | .0833 | .0463 | .0245 || .1541 48 | .0073 | .0502 | .0290 || .0864 16 | .0455 | .0283 | .0631 || .1369
easyweight | 12 | .0891 | .0558 | .0002 || .1451 12 | .0503 | .0558 | .0002 || .1063 2 0901 | .0535 | .0001 || .1437
hard weight | 112 | .0749 | .0724 | .0004 || .1477 112 | .0305 | .0724 | .0029 || .1057 28 | .0839 | .0554 | .0001 || .1395

casy BF 12 | .0975 | .0485 | .0003 || .1463 12 | .0491 | .0489 | .0004 || .0984 1 1158 | .0208 | .0035 || .1401
hard BF 16 | .0024 | .0516 | .0003 || .1443 16 | .0417 | .0540 | .0004 || .0961 1 0813 | .0483 | .0089 || .1385
pulse compr | 16 | .0869 | .0502 | .0077 || .1448 16 | .0393 | .0502 | .0078 || .0973 1 1008 | .0391 | .0054 || .1453
CFAR 8 1104 | 0343 | - 447 8 0629 | 0343 | - 0972 2 1074 | 0404 | - 1478
throughput 6.8438 10.2111 6.5063
latency 0.3890 0.5193 0.6531
. - . —~ 12 2
Table 2 gives the performance results for this I/O design. g | Intel Paragon —1f Intel Paragon
Corresponding to Table 1, all tasks have the same number% gl m stripefactor = 16 O 14] m stripefactor = 16
. . o ipef = 2F ipef =
of nodes assigned, except for the 1/O task. Similarly, the T ¢ "™ 6 glf o stripefactor = 64
. . 0.8}

I/O bottleneck problem occurs when using the PFS with 16 £ 4 g%,

stripe directories and the problem is solved by using the PFS3 2 I H & o5l I H
. =

with 64 stripe directories. The bar charts shown in Figure 6 F ° ¢ 120 240 60 120 240

represent the throughput and latency results of Table 2. Number of Nodes Number of Nodes

Comparing the two I/O designs, we observe that the’g 12 — 3 B P
. 9 10 =25

throughput results are approximately the same . Howeverz . 57,

the latency results for the separate I/O task design are wors€ | 8.

than the embedded one. This phenomenon can be explaineé a g 1

by examining the new throughput and latency equations: 3 2 T 05

i o - o
20 34 68 20 34 68
throughputs = (3) Number of Nodes Number of Nodes
max T;
0<i<8 .
Figure 6. Results corresponds to Table 2.
and
latencys = To + T1 + max(Ty, T5) + T + T7, (4) Table 1, the throughput results have no significant change
))

whereT; is the execution time for the tagk The through-
put of a pipeline system is determined by the task with the on the other hand, is the sum of the execution times of all the
maximum execution time among all the tasks. Compared totasks except for the tasks with temporal data dependency. In

0-7695-0574-0/2000 $10.00 © 2000 IEEE

because the tasks with the maximum execution time are the
same for every corresponding pair in all cases. The latency,

Table 3. Performance results with pulse compression and CFAR tasks combined.

Paragon PFS stripe factor = 16 Paragon PFS stripe factor = 64 SP PIOFS stripe factor = 80
case 1: total number of nodes = 56 Time in seconds case 1: total number of nodes = 56 case 1: total number of nodes = 18
I [nodes] recv [comp | send [total | [nodes| recv | comp [send [[total | [nodes| recv | comp | send]| total |
Doppler filter 12 .0094 | .2589 | .0908 .3591 12 .0319 | .2485 | .0915 3718 6 1320 | .0728 | .1894 .3942
easy weight 3 .1307 | .2230 | .0002 .3540 3 1265 | .2218 | .0002 .3485 1 2844 | 1023 | .0001 .3868
hard weight 28 .0660 | .2868 | .0003 .3531 28 .0631 | .2839 | .0003 3473 7 1738 | .2131 | .0002 .3870
easy BF 3 .1449 | .1930 | .0003 .3382 3 .1400 | .1921 | .0003 .3324 1 .3039 | .0823 | .0001 .3862
hard BF 4 .1616 | .1756 | .0003 .3375 4 .1533 | .1756 | .0003 .3292 1 2677 | .1182 | .0002 .3862
PC + CFAR 6 1517 | .1863 - .3380 6 .1449 | .1860 - .3309 2 .2683 | .1194 - .3877
throughput 2.9243 3.0027 2.5754
latency 0.7913 0.7957 0.9388
case 2: total number of nodes = 112 Time in seconds case 2: total number of nodes = 112 case 2: total number of nodes = 30
I [nodes] recv [comp | send J[total | [nodes| recv | comp [send [[total | [nodes| recv | comp | send]| total
Doppler filter 24 .0194 | .1294 | .0656 .2145 24 .0104 | .1301 | .0528 .1933 8 .1105 | .0550 | .1055 .2710
easy weight 6 .0831 | .1111 | .0002 .1944 6 .0774 | .1111 | .0002 .1887 1 1711 | .1026 | .0002 .2739
hard weight 56 .0468 | .1427 | .0046 .1940 56 .0438 | .1427 | .0022 .1886 14 1570 | .1077 | .0002 .2649
easy BF 6 .0914 | .0958 | .0003 .1874 6 .0853 | .0959 | .0003 .1815 2 2225 | .0417 | .0001 .2644
hard BF 8 .0892 | .0887 | .0004 .1784 8 .0869 | .0886 | .0004 1759 2 .2051 | .0608 | .0002 .2661
PC + CFAR 12 .0869 | .0935 - .1804 12 .0838 | .0936 - 1773 3 .1878 | .0793 - .2671
throughput 5.5340 5.6029 3.7492
latency 0.4221 0.4197 0.6255
case 3: total number of nodes = 224 Time in seconds case 3: total number of nodes = 224 case 3: total number of nodes = 60
I [nodes] recv [comp | send [total | [nodes| recv | comp [send [[total | [nodes| recv | comp | send]| total |
Doppler filter 48 .0953 | .0623 | .0323 .1900 48 .0071 | .0676 | .0306 .1054 16 1044 | .0279 | .0462 .1786
easy weight 12 .1056 | .0558 | .0003 1617 12 .0522 [.0559 | .0002 .1083 2 .1350 | .0515 | .0002 .1867
hard weight 112 .0930 | .0726 | .0004 .1661 112 .0347 | .0730 | .0031 .1108 28 .1238 | .0568 | .0002 .1808
easy BF 12 1116 | .0484 | .0003 .1603 12 .0533 | .0482 | .0004 .1018 4 .1582 | .0210 | .0002 1794
hard BF 16 .1063 | .0513 | .0004 1579 16 .0481 | .0512 | .0003 .0997 4 .1485 | .0300 | .0003 .1787
PC + CFAR 24 .1079 | .0513 - .1592 24 .0489 | .0514 - .1003 6 1397 | .0414 - .1810
throughput 6.1478 9.8853 5.5356
latency 0.2948 0.2392 0.4207
. . . —~ 12 2
the design with a separate I/0 task, the latency contains oneg | | Intel Paragon =18 Intel Paragon
more term than the embedded I/O design. Therefore, theg g mstripefactor = 16 O 14| m stripefactor = 16
. R . o ipef =64 120 ipefactor = 64
latency results become worse in this implementation. g 82 @ siripetactor
[=% 0.8
5 4 go.ef
. . 3 2 04t
6. Task combination £ 5oz Il &g
£ o 0
56 112 224 56 112 224
i Number of Nodes Number of Nodes
From the comparison of performance results for the two _ ,,)
/O task implementations, we notice that the structure of § 1 IBM SP i IBM SP
the STAP pipeline system can be reorganized to improved s} %};‘2‘;
the latency. The firstimplementation that embeds I/O inthe 5 ¢/ gog;
Doppler filter processing task can be viewed as combining® “f 5 0o
. . . o 2t ® o
the first two tasks of the second implementation that uses az 502

separate task for 1/0. As shown in Section 5.2, the first I/O - 18N . 30fN ’ 60 18N . 30fN . 60
implementation has a better latency performance, while the umber of Nodes umber of Rodes
throughput results are approximately the same. Figure 7. Results corresponds to Table 3.
6.1. Improving latency
whole pipeline system is kept the same. Table 3 gives the

We investigate whether the latency can be further im- timing results corresponding to Table 1 with the same total
proved by combining multiple tasks of the pipeline into a number of nodes assigngd tothe pipeline system and Figure
single task. We consider Table 1 as an example and com-/ shows the corresponding results in bar chgrts: The com-
bine the last two tasks, the pulse compression and CFARParison of performance results of the STAP pipeline system
processing tasks, into a single task. In order to make a fairith and without task combining is given in Figure 8. We
comparison, the number of nodes assigned to this Sing|eobs;erve that the latency improves for all cases on all parallel
task is equal to the sum of the nodes assigned to the twdfile Systems when the last two tasks are combined.

original tasks and the total number of nodes allocated to the Before task combination, the latency equation for the

0-7695-0574-0/2000 $10.00 © 2000 IEEE

Paragon PFS Stripe factor = 16

Paragon PFS Stripe factor = 16

~ 12 2
g 10l = 7tasks = %‘8 m| 7 tasks
T O 6tasks o 16 o 6tasks
8 O 14
Q g 12
5 6 2 1
2 208
5 4 g 06
3 2 |04
E o - %
= 56 112 224 56 112 224
Number of Nodes Number of Nodes
1 Paragon PFS Stripe factor = 64) Paragon PFS Stripe factor = 64
o ~18
9 10| m7tasks = m 7 tasks
T O 6tasks 6— 16 O 6tasks
8 14
Q E 12
2 ° >o08
g 4 g 06
3 2 So4
= 102 H
= 0 0
56 112 224 56 112 224
Number of Nodes Number of Nodes
SP PIOFS SP PIOFS
g 12 2
~18
o 10| ®m7tasks = m 7 tasks
z o 6tasks o 16 o 6tasks
8 O 14
Q E 12
5 6 2 1
o o) 038
5 4 g 06
2 i ||)
= 02
= 0 0
18 30 60 18 30 60

Number of Nodes

Number of Nodes

Figure 8. Performance comparison of the
pipeline system with and without task com-

bining.

STAP pipeline system with

7 tasks is

latencyr = Ty + max(T5,Ty) + T5 + Ts. (5)

Let W5 andWjs be the workloads for tasks 5 and 6, respec-

tively. The execution times for task 5 and 6 are

14
T5 = —> +C5 + Vs
Py

whereC; andV; represent the communication time and the
other parallelization overhead for tagkrespectively. Sim-
ilarly, let T5 ¢ be the execution time of the task that com-

We

and T6:?+06+V6 (6)
6

bines tasks 5 and 6 running @3 + P nodes:

T =
5+6 Ps + g

By subtracting Equation (6) from Equation (7), we have

Tsy6— (Ts +Ts) =

Wy + Ws

+ Cs46 + Vsts- (7)

Vite — Vs — Vs 8)

0-7695-0574-0/2000 $10.00 © 2000 IEEE

Table 4. Percentage of latency improvement
when the Pulse compression and CFAR tasks
are combined into a single task.

Paragon: PFS
[#nodes | 56 |
16 stripe dir | 19.3%
64 stripe dir | 18.7%

112 | 224 |

18.4% | 10.4%
18.4% | 16.7%

SP: PIOFS
[#nodes | 18 [30 | 60 |

| 80 stripe dir| 24.0% [19.9% | 15.9% |

W5+W6_%_%_—W5P62—W6P52<0)
PsPs(Ps + Fs) -

Communication for the combined task occurs only when
receiving data from tasks 3 and 4. Prior to the task combi-
nation, the same communication takes place in the receive
phase of task 5. The difference is the number of nodes used
between the two tasks. Sinég,¢ > Ps, the data size for
each received message from tasks 3 and 4 to the combined
task is smaller than that for task 5. Besides, in task'5,
includes the communication cost of sending messages from
task 5 to task 6 which does not occur in the combined task.
Hence, we have

C5+6 < Cs. (10)

The remaining overheatl;, is due to parallelization of task

i. Since the operations in tasks 5 and 6 are sets of indi-
vidual subroutines which require no communication within
each single task, parallelization is carried out by evenly par-
titioning these subroutines among the nodes assigned. Due
to this computational structure, the overhead for these two
tasks becomes negligible compared to their communication
costs. From Equations (8), (9), and (10) we can conclude
that

Ts46 <T5 + Tp. (11)

Therefore, the new latency equation of the STAP pipeline
system with the last two tasks combined becomes

latencys = To + max(T5,Ty) + Ts16 < latency;. (12)

Combining the last two tasks, therefore, reduces the latency.
Table 4 gives the percentage of improvement in latency
when the last two tasks are combined. These improvements
were made without adding any extra nodes to the pipeline
system. We observe that the percentage decreases as the
number of nodes goes up. Normally, scalability of the paral-
lelization tends to decrease when more processors are used.

This also explains the trend for the percentage improvement/. Conclusions

shown in Table 4. Notice that the tasks that can be combined

to improve the latency do not include tasks with temporal In this work, we studied the effects of parallel I/O im-
data dependency. It is because only those tasks with spatigblementation for a modified PRI-staggered post-Doppler

data dependency contribute to the latency. STAP algorithm. The parallel pipeline STAP system was
run portably on Intel Paragon and IBM SP using the ex-
6.2. Improving throughput isting parallel file systems. On the Paragon, we found

that a pipeline bottleneck can result when using a parallel
The throughput results, on the other hand, do not changéfile system with a relatively smaller stripe factor. With a
significantly when the two tasks are combined. This is be- larger stripe factor, a parallel file system can deliver higher
cause the task with the maximum execution time among all efficiency of 1/O operations and, therefore, improve the
the tasks is still the maximum in the new pipeline system. throughput performance.
Assuming thafl,,,, is the maximum execution time before This paper presented two I/O designs which are incorpo-

task combination: rated into the parallel pipeline STAP system. One embed-
ded 1/O in the original pipeline and the other used a sepa-
Trae = Juax T; > max(Ts, Ts) rate 1/0 task. By comparing the results of these designs, we

found that the task structure of the pipeline can be reorga-
From Equations (6) and (7), the execution time of the new nized to further improve the latency. Without adding any

combined task becomes compute nodes, we obtained performance improvement in
the latency when the last two tasks were combined. We also
PsTs + PsTs o . ;
Ts16 analyzed the possibility of further improvement by examin-

P + Py ing the throughput and latency equations. The performance
Bs max(T5,Ts) + B max(Ts, T) results demonstrate that the parallel pipeline STAP system

- Ps + P scaled well even with a more complicated 1/0 implementa-
= maz(Ts,Ts) (13) tion.

and the new maximum execution time 8. Acknowledgments

Trlnam = m(ll‘(Tg, Tl: TZ, T37 T47 T5+6)

_ This work was supported by Air Force Materials Com-
< maz(To, T, T3, T3, Ty, T5, Te) = Tmaa- mand under contract F30602-97-C-0026. We acknowledge
Therefore, the throughput will not decrease after task com-the use of the Intel Paragon at California Institute of Tech-

bination because nology and the IBM SP at Argonne National Laboratory.

throughputs = = throughput;. (14) References

Trlnaw - Tmﬂl’
; ; _ [1] R. Brown and R. Linderman. Algorithm Development for an
Both latency and throughput f:an be improved S.ImU|ta Airborne Real-Time STAP Demonstration. Pmoceedings of
neously when one of the combined tasks determines the the IEEE National Radar Conferenck997
throughput of the pipeline system. Suppose that either task;, ,

h - ’ 1 A. Choudhary, W. Liao, D. Weiner, P. Varshney, R. Linder-
5or taSk 6 haS the maximum execution time among a” the man, and M. Linderman. Design’ |mp|ementation and Eval-

7 tasks in the STAP pipeline system, that is, uation of Parallel Pipelined STAP on Parallel Computés.
ternational Parallel Processing Symposiuh®98.
Tinaz = mazx(Ts, Tg) > Jnax T;. (15) [3] IBM Corp. IBM AIX Parallel I/O File System: Installation,
7l7

Administration, and UseOctober 1996.

Notice that none of these two tasks has temporal data depen% welligg,r%rétr']%%gﬁgaog.S\}’Vsetﬁgryujﬁé SPG\L/’A%EL e@?gﬁ'ulti_
dency. From Equation (12), vye have latency Improvement Threaded Design and Implementation of Parallel Pipelined
when tasks 5 and 6 are combined. From Equations (14) and sTAP on Parallel Computers with SMP Nodésternational
(15), the throughput is increased. The reduction of execu- Parallel Processing Symposiyrt999.
tion time of both tasks 5 and 6 contributes to the latency as [6] M. Linderman and R. Linderman. Real-Time STAP Demon-
well as to the throughput. Therefore, not only the through- stration on an Embedded High Performance Computer. In
put can be increased, but the latency can be also reduced, Proceedings of the IEEE National Radar Conferert@97.
Note that in our experiment results shown in the previous 7] géggﬁliﬂigu\ﬁrﬁ:&g F;f:ége";i '\gucl):‘"tizaigéeé l?\ld;?i?)::]a(al
section, the task with the maximum execution time is nei- R : g

. adar Conferencel997.
ther task 5 nor task 6, that i%,,,,, > max (T5,Tg).

0-7695-0574-0/2000 $10.00 © 2000 IEEE

