
Mining Frequent Patterns by Differential Refinement of Clustered Bitmaps ∗

Jianwei Li Alok Choudhary Nan Jiang Wei-keng Liao
Department of Electrical and Computer Engineering

Northwestern University
{jianwei, choudhar, jiangjf, wkliao}@ece.northwestern.edu

Abstract

Existing algorithms for mining frequent patterns are facing

challenges to handle databases (a) of increasingly large sizes,

(b) consisting of variable-length, irregularly-spaced data,

and (c) with mixed or even unknown properties. In this

paper, we propose a novel self-adaptive algorithm D-CLUB

that thoroughly addresses these issues by progressively clus-

tering the database into condensed association bitmaps, ap-

plying a differential technique to digest and remove dense

patterns, and then mining the remaining tiny bitmaps di-

rectly through fast aggregate bit operations. The bitmaps

are well organized into rectangular two-dimensional matri-

ces and adaptively refined in regions that necessitate further

computation. We show that this approach not only drasti-

cally cuts down the original database size but also largely

reduces and simplifies the mining computation for a wide

variety of datasets and parameters. We compare D-CLUB

with various state-of-the-art algorithms and show significant

performance improvement in all cases.

1 Introduction

Mining frequent patterns is a fundamental data mining
task. It is widely used in Association Rule Mining
[3, 4] and other corelation data analysis. Given a
large database (D) of variable-length transactions over
a set of items (I), the problem is to find all frequent
itemsets (FI’s), each occurring at more than a minimum
frequency (minsup).

To efficiently solve the problem, traditional algo-
rithms like Apriori [4] and its variants [20, 26, 6] focus
on reducing the number of database scans as well as cut-
ting down the enumeration space of candidate itemsets
(CI’s). By the downward closure property of FI’s - all
subsets of a frequent itemset must also be frequent - they
can iteratively enumerate, prune, and test 1-extension
supersets of existing FI’s and end up with much reduced
number of CI’s. The major problem with these algo-

∗This work was supported in part by Argonne National Lab-
oratories under contract number 3F-02201, DOE’s SciDAC pro-
gram with award number DE-FC02-01ER25485, NSF grants CNS-
0406341, IIS-0536994, CCF-0444405, and Intel Corporation.

rithms is that their repeated search of profuse itemsets
against the huge amount of transactions turns out to be
very time-consuming and wasteful. For dense databases
with enormous long FI’s, the breadth-first search of the
itemset lattice and subset testing to prune CI’s by ex-
isting FI’s are both space and time consuming.

In simplifying the itemset search computation, Par-
tition [24] and Eclat [33] lay the foundation of a vertical
mining technique to count itemset supports by intersec-
tion (merge-sort) of vertical tid-lists of corresponding
items/itemsets,which can largely reduce the computa-
tion time and gets prevalent adoption in [14, 8, 25] and
others. However, for large dense databases where both
the amount and the lengths of the tid-lists turn out
to be huge, the amount of computation and memory
requirement for those algorithms grow rapidly through
iterations, easily hurting the performance and scalabil-
ity. Diffset optimization [31] has been proposed to track
only the changes in tidsets instead of keeping the entire
tid-lists through iterations so that it can significantly
reduce the size of intermediate data. It also cuts down
the initial vertical data sizes for dense databases by us-
ing complementary sets of tidsets but this benefit can
not efficiently migrate to sparse databases.

Another innovative algorithm targeting dense
databases is FP-growth [12]. It compacts the repetitive
transactions into some concise FP-tree/trie. Transac-
tion itemsets are organized in that frequency-ordered
prefix tree so that they share common prefix part as
much as possible. This approach can cut down the
database sizes and reduce repeated computation for
dense databases and is well adopted in [22, 16, 30, 15, 11]
and others. For sparse databases, however, build-
ing/mining the FP-tree for all itemsets without step-by-
step pruning would be wasteful and could suffer great
penalty in both data sizes and search of the tree.

All above algorithms work on ID-based data that
is either organized as variable-length records or linked
by complicated structures. The tedious one-by-one
search/match operations and the irregular layout of
data easily become the hurdle for higher performance

which can otherwise be achieved as in fast scien-
tific computing over well-organized matrices or multi-
dimensional arrays. Bitmap algorithms HBM [9] and
MAFIA [7] seem to address this issue by translating
the whole database into a bitmap and mine itemsets by
bit-wise AND of corresponding columns in the bitmap.
However, without addressing the inherent sparseness,
the benefit of using bitmaps will be very limited or even
negative because of the intuitive inefficiency of their rep-
resentations for irregularly spaced data. And for dense
databases, they can not reduce the huge amount of com-
putation either.

We also refer to various algorithms for mining
Maximal Frequent Itemsets (MFI’s) [13, 5, 2, 7, 10,
34] or Closed Frequent Itemsets (CFI’s) [21, 23, 32,
29, 19, 27, 17]. They reduce the computation and
memory requirement by mining only a representative
set of FI’s. Note that CFI’s can infer all FI’s with
exact supports, while MFI’s can not. Both techniques
work well with very dense databases with extremely
long patterns, by orders of magnitude reduction of
itemset mining space. However, for general databases
with normal density/length of patterns, the benefit
targeting long patterns is very limited, as is shown in
FIMI’04 experimental results [1] where mining CFI’s
takes almost the same time as mining all FI’s in retails,
kosarak and webdocs datasets.

In this paper, we present a fundamentally new
algorithm D-CLUB that efficiently mines all FI’s by
adaptive refinement of clustered bitmaps using a novel
differential mining technique. Our major contributions
include:

(1) A dynamic data clustering technique that pro-
gressively clusters the database into clustered
bitmaps with most sparse bits removed;

(2) A differential mining technique that accumula-
tively removes most dense bits from clustered
bitmaps, turning them into partial supports for
itemsets to be mined;

(3) Organization of ragged data in rectangular two-
dimensional matrices of integers that can be com-
puted by fast aggregate bit operations in arrays;

(4) An adaptive bitmap refinement model that only
computes in bitmap regions of interest to FI’s.

By extensive experiments over a wide variety of
datasets and parameters, we show that the size of our
bitmaps is generally orders of magnitude smaller than
the original database so that our algorithm can handle
very large databases and is self-adaptive to various or
even unknown database properties. Most importantly,

with the fundamental data representation changed and
improved, our mining computation is also substantially
reduced and simplified, resulting in significant overall
performance improvement over other state-of-the-art
algorithms.

In the rest of this paper, Section 2 introduces our
new concepts to cluster both itemsets and databases in
clustered bitmaps. Section 3 describes our differential
technique that adaptively refines the clustered bitmaps
to mine all FI’s with exact supports. Section 4 sum-
marizes our D-CLUB algorithm. Section 5 shows our
experimental results. Section 6 points out important
differences between our work and related research. Sec-
tion 7 draws conclusions and points out the potentials
of our work.

2 Mining by Clustered Bitmaps

In this section, by using a dynamic itemset clustering
approach, we hierarchically cluster the database as well
as the itemsets so that each itemset cluster has its own
clustered database, which then can be mined and op-
timized independently. Each clustered database is or-
ganized as a rectangular clustered bitmap that directly
reflects the association nature of FI’s and is much more
condensed than the direct bitmap translation of the
original entire database. In notation, we use s(X) or
S(X) for the support or support count of an itemset X,
and prefix “k-” for the itemset length.

2.1 Dynamic Itemset Clustering Itemset cluster-
ing is first introduced by Zaki et al [33] to facilitate
the traversing of the itemset lattice. While existing ap-
proach uses fixed lexicographic ordering, hence static
clustering, we propose a dynamic clustering approach
to organize and enumerate all frequent itemsets with
better flexibility and self-adaptivity.

Definition 2.1. (FI-cluster) A FI-cluster is an or-
dered set of itemsets (C, <) recursively defined by:

(1) The set of all 1-FI’s in some specific order forms
an initial FI-cluster (C0, <);

(2) Given a FI-cluster (C, <), ∀X ∈ C, g(C, X) def=
{X ∪ Y | Y ∈ C ∧X < Y ∧ s(X ∪ Y) > minsup}
also forms a FI-cluster if nonempty and ordered.

The order in each FI-cluster is to be defined indepen-
dently.

We note that the itemset order is crucial to cluster-
ing and will be dynamically determined for each FI-
cluster. Based on Definition 2.1, we can generate a
FI-cluster tree by starting from (C0, <) and recursively
applying the generation function g(C, X) on each FI-
cluster and all its elements, such that each FI-cluster

fe

caf cae

ca cf ce

cfe

cafe

bd bf be da de af ae

bfe

c b d a f e

afe

Database
TID Items

a d b

f d b e

a e f c

a c f e

a d e

f e b

c:33% b:50% d:50% a:67% f:67% e:83%

Frequent Itemsets : supportk

1

4

3

bd:33% bf:33% be:33% da:33% de:33%
ca:33% cf:33% ce:33%

af:33% ae:50% fe:67%

caf:33% cae:33% cfe:33%
bfe:33% afe:33%

cafe:33%

2

level/depth (k)

100

200

300

400

500

600

Cluster Tree of All FI’s
0

1 2 3 4 5

6 8

7

9 10

Frequent Itemsets (minsup = 33%)

1

2

3

4

Figure 1: FI-cluster Tree for a Given DB and minsup.

forms a node of the tree rooted at (C0, <) (level-1) and
the connection between two FI-clusters denotes the gen-
eration relationship. Thereafter, we use XY in abbre-
viation for X ∪ Y if X, Y ∈ C and X < Y .

Lemma 2.1. Each level-k FI-cluster is a set of k-FI’s
with a common (k-1)-subset that is called the kernel of
the cluster.

Proof. This can be proved by induction over k.

Lemma 2.2. The FI-cluster tree covers all FI’s exactly
once.

Proof. Since we already have Lemma 2.1, we can prove
by induction the equivalent statement that all level-k
FI-clusters cover all k-FI’s exactly once.

The relationship between the FI-cluster tree and
all FI’s is disclosed by Lemma 2.1 and 2.2. Figure
1 illustrates an example FI-cluster tree for a given
database and minsup. Here FI’s in each FI-cluster are
ordered by supports. We can see, for example, that
cluster 6 is generated from cluster 1 by the join of “ca”
with “cf” and “ce”, respectively. The whole FI-cluster
tree covers all FI’s exactly once.

2.2 Clustered Bitmaps Once FI’s are clustered,
we can use the FI-clusters to cluster the database by
Definition 2.2 and 2.3.

Definition 2.2. (bit-vector) Given a transactional
database D = {〈TID, Ti〉 | Ti ⊆ I, i = 1..d}, the bit-
vector of an itemset X is defined to be bitvec(X) =
[b1 b2 ... bd]T , where bi ∈ {0, 1} and bi = 1 iff X ⊆ Ti

for i = 1..d.

0
0
0
1
0
1

1
1
1
0
0
0

1
0
1
0
1
0

0
0
1
1
1
1

1
1
0
1
0
1

1

0
1
1
1

1

c b d a f e

0
0
0
1
0
1

0
0
0
1
0
1

1
0
1
0
0
0

1
1
0
0
0
0

0
0
0
1
1
1

1
1
0
1
0
1

0
0
0
1
0
1

1
1
0
0
0
0

0
0
1
0
1
0

1
0
0
0
1
0

0
0
0
1
0
1

ca cf ce bd bf be de af ae feda

0
0
0
1
0
1

0
0
0
1
0
1

0
0
0
1
0
1

1
1
0
0
0
0

0
0
0
1
0
1

caf cae cfe bfe afe

1

0
0
0
1
0
1

cafe

32 4

Levels

Frequent Itemsets

Figure 2: Bit-vectors for the Example Database.

Definition 2.3. (club) Given a FI-cluster C with
itemsets X1 < X2 < ... < Xn, the clus-
tered bitmap of C is defined to be club(C) =
[bitvec(X1) bitvec(X2) ... bitvec(Xn)], where
[X1 X2 ... Xn] serves as the horizontal coordinates.

By definition, the support count of any itemset X is
equal to the number of bit-1’s contained in its bit-vector,
i.e., S(X) = population(bitvec(X)). So the clustered
bitmap (club) is adequate to mine the corresponding FI-
cluster. Thereafter, we collectively call the combination
of a FI-cluster and its club a cluster, and all such clusters
are organized into a cluster tree with the same topology
as FI-cluster tree. The join of FI’s from a parent cluster
to a child by g(C, X) directly maps to the bit-wise AND
of the corresponding bit-vectors, which is proved by
Lemma 2.3. Figure 2 shows the bit-vectors of FI’s in
the example database. We can see, for example, that the
bit-vector of “cafe” can be directly derived by ANDing
those of “caf” and “cae”.

Lemma 2.3. For any two itemsets X and Y , we have
bitvec(X ∪ Y) = bitvec(X) & bitvec(Y).

Proof. β1 = bitvec(X∪Y), β2 = bitvec(X) & bitvec(Y).
∀i ∈ 1..d, β1[i], β2[i] ∈ {0, 1}, and

β1[i] = 1 ⇔ X ∪ Y ⊆ Ti ⇔ X ⊆ Ti and Y ⊆ Ti

⇔ bitvec(X)[i] = 1 and bitvec(Y)[i] = 1
⇔ (bitvec(X)[i] ∧ bitvec(Y)[i]) = 1
⇔ β2[i] = 1.

So ∀i ∈ 1..d, β1[i] = β2[i], which gives β1 = β2.

Given the top level cluster, we can recursively derive
the whole cluster tree by joining itemsets and AND-
ing their bit-vectors following the rules indicated by
g(C, X). That way, all FI’s can be mined with exact sup-
ports calculated. We note that reordering/partitioning
rows of each club will also reorder/partition those of its
child clubs but does not change the total number of bit-
1’s in the partitions of each vertical bit-vector in the
parent or child. So each club can be mined in horizontal
partitions, where in each partition the numbers of bit-
1’s in the vertical bit-vectors corresponds to the support
counts of the coordinate itemsets contributed by that

1 1 1
0 1 1
1 0 0

0 1
1 0
1 1

1 1
0 1
1 1

1
1
1
1

1
1

1
1

1
1

1
1

1 1 1
1 1 1

0 1 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 1 1
0 0 11 0 1

1111 0 0

(b)

2 3 4 5 6 7 8 91

31

0

32

63

95

64

96

.......18

121
ro

w
 n

um
be

r

.Itemset ID in a Cluster

(a)

1
1 1

1

1 2 3 4 5

6 8 9 10

7
cafe

caf cae cfe bfe afe

ca cf ce bd bf be da de af ae fe

c b d a ef
0

Figure 3: Mining by Clustered Bitmaps: (a) CLUB’s
corresponding to the FI-clusters for the example
database; (b) organization of a prototype bitmap.

partition. By this observation, we can cluster rows of
a club into multiple groups of which some are hard to
mine but most others may be obviously easy without
even mining. For example, empty rows (e-rows, each
with all bit-0’s) clearly belong to one group that can be
erased as they contribute no support count for the sub-
tree. The benefit from this idea is disclosed by Lemma
2.4, which can be directly inferred from Lemma 2.1 and
the definition of support.

Lemma 2.4. Given a FI-cluster C with kernel K, the
fraction of non-empty rows in club(C) is no more than
support(K).

To eliminate single bit-1 noises, we also consider a-
rows, each with only one bit-1 alone. Although they
contribute support counts in current cluster, the bit-
wise AND operation will result in empty rows for all its
children clusters. So after collecting the support counts,
we can safely erase all those rows. With all e-rows and
a-rows removed, the remaining rows are clustered into a
condensed clustered bitmap (CLUB). Figure 3(a) shows
the cluster tree with optimized CLUB’s for the example
database. We note that the level-1 bitmap is gray
because we do not start from it but directly generate
all level-2 CLUB’s as our initial bitmaps instead. The
number on the upper left corner of each cluster denotes
the mining order that is essentially depth-first except
level-2. At each level, our CLUB’s are much more
condensed and reduced than the whole bit-vectors in
Figure 2. For example, at level-2, the bit-vectors have
66 bits with 25 bit-1’s but our CLUB’s have only 18 bits
with 17 bit-1’s. Compared to the original database, the
total size of our CLUB’s at level-2 or on each depth-
first traversing path is also much smaller. The original
database has 672 bits for the 21 item ID’s (assumed to

be 32-bit integers) while our CLUB’s on the left-most
path have only 10 bits in total.

In representation, we organize each clustered
bitmap into a two-dimensional matrix by grouping each
bit column into a number of 32-bit integers. This ma-
trix can be laid out either ROW-wise or COLUMN-wise
or hybrid. Thereafter, we use capital ROW/COLUMN
for this integer array, with lowercase row/column still
referring to bit-row/bit-column of the bitmap. We lay
out and mine this integer matrix ROW-wise for bet-
ter cache locality because we will mine one cluster at a
time by computing ROWs of integers. To get a child
clustered bitmap, for each ROW of the parent bitmap,
we just AND the integer in the designated COLUMN
with all integers on the right in that ROW. Figure 3(b)
shows an example of one prototype clustered bitmap,
with 18 columns and 122 rows organized into a 4×18
ROW-majored matrix of integers. We note that the
last 6 bits of each integer at the bottom of the bitmap
are not used and empty. In the bitmap, the level of gray
represents the density of bit-1’s, the darker the denser.
Since we tend to order FI’s by supports, there is a clear
trend of increasing darkness from left to right.

3 Hierarchical Differential Refinement

As we have seen, the clustering approach can effectively
handle the sparseness of bitmaps by removing most of
the bit-0’s so that the sizes of the resulting CLUB’s
are drastically reduced. However, for dense databases
where the bitmaps are inherently dense, that technique
alone will be helpless. Can we also remove most of
the bit-1’s? In this section, we introduce a differential
mining technique that can directly attack this problem.
And besides, this technique can also largely reduce the
number of FI’s to be actually mined while still able to
infer all un-mined FI’s with exact supports.

3.1 Differential Optimization In each club, be-
sides e-rows and a-rows, we are also building a signifi-
cant number of p-rows, each with zero or more leading
0’s followed by trailing 1’s, if we try to order the coor-
dinate itemsets by supports. We also consider o-rows,
each with only one 0, and c-rows, each with zero or more
leading 1’s followed by trailing 0’s, to eliminate bit-0
noises or exceptional cases. For example, “0011111” is
a p-rows, “1111011” is an o-rows, and “1110000” is a c-
rows. For overlapping boundary cases of these rows, we
take them as equivalences. For an itemset X, by index-
ing its bit in a row by row[X], we say that X is covered
by a p-row if p-row[X] = 1, by an o-row if o-row[X] =
0, and by a c-row if c-row[X] = 0. All these rows rep-
resent common itemset patterns that can propagate to
children club’s, and the results can be determined with-

11
12
13
14

0
1
2
3
4

7
8
9

5
6

10

11
12
13
14

0
1
2
3
4

7
8
9

5
6

10

P(XY) − O(XY) − C(XY)=
8=

cnt(XY)

= O(Y)
= 1

O(XY)

P(X) − O(X) − C(X)=
11=

P(XY)

C(Y) = 3

O(Y) = 1

P(Y) = 14

C(X) = 1

O(X) = 1

P(X) = 13

c c c c c c c c c c c c c c cc
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c

c c c c c c
cc

c c c c c c c c c c
c c c c c c c c c

c c
c c c c c c c c c c c c c c c c

c c c c c c c c c

cc

−−−−−−−−
−−−−−− −−−−−−−−

−− −−

−− − −−−−−−−− −−−−−−−− −−−−−−−−

−−−−−−−− −−−−−−−− −− − −− −−

−−−−−−−− −−−−−−−− −− − −− −−

−−−−−−−− −−−−−−−− −− − −− −−

−−−−−−−− −−−−−−−− −− − −− −−

= C(Y) − C(X)
= 2

C(XY)

pp p p p p p p pp p p p p p p pppppppp
p p p p p p p p p p p p p p p pppp

p p p p p p p pp p p p p p p ppppppppppppp
p
pp

p p p p p p p pp p p p p p p pppppppppppppp p p p p p
p p p p p p p

p p p p p p pp p p p p p p ppppppppppppp p p p p p
ppppppp p p p p

p p p p p p p pp p p p p p p ppppppppppppp p p p p p
pppppp p p p p

ppppppp p p p p
ppppppp p p p p

p p p p p p p p p p
p p p p p p p p p p p
p p p p p p
p p p p p p p p p p p

p

p
p p p p p p p pp p p p p p p ppppppp

p p p p p p pp p p p p p p ppppppp p
p p p p p p p pp p p p p p p pppppp p

p p p p

p p p p p p pp p p p p p p

p p p p p p p pp p p p p p ppppppp pp

X Y

c−rows

o−rows

p−rows

p p−rowp p p p p p p pp p p p p p p pppppppp

p−row
e−row

p p p p p p p pp p p p p p p pppppppp
p−row

o−row
p−row

o−row
o−row

c−row
c−row

c−row

e−row

e−row

e−row

p p p p p p p pp p p p p p p ppppppp
p p p p p p p pp p p p p p p pppppppp

p p p p p p p pp p p p p p p ppppp
p p p p p p pp p p p p p p ppppppp p

p p p p p p p pp p p p p p p pppppppp

p p p p

p p p p p p pp p p p p p p

pp

o−row

XY

cnt(Y) = P(Y) − O(Y) − C(Y) = 10

cnt(X) = P(X) − O(X) − C(X) = 11

(a) patterned rows of parent club (b) resulting rows of child club

c
c
cc

c
c

o
o

o
o

o
o

o

p p p p p p p pp p p p p p ppppppp p o

o
o

(c) propagation counters

−

Figure 4: Propagation of Common Patterns. In the bitmaps, ’p’ means bit-1 and ’-’/’o’/’c’ means bit-0.

out even mining. For example, a full row with all bit-1’s
in the parent club’s will always result in full rows in all
its children. Definition 3.1 and Lemma 3.1 formalize
this idea.

Definition 3.1. Given a club with coordinate itemsets
[X1 X2 ... Xn], for each Xi where i = 1..n, we define

p(Xi) = number of p-rows that cover Xi,
O(Xi) = number of o-rows that cover Xi,
C(Xi) = number of c-rows that cover Xi,
P (Xi) = p(Xi) +

∑n
j=1 O(Xj) + C(Xn).

Lemma 3.1. Given a FI-cluster C, club(C), and one of
its coordinate itemsets X, when generating its child club
by bitvec(X) & bitvec(Y) for all Y ∈ C and Y > X
without reordering, p-rows in the parent will result in
p-rows/e-rows in the child, o-rows result in p-rows/o-
rows/e-rows, and c-rows result in c-rows/e-rows. And
P (XY), O(XY) and C(XY) contributed by these rows
can be derived by

P (XY) = P (X)−O(X)− C(X),
O(XY) = O(Y),
C(XY) = C(Y)− C(X).

Intuitively, in the parent club from left to right:
P (X) describes the number of bit-1 propagations cover-
ing X, supposing all o-rows and c-rows fully propagate
from the leftmost itemset; and O(X)/C(X) describes
that of bit-1 omissions/cancellations from the supposed
propagations. These common propagations naturally
extend to children club’s, if those rows were actually
mined. Figure 4 gives a typical example of such propa-
gations. We note that row 11 of the child club is counted
as a c-row instead of an e-row because taking an empty
row as a full propagation row with full cancellation will
be equivalent. Similar equivalence also applies for row
10.

Since e-rows, p-rows, o-rows, a-rows and c-rows in
the parent club will always result in the same set of
patterns in the child with known counting propagations

by Lemma 3.1, we can digest those rows once and then
remove them for ever. And we can get the support
counts of itemsets by summing up digested results and
those mined from the remaining bitmaps. Definition
3.2 and Lemma 3.2 summarize this idea. We call
this differential mining because we only mine rows of
bitmaps with different bits mixed disorderly.

Definition 3.2. (dCLUB) Given a FI-cluster C and
its clustered bitmap club(C), the differential clustered
bitmap of C, dCLUB(C), is defined to be club(C) with
all e-rows, p-rows, o-rows, a-rows and c-rows removed.

Lemma 3.2. Given a FI-cluster C and dCLUB(C), for
any X, Y ∈ C and X < Y , we have

S(XY) = P (XY)−O(XY)− C(XY) + δ(X,Y),
where P (XY), O(XY), C(XY) are given by Lemma
3.1 and δ(X, Y) is the count of XY to be mined in
dCLUB(C).

In practice, we incrementally mine clustered
bitmaps, remove those pattern rows, and accumulate
P,O, C counters level by level. When reordering FI’s
in child clusters before removing those pattern rows, we
need to make sure that the C counters are the same for
the FI’s to be reordered so that Lemma 3.1 and 3.2 still
hold for deeper level propagations.

3.2 Adaptive Bitmap Refinement When refining
the bitmaps along the cluster hierarchy, we not only re-
duce data and computation by bitmap rows, but can
also adapt our computation by columns. We determine
which two columns for itemsets X and Y are worth
ANDing by the estimated support count: E(XY) =
P (XY)−O(XY)−C(XY) + min{δ(X), δ(Y)}, where
δ(X) and δ(Y) are the support counts of X and Y re-
maining in their dCLUB. Obviously S(XY) 6 E(XY).
So if E(XY) < minsup count, itemset XY can not
be frequent. As the mining process goes on, the size
of dCLUB shrinks sharper and sharper such that the
support count contributed by δ becomes smaller and

smaller. As a result, the estimated support count will
become more and more accurate. Particularly, when
the dCLUB is empty, we have E(XY) = S(XY) =
P (XY)−O(XY)− C(XY). Actually, once there is no
bits left in the bitmap, we are done with mining current
subtree of FI-clusters and can simply infer all remaining
FI’s in that subtree by Lemma 3.3.

Lemma 3.3. For itemsets X1 < X2 < ... < Xn from
the same FI-cluster, if δ(Xi) = 0 for all i = 1..n, we
have

S(X1X2...Xn) = P (X1)−
∑n

i=1 O(Xi)− C(Xn).

Proof. This can be inferred from the following formula
which we can prove by induction over n:

P (X1X2...Xn) = P (X1)−
∑n−1

i=1 O(Xi)− C(Xn−1),
O(X1X2...Xn) = O(Xn),
C(X1X2...Xn) = C(Xn)− C(Xn−1).

When O(Xi) = 0 and C(Xi) = 0 for all i =
1..n, we simply have S(X1X2...Xn) = P (X1), which
also gives an efficient way to detect MFI’s with O(1)
complexity for any length. In Figure 3(a), for example,
the dCLUB’s for all bitmaps starting from level-2 would
have zero sizes! To infer the left most subtree, where we
initially have P (ca) = P (cf) = P (ce) = 2 and all O and
C counters being 0s in cluster 1, we simply compute the
support counts of joined itemsets by S(caf) = S(cae) =
S(cafe) = P (ca) = 2 and S(cfe) = P (cf) = 2.

4 Proposed Algorithm to Mine All FI’s

4.1 The D-CLUB Algorithm Combining the clus-
tering and differential techniques discussed in Section 2
and 3, we can mine all FI’s by adaptively refining the
clustered bitmaps by rows and columns along the clus-
ter tree hierarchy until all bitmaps are empty. Figure 5
summarizes our D-CLUB algorithm to mine all FI’s in
the cluster tree, using our differential clustered bitmaps.
Although we configure this algorithm to start from each
of the level-2 dCLUB’s that are generated from the origi-
nal database at the beginning of our mining process, this
algorithm applies to the level-1 bitmap as well. We mine
each subtree of clusters in a depth-first way, one cluster
at a time. Columns of bitmaps can be indexed by their
coordinate itemsets, e.g. dCLUB[X] and dCLUB[Y] in
line 7. All counters are associated with their itemsets in
the context. The ordering policy in line 15 will be dis-
cussed in next subsection. The function FI infer in line
18 will generate all inferred FI’s with support counts
directly evaluated by Lemma 3.3, without any further
mining computation.

4.2 Ordering and Self-adaptivity We note that
the high efficiency of our algorithm will be greatly

Algorithm D-CLUB(k, C, dCLUB, P , O, C, δ)
1 foreach X ∈ C begin
2 C′ = Ø, and initialize dCLUB′ to be empty
3 foreach Y ∈ C ∧ Y > X begin
4 Compute P (XY), O(XY), C(XY) by Lemma 3.1
5 S(XY) = P (XY)−O(XY)− C(XY)
6 if S(XY) + min(δ(X), δ(Y)) > minsup count then begin
7 dCLUB′[XY] = dCLUB[X] & dCLUB[Y]
8 S(XY) += population(dCLUB′[XY])
9 if S(XY) > minsup count then C′ = C′ ∪ {XY }
10 else Discard column dCLUB′[XY]
11 end
12 end
13 Output frequent itemsets in C′ with support counts in S
14 if |C′| > 2 then begin
15 Reorder each group of FI’s (with equal C counters) in C′ by

their bitmap supports
16 Remove all e/p/o/a/c-rows from dCLUB′

17 Accumulate P , O, C and summarize new δ counters for C′
18 if dCLUB′ = empty then FI infer(k+1, C′, P , O, C)
19 else D-CLUB(k+1, C′, dCLUB′, P , O, C, δ)
20 end
21 end

Figure 5: The D-CLUB Algorithm

supported if most of the bitmap rows turn out to be
those removable pattern rows. As the FI’s in each level-
k FI-cluster share a common (k-1)-subset, their bit-
vectors are expected to be so similar as to form a large
number of e-rows and full rows in the clustered bitmap.
However, since the bit-vectors are not always identical
after all, the formation of those pattern rows suffers
noises! The wider the clustered bitmap is, the more
noises will become possible. We can properly define the
order of FI’s to bring the widths of clustered bitmaps
under control and to absorb as many noises as possible
by p-rows, o-rows, a-rows and c-rows.

We first order 1-FI’s by their supports. In genera-
tion of level-2 FI-clusters by g(C, X) from the initial FI-
cluster (C0, <), both the less and greater 1-FI’s will have
limited few 1-FI’s to join to form children FI-clusters of
2-FI’s. For the less 1-FI’s, since they have less sup-
ports, they will have less probabilities to be joined with
too many 1-FI’s into 2-FI’s; for the greater 1-FI’s, al-
though they have greater chances to be joined with more
1-FI’s into 2-FI’s, they will automatically have less 1-
FI’s available (on the right) for join. So the sizes of
level-2 FI-clusters will be very limited and evenly bal-
anced in rough, so will the widths of level-2 clustered
bitmaps. For example, in Figure 1, 1-FI’s in cluster 0
{c, b, d, a, f, e} are ordered by supports, and the sizes of
its children clusters are no more than 3. However, if it
happened to be reversely ordered as {e, f, a, d, b, c}, the
largest child cluster {ef, ea, ed, eb, ec} would have size
of 5, making it harder to form narrow pattern rows in
the clustered bitmap.

For lower level FI-clusters, the FI’s will be auto-
matically ordered when they are generated by g(C, X).
However, we will adjust the order dynamically. For each
level-2 FI-cluster, we will reorder the 2-FI’s by their ac-

Table 1: Statistics of Databases and Parameters. Last 3 columns show ranges.
Dataset DB Size #Trans. #Items Avg / Max Trans. Size minsup Max Length of FI # All FI’s

(MB) (%)

gazelle 1.25 60K 498 3 / 267 (mixed) 1 - 0.1 2 - 6 (short) 78 - 4K
T10I4D100K 5.00 100K 1K 10 / 29 (narrow) 1 - 0.1 3 - 10 (short) 385 - 27.5K

kosarak 41.92 990K 41K 8 / 2.5K (mixed) 1 - 0.1 5 - 18 (mid-long) 383 - 765K
webdocs 1163.34 1692K 5.27M 177 / 71.5K (wide) 30 - 5 5 - 17 (mid-long) 172 - 166M

chess 0.49 3K 76 37 / 37 (mid-wide) 90 - 10 7 - 25 (long) 628 - 4.6B
pumsb 14.41 49K 7.12K 74 / 74 (mid-wide) 90 - 30 8 - 34 (long) 2.6K - 228B

tual supports. That way, not only are the widths of
deeper-level clustered bitmaps further limited, but also
will more p-rows be automatically formed. For deeper
levels, we adjust the order of FI’s with equal C counters
by their bitmap supports before we apply the differential
technique, so that more p-rows will be self-adaptively
formed. The remaining noises for e-rows will be largely
absorbed by a-rows, and those for p-rows will be mostly
covered by o-rows and c-rows.

With the widths limited and rows reduced, the
sizes of clustered bitmaps are also self-adaptive to the
database density. For sparse databases, where support
is very small, Lemma 2.4 gives much less rows after
all those e-rows are removed. For dense databases, the
dense bit-1’s are incrementally refined and organized
into clustered bitmaps where more and more rows
will become p-rows, e-rows, o-rows, a-rows and c-rows,
which can be permanently removed, resulting in much
less rows. So the differential technique combined with
the clustering technique can not only remove most bit-
0’s for sparse databases, but also remove most bit-1’s
for dense databases, both resulting in extraordinarily
reduced sizes in our dCLUB’s.

5 Experimental Results

In this section, by comparing D-CLUB with various
state-of-the-art Frequent Pattern Mining algorithms in
the literature, we demonstrate the self-adaptivity of our
algorithm in overall performance for a wide variety of
parameters, and on various databases spanning dense
and sparse, real and synthetic, small and large, and so
on. We attribute the significant performance improve-
ment to our algorithmic features that we will analyze
in more detail. We choose 6 datasets with increasing
densities and various other properties outlined in Table
1. Most of the datasets are obtained from FIMI reposi-
tory [1], where detailed descriptions can be found. The
gazelle dataset comes from real click-stream and pur-
chase data and was used in KDD Cup 2000 competition.
All datasets are in horizontal binary format. All the ex-
periments were run on a LINUX PC with 3 GHz Intel
Xeon CPU and 1 GB memory, unless otherwise noted.

5.1 Overall Performance Comparison For each
of the datasets at different support levels, we mine all
FI’s with exact supports computed and compare the
total execution time, including all preprocessing time,
for various algorithms. We also measure their peak
memory usage for a thorough comparison. In order
to save experiment time, in all algorithms, we did not
output the FI’s to files (hundreds of GB in size for
some cases). We use the implementation of Apriori
by Borgelt and FP-growth* by Zhu et al from FIMI’04
[1], Eclat with diffset optimization by Zaki et al, and
MAFIA version 1.4 by Burdick et al. We also compare
D-CLUB with two hybrid algorithms, LCM [28] and
kDCI [18], that were recently proposed and recognized
as best implemented ones in FIMI’04.

Figure 6 shows that our algorithm performs best
in all cases. For the first 3 sparse datasets, MAFIA
performs much worse than Apriori and Eclat because
of its inefficiency in sparse bitmaps, FP-growth* shows
little advantage either, but D-CLUB handles the sparse-
ness particularly well and gains 2-10 times performance
improvement instead. In the last 2 dense datasets, FP-
growth* prevails over the traditional algorithms by its
compact and sophisticatedly-designed FP-tree, but D-
CLUB still out-performs it by up to 6 times benefiting
from much more reduced and simplified bit operations
in arrays. In the webdocs dataset, due to the large data
size, Apriori could not finish in days, Eclat crashed due
to memory shortage, and even FP-growth* ran endlessly
at supports lower than 15% because of large tree sizes
and poor memory locality. MAFIA originally could not
run because it did not support that many items, but af-
ter we increased that capability, it ran well. It is shown
that D-CLUB handles this case much better, especially
at lower supports, where it gains up to 20 times speedup
over MAFIA and more than an order of magnitude over
FP-growth*. Compared with LCM and kDCI, our al-
gorithm also runs times faster than these best imple-
mented algorithms in most cases.

In terms of memory usage, as Figure 7 shows, our
algorithm is also the best, mostly 2-8 times better than
the second best that varies for cases. This low mem-

 0.01

 0.1

 1

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Minimum Support (%)

gazelle

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Minimum Support (%)

T10I4D100K

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Minimum Support (%)

kosarak

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Minimum Support (%)

webdocs

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Minimum Support (%)

chess

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 0.1

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Minimum Support (%)

pumsb

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

Figure 6: Total Execution Time for Mining All FI’s in Different Datasets.

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)

gazelle

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)

T10I4D100K

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)

kosarak

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 10

 100

 1000

 10000

 5 10 15 20 25 30

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)

webdocs

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)

chess

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

 0.1

 1

 10

 100

 1000

 30 40 50 60 70 80 90

M
em

or
y

U
sa

ge
 (

M
B

)

Minimum Support (%)

pumsb

D-CLUB
FP-growth*

MAFIA
Eclat

Apriori
LCM
kDCI

Figure 7: Memory Usage for Mining All FI’s in Different Datasets.

Table 2: Data Reduction and Detailed Row Distributions in Level-2 Clustered Bitmaps.

Dataset (minsup) Total dCLUB Size Avg / Max Row Distributions
(MB) club Width %e-rows %p-rows %o-rows %a-rows %c-rows

gazelle (0.2%) 0.011 4 / 14 99.34% 0.10% 0.02% 0.36% 0.00%
T10I4D100K (0.5%) 0.001 2 / 5 99.17% 0.21% 0.04% 0.56% 0.01%

kosarak (0.5%) 0.384 3 / 9 98.15% 0.75% 0.12% 0.64% 0.00%
webdocs (15%) 18.377 7 / 19 76.07% 13.68% 1.90% 1.83% 0.00%

chess (50%) 0.046 15 / 24 20.04% 47.54% 13.73% 2.78% 0.00%
pumsb (60%) 0.587 16 / 28 14.52% 60.10% 9.75% 4.22% 0.00%

ory requirement mainly benefits from the drastically re-
duced data sizes of our differential clustered bitmaps
and the divide-and-conquer characteristic of our algo-
rithm. We note that results well above 1GB were ob-
tained on a machine with 3GB memory (running for
days). And in the webdocs dataset, data for Eclat is not
shown because the algorithm could not allocate enough
memory to finish.

5.2 Feature Analysis for D-CLUB In our algo-
rithm, the most critical part is to cluster the bitmaps in
order to form as many pattern rows as possible. So the
widths of bitmaps are very important, the narrower the
less noises. Our dynamic clustering by ascending sup-
port can self-adaptively balance and narrow down the
widths of the clustered bitmaps. As a result, a signifi-
cant portion of our bitmaps ends up as pattern rows to
be removed from bitmap refinement, as shown in Table
2. In sparse datasets, e-rows dominate, while in dense
datasets, p-rows plus e-rows and o-rows dominate. Af-
ter those pattern rows are removed, the total sizes of
level-2 dCLUB’s are 10-5000 times smaller than those
of the original databases.

In reducing the amount of computation, our algo-
rithm also shows advantage by reducing the number of
FI’s to be actually mined and inferring most FI’s di-
rectly via counter summarization. Figure 8 shows the
percentage of FI’s that are inferred in each level. From
the traces, we can see that the percentage rapidly grows
above 50% in the first couple of levels, and soon in-
creases to 100%, i.e., all remaining subtrees of FI’s can
be fully inferred without further mining and their sup-
port counts are calculated by Lemma 3.3.

Figure 9 summarizes the performance impacts from
different features of our algorithm. In each case, there
are four bars. The first bar, normalized to 1, is for our
fully-optimized D-CLUB, the second one for D-CLUB
without clustering (mining the original unclustered bit-
vectors), the third one for D-CLUB without differential
optimization (only sparse rows are removed, unaware
of dense rows or P,O, C counters), and the fourth one
for D-CLUB with all optimizations but using static

100%

75%

50%

25%

0

 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

P
er

ce
nt

ag
e

of
 In

fe
rr

ed
 F

I’s

Level (k)

Trace of Inferred FI’s

gazelle (0.2%)
T10I4D100K (0.5%)

kosarak (0.5%)
webdocs (15%)

chess (50%)
pumsb (60%)

Figure 8: Per-level Percentage of Inferred FI’s.

 0.1

 1

 10

 100

 1000

pumsb
60%

chess
50%

webdocs
15%

kosarak
0.5%

T10I4D100K
0.5%

gazelle
0.2%

R
el

at
iv

e
T

im
e

D-CLUB
No Clustering
No Differential

Static Clustering

Figure 9: Performance Impacts in D-CLUB.

clustering by lexicographic order. We see that the
differential mining technique plays an important role
in dense databases but only with dynamic clustering
ordered by supports. And the bitmap algorithm can
not perform well without clustering in all cases.

6 Related Work

6.1 Itemset Trees There are quite a few itemset
tree representations in previous work. However, their
shapes, concepts and/or usages are quite different from
those of the FI-cluster tree in our work. Our FI-cluster
tree is graphically different from the lexicographic tree

illustrated in [2], the FP-tree in [12, 11] or AFOPT
in [15]. Note that FP-tree and its variants (including
AFOPT) are representations of the whole data space
instead of the FI space, Also, instead of being clustered,
itemsets are mixed in the tree. For example, 1-FI’s are
all over the tree instead of only in level one, and each 1-
FI may has multiple nodes with different counts in the
tree. This mixed organization substantially adds the
cost to mine the FP-tree.

Our depth-first traversing approach is also different
from the traditional ones. First, we traverse one cluster
instead of one itemset at a time, i.e., we will finish
traversing all the itemsets in a cluster before going
deeper. Second, we can avoid traversing a lot of
subtrees and infer all those untraversed FI’s with exact
supports, while other algorithms including those mining
MFI’s/CFI’s have to reach the leaf itemsets if they are
MFI’s/CFI’s or just candidates.

6.2 Bitmap Representation There are a number
of algorithms that are also based on bitmap representa-
tion of databases. The major differences between them
and our algorithm lie in the organization of the bitmaps
and in how to mine and optimize the bitmaps. To
our knowledge, our work is the first one to cluster the
bitmaps into rectangular matrices and to mine them by
adaptive differential refinement.

HBM [9], VIPER [25] and MAFIA [7] use vertical
bitmap that is a direct bit translation of the original
database. While the initial bitmap is usually sparse,
the intermediate bitmaps are even sparser and huge in
size, requiring a large amount of processing time and
huge storage space. HBM avoids unnecessary process-
ing on some grouped bit-0’s by using secondary bitmap
indices to guide the algorithm to dense bits. VIPER
uses some generic bit compression algorithm to com-
press/decompress the bitmap to save storage space, but
has to mine every bit no matter 0 or 1. It is also uniquely
different in that it does not mine bitmap directly. In-
stead, it transforms bit-vectors back into tid-lists and
performs intersection. This tedious transformation be-
tween tid-vectors and tid-lists back and forth adds ex-
tra overhead instead of reducing the traditional inter-
section computation, no need to mention the compres-
sion/decompression overhead. MAFIA is different from
previous two (and D-CLUB) in that it mines itemset
X = Pi1i2 by bitvec(Pi1) & bitvec(i2), instead of by
bitvec(Pi1) & bitvec(Pi2), where P is the prefix and
i1, i2 are the tail items. It conditionally avoids unnec-
essary operation on some bit-0’s by projecting the bit-
vector of the tail item against that of the head itemset
on the fly, which is actually a full scan for each sparse
bit-vector and turns out to be alternatively expensive.

Differently, in D-CLUB, we permanently remove most
of the bit-0’s (and also bit-1’s) by using clustering and
differential techniques so that we do not waste time pro-
cessing those unnecessary bits again and again.

In addressing the I/O issue caused by the increas-
ingly large database or its bitmap translation, these
three algorithms use quite different approaches than D-
CLUB. HBM is limited to reducing the number of scans
of the original database/bitmap, at the cost of min-
ing more CI’s. MAFIA tries also to reduce the num-
ber of full scans of the database/bitmap by traversing
the itemset tree in depth-first way, but it has to scan
multiple times the bit-vectors for revisited tail items.
VIPER directly attacks the size of bitmap by compres-
sion, but the compression ratio is upper-bounded by 32
and practically much lower in average cases [31]. Be-
sides, since it is a breadth-first approach, it will generate
intermediate bitmaps in order not to scan and mine the
original bitmaps again and again. As mentioned, the
total size of the intermediate bitmaps in one level can
be huge, and it either suffers this expensive I/O, or skip
this stage of bitmaps, at the cost that the next iteration
has to start all over again from some earlier stage. How-
ever, in D-CLUB, we directly and effectively address the
sparseness and huge size of the bitmaps through our
unique clustering and differential techniques. We re-
duce the original database into level-2 differential clus-
tered bitmaps as our initial database, and achieve aver-
age data reduction ratio of several orders of magnitude.
We avoid the exponentially growing width/size of inter-
mediate bitmaps by mining the cluster tree in a depth-
first way, so that we only need to handle one clustered
bitmap at a time. While a clustered bitmap is guaran-
teed to be much smaller than the original bitmap and
to reduce level by level, it keeps shrinking more sharply
as we traverse deeper and incrementally apply cluster-
ing and differential optimizations. Also the organiza-
tion of our bitmaps is very different. While the other
three always lay out the whole bitmap into a pile of
long vertical bit-vectors, we decouple the original verti-
cal bitmap into multiple smaller clustered bitmaps and
organize each of them into a ROW-majored matrix of
integers. This ROW-majored organization enables us
to optimize and mine the bitmaps both vertically and
horizontally! While retaining the advantage of vertical
bitmap mining, our ROW-wise mining approach usually
results in better cache locality than mining the whole
long vertical bit-vectors a pair at a time. We note that
HBM alleviates this length problem by processing one
horizontal partition at a time.

Another algorithm that makes use of bitmap rep-
resentation is DepthProject [2], which is uniquely dif-
ferent in that it uses a projected horizontal bitmap

to mine each itemset subtree. The projected bitmap
only contains bits for the working set of items and is
expected to be dense. However, when traversing the
lexicalgraphical tree in depth-first way, the algorithm
needs to scan the original database again and again,
only to extract the projected portion each time, which
is very expensive in both I/O and projection compu-
tation. Also, like MAFIA, it is a selective projection
approach, and when the criteria is not met, it works
on the unprojected database. And the definition of the
bitmap is slightly different. Instead of itemsets, the bits
represent the presence/absence of single items in the
projected database.

7 Conclusions and Future Work

In this paper, we presented a novel self-adaptive al-
gorithm D-CLUB that is based on our fundamentally
new data clustering and differential bitmap refinement
techniques. We showed that our techniques directly ad-
dressed the major Frequent Pattern Mining issues by
organizing the drastically reduced data in rectangular
matrices and performing adaptive bitmap refinement
through fast aggregate bit operations. With the data
size and representation fundamentally improved in our
differential clustered bitmaps, the mining computation
was also substantially reduced and simplified. Our per-
formance results showed significant improvements over
existing algorithms for a wide variety of cases.

The tiny data sizes, extremely fast speed, and very
simple instructions, make it very attractive to imple-
ment our algorithm on hardware so that even a hand-
held device can promptly perform practical Frequent
Pattern Mining tasks that could only be handled by
supercomputers in the old days! On the other hand,
the independence between clustered bitmaps enables us
to divide and conquer very large scale problems, where
the databases can be clustered, distributed and inde-
pendently mined across a large number of parallel pro-
cessors with linear scalability.

References

[1] Frequent Itemset Mining Implementations Repository.
http://fimi.cs.helsinki.fi/.

[2] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad.
Depth first generation of long patterns. In Proc. ACM
SIGKDD’00, August 2000.

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Min-
ing association rules between sets of items in large
databases. In Proc. ACM SIGMOD’93, May 1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. VLDB’94, September 1994.

[5] R. Bayardo. Efficiently mining long patterns from
databases. In Proc. ACM SIGMOD’98, June 1998.

[6] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules for
market basket data. In Proc. ACM SIGMOD’97, May
1997.

[7] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA:
A maximal frequent itemset algorithm for transational
databases. In Proc. IEEE ICDE’01, April 2001.

[8] B. Dunkel and N. Soparkar. Data organization and ac-
cess for efficient data mining. In Proc. IEEE ICDE’99,
March 1999.

[9] G. Gardarin, P. Pucheral, and F. Wu. Bitmap based
algorithms for mining association rules. In BDA’98,
October 1998.

[10] K. Gouda and M. J. Zaki. Efficiently mining maximal
frequent itemsets. In Proc. IEEE ICDM’01, November
2001.

[11] G. Grahne and J. Zhu. Efficiently using prefix-trees
in mining frequent itemsets. In IEEE ICDM’03 Work-
shop FIMI’03, November 2003.

[12] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In ACM SIGMOD’00,
May 2000.

[13] D.-I. Lin and Z. M. Kedem. Pincer-search: A new
algorithm for discovering the maximum frequent set. In
Proc. 6th Int’l. Conf. Extending Database Technology,
March 1998.

[14] J.-L. Lin and M. H. Dunham. Mining association rules:
Anti-skew algorithms. In Proc. ICDE’98, February
1998.

[15] G. Liu, H. Lu, Y. Xu, and J. X. Yu. Ascending fre-
quency ordered prefix-tree: Efficient mining of frequent
patterns. In Proc. IEEE 8th Int’l. Conf. Database Sys-
tems for Advanced Applications, March 2003.

[16] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent
item sets by opportunistic projection. In Proc. ACM
SIGKDD’02, July 2002.

[17] C. Lucchese, S. Orlando, and R. Perego. DCI Closed:
A fast and memory efficient algorithm to mine fre-
quent closed itemsets. In IEEE ICDM’04 Workshop
FIMI’04, November 2004.

[18] S. Orlando, C. Lucchese, P. Palmerini, R. Perego,
and F. Silvestri. kDCI: a multi-strategy algorithm for
mining frequent sets. In IEEE ICDM’03 Workshop
FIMI’03, November 2003.

[19] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and
M. J. Zaki. Carpenter: Finding closed patterns in
long biological datasets. In Proc. ACM SIGKDD’03,
August 2003.

[20] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash
based algorithm for mining association rules. In Proc.
ACM SIGMOD’95, May 1995.

[21] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. Lecture Notes in Computer Science, 1540:398–
416, 1999.

[22] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang.
H-Mine: Hyper-structure mining of frequent patterns
in large databases. In Proc. IEEE ICDM’01, November

2001.
[23] J. Pei, J. Han, and R. Mao. CLOSET: An efficient

algorithm for mining frequent closed itemsets. In ACM
SIGMOD’00 Workshop on Research Issues in Data
Mining and Knowledge Discovery, May 2000.

[24] A. Savasere, E. Omiecinski, and S. B. Navathe. An
efficient algorithm for mining association rules in large
databases. In Proc. VLDB’95, September 1995.

[25] P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia,
M. Bawa, and D. Shah. Turbo-charging vertical mining
of large databases. In Proc. ACM SIGMOD’00, May
2000.

[26] H. Toivonen. Sampling large databases for association
rules. In Proc. VLDB’96, September 1996.

[27] T. Uno, T. Asai, Y. Uchida, and H. Arimura. LCM: An
efficient algorithm for enumerating frequent closed item
sets. In IEEE ICDM’03 Workshop FIMI’03, November
2003.

[28] T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Ef-
ficient mining algorithms for frequent/closed/maximal
itemsets. In IEEE ICDM’04 Workshop FIMI’04,
November 2004.

[29] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for
the best strategies for mining frequent closed itemsets.
In Proc. ACM SIGKDD’03, August 2003.

[30] Y. Xu, J. X. Yu, G. Liu, and H. Lu. From path tree
to frequent patterns: A framework for mining frequent
patterns. In Proc. IEEE ICDM’02, December 2002.

[31] M. J. Zaki and K. Gouda. Fast vertical mining using
diffsets. In Proc. SIGKDD’03, August 2003.

[32] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient
algorithm for closed itemset mining. In Proc. 2nd
SIAM Int’l. Conf. on Data Mining, April 2002.

[33] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
Technical Report TR651, University of Rochester, July
1997.

[34] Q. Zou, W. W. Chu, and B. Lu. SmartMiner: A depth
first algorithm guided by tail information for mining
maximal frequent itemsets. In Proc. IEEE ICDM’02,
December 2002.

