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Abstract The response of a composite material is the result
of a complex interplay between the prevailing mechan-
ics and the heterogenous structure at disparate spatial and
temporal scales. Understanding and capturing the multi-
scale phenomena is critical for materials modeling and can
be pursued both by physical simulation-based modeling
as well as data-driven machine learning-based modeling.
In this work, we build machine learning-based data mod-
els as surrogate models for approximating the microscale
elastic response as a function of the material microstruc-
ture (also called the elastic localization linkage). In building
these surrogate models, we particularly focus on under-
standing the role of contexts, as a link to the higher scale
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information that most evidently influences and determines
the microscale response. As a result of context modeling, we
find that machine learning systems with context awareness
not only outperform previous best results, but also extend
the parallelism of model training so as to maximize the
computational efficiency.

Keywords Materials informatics · Machine learning ·
Elastic localization prediction · Ensemble learning ·
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Introduction

There has been a growing popularity in the use of data
mining and machine learning methods in studies of various
phenomena in materials science. In particular, parametric
models are learned from massive amounts of collected data,
either from laboratory experiments or from computational
simulations, in order to represent, describe, and approximate
process-structure-property (PSP) relationships for materi-
als systems [1–3]. Models built in such manner are often
used as surrogate models for the more expensive and/or
computationally intensive physically based models (e.g.,
thermochemical and microstructural evolution models). In
contrast to the modeling style in physical models, where we
explicitly specify equations, physical constraints, variable
spaces to the extreme, data models often free the designers
from such specifics. The logical and mathematical formula
they use tend to form automatically or semi-automatically,
with only the supply of data examples, and specifica-
tions of model structures, loss functions, and optimizers, to
extract unknown correlations between inputs and outputs.
In structure-property modeling of hierarchical materials, the
microstructure serves as the input, and the output is usually
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a microscale distribution of a field of interest (e.g., stress,
strain). Data models offer fast and efficient solutions for the
inverse problems posed in materials design. The potential of
materials data science approaches has been demonstrated in
numerous earlier works [1–28].

The field of machine learning has advanced significantly
in recent years, in part due to the prominent progress made
in supervised learning [29]. These advances have opened
new avenues for stronger collaborations between materials
scientists and computer scientists. In these collaborations,
it is important to judiciously fuse data-driven modeling
with the known or established principles in materials sci-
ence. It should be recognized that data models are generally
designed with computational efficiency as the primary goal.
And what they eventually end up learning are almost purely
data correlation. They are known to operate in an agnos-
tic manner and function as a black box. On the other hand,
physically based models aim to explicitly address the pre-
vailing mechanisms and the complex internal structure of
the material system studied. Therefore, it stands to reason
that a thoughtful fusion of these approaches can, in prin-
ciple, allow us to exploit the respective benefits of both
approaches. We exploit a fusion design by making sure that
it, on the one hand, rightfully depicts the characteristic of
materials systems, and on the other hand, stresses the com-
putational parallelism in function optimization and expands
the converage of data diversity.

An important attribute of most materials systems
employed in advanced technologies is that they exhibit het-
erogeneous structures at a multitude of hierarchical length
scales. Consequently, most materials phenomena of inter-
est are inherently multiscale, and the communication of
the salient information between the hierarchical structure
scales is the central challenge in any modeling and simula-
tion effort. Historically, the multiscale materials modeling
efforts have addressed either homogenization (communica-
tion of information from the lower length scale to the higher
length scale) [30–33] or localization (communication of
information from the higher length scale to the lower length
scale) [8, 13, 14, 34–36]. Although both homogenization
and localization have been studied extensively in litera-
ture using physically based approaches [31–33, 37], recent
work has identified the tremendous benefits of fusing these
approaches with data-driven approaches [8, 13, 14, 30, 34–
36]. However, most of the prior effort has only addressed
a limited number of the multiscale features. For example,
many of the previous efforts are not readily extendable
to high contrast composites (i.e., large differences in the
properties of the microscale constituents in the composite).

Other predictive modeling work in materials science
domain, whether it is to predict the melting temperatures of
binary inorganic compounds [38], the formation energy of
ternary compounds [6], the mechanical properties of metal

alloys [39], or which crystal structure is likely to form at
a certain composition [40, 41], also sees the limitation of
learning with a single agent.

In this paper, we design a new data modeling approach
that is explicitly hierarchical to be able to take advantage
of the multiscale characteristics of a heterogeneous material
structure. The design is to be manifested through the idea of
context detection, which is a concept used in reinforcement
learning and robotics to deal with non-stationary environ-
ments [42]. Context detection is defined here as finding the
right high-level, low-dimensional, knowledge representa-
tion in order to create coherent learning environments. Once
different contexts are identified from data, one can build
separate models out of each context group. This approach
has many similarities with the divide and conquer scheme,
which breaks a large, difficult problem into a set of small,
simpler problems.

This work examines the advantage of building context
aware learning systems by solving an elastic localization
problem in high contrast composites. More specifically, we
aim to provide a computationally efficient surrogate model,
with parameters learned from data, to predict the microscale
elastic strain field in any given voxelized three-dimensional
(3-D) volume element of a high contrast composite sub-
jected to a prescribed macroscale elastic strain (applied as
a periodic boundary condition). We address the multiscale
challenge by identifying and representing the higher level
data distribution through context detection. In our designed
two-stage system, the first stage attempts to find the con-
texts in data, while the second stage builds context specific
learning models. We compare the results from this new
data model with benchmarks from previous work [8] and
demonstrate that the two layer data modeling scheme pro-
vides a viable approach for capturing the elastic localization
linkages in high contrast composites.

Methods

Localization: Problem and Data Description

As mentioned in the previous section, multiscale model-
ing and materials design involves a bi-directional exchange
of information between the material length scales (i.e.,
homogenization and localization). Most efforts have been
focused on the homogenization; however, localization is as
crucial as homogenization for materials design. Localiza-
tion denotes the distribution of response field at the lower
length scale for a load imposed on the higher length scale.
Localization in multiscale materials modeling is depicted in
Fig. 1. The target is to find the microscale response field
of the microstructure shown. The microstructure is embed-
ded at a macroscale material point. A physically based



162 Integr Mater Manuf Innov (2017) 6:160–171

Fig. 1 The depiction of the workflow of localization employed in mul-
tiscale materials modeling. The local response of an MVE shown in
the middle can be obtained by solving the governing field equations of

a physics-based model based on the loading conditions on the location
of MVE in macroscale (Color figure online)

model needs to be executed on the microstructure for the
boundary conditions extracted from macroscale considera-
tions. Since these models involve solving governing field
equations that account for highly complex heterogeneity
(at the microscale), they are often computationally cumber-
some. A data-driven model offers an opportunity to bypass
the physically based approach in a computationally effi-
cient manner, while providing good predictions. Successful
extraction and utilization of such data-driven models can
dramatically accelerate the multiscale materials modeling
and design tasks.

Data-driven models for the localization problem in dif-
ferent material systems subjected to a variety of materials
phenomena have been the focus of our prior efforts [13,
14, 34–36, 43, 44]. Most of these efforts were built on
model forms suggested by Kroner’s expansions obtained
from classical statistical continuum theories [45, 46]. In a
recent study [8], we explored alternative approaches that
were based completely on machine learning techniques that
demonstrated significant promise for high contrast com-
posites. This is particularly signficant because Kroner’s
expansions are known to be applicable to only low to mod-
erate contrast composites [45, 46]. The machine learning-
based localization approaches can therefore fill a critical
gap, where there do not currently exist versatile and robust
solution methodologies that are also computationally low
cost.

Elastic localization in a high contrast composite mate-
rial system serves as a good model system for exploring
the emergent machine learning-based data-driven models
for localization. In these problems, the goal is to predict the
local elastic strain field at the microscale in a two-phase
composite material system with constituents that exhibit lin-
ear isotropic elastic constitutive response. Because of our
interest in high contrast composites, we will assume that the
constituents exhibit a contrast of 10 in Young’s modulus of
microscale constituents with the same Poisson ratio of 0.3.

Two thousand five hundred microscale volume elements
(MVE) were generated with 100 distinct volume fraction
values. In other words, the entirety of the 2500 MVEs is
composed of 100 distinct groups where all 25 MVEs in

each group had the same volume fraction. The two dis-
tinct phases are distributed in the MVEs randomly. From the
set of 25 MVEs generated for each volume fraction group,
15 MVEs were used for the training/calibration, and the
other 10 MVEs were used for validation of the linkages.
Therefore, a total of 1500 MVEs are used in the calibra-
tion of linkages while the remaining 1000 microstructures
are used for the assessment of the performance of the link-
ages. Each MVE has 21 × 21 × 21 = 9261 voxels. In all
the MVEs used in this study, each voxel is completely occu-
pied by one of the microscale constituents (i.e., no voxel
is occupied by mixtures of the two constituent phases; also
called eigen-microstructures [47]). The microscale elastic
strain distributions in eachMVEwere computed using finite
element (FE) models executed using the commercial soft-
ware package, ABAQUS [48]. Linear elastic deformation
involves six unique strain values that are represented by εij

where i, j = 1, 2, 3 and εij = εji . We will restrict our
attention in the present study to the predictions of the strain
component, ε11 (we anticipate that the protocol can be easily
repeated for the other strain components). Periodic bound-
ary conditions were imposed on each MVE in such a way
that only the average macroscale value of ε11 was nonzero
(i.e., 〈ε11〉 �= 0 where 〈〉 represents the macroscale aver-
age). Indeed, the boundary conditions described above can
be repeated for each of this macroscale six strain compo-
nents. If this is done, the response field of a volume can
be predicted for any arbitrary loading condition using the
superposition principle ([49, 50]).

Machine Learning Problem Definition

A discretized microstructure function, mh
s , is used in this

paper to mathematically describe the microstructure in any
selected MVE. More precisely, mh

s denotes the volume frac-
tion of local state h (i.e., black or white phases in Fig. 1)
in the spatial voxel of interest, s, where s = 1, 2, ..., S. For
the case studies shown here, MVEs are generated as eigen-
microstructures [47], where each voxel is occupied by a
single discrete local state and they have a size of 21×21×21
resulting in total of S = 9261 voxels. In other words, mh

s



Integr Mater Manuf Innov (2017) 6:160–171 163

takes values of 0 or 1 depending on the local state occupy-
ing each voxel in each MVE. Similar descriptions have been
successfully implemented in prior work for microstructure
classification [9, 10, 25], microstructure reconstructions
[47], and establishing process-structure-property linkages
[28, 30, 34, 44].

We reiterate here that the learning problem of interest is
to predict the local response ps (i.e., ε11 in spatial voxel
s) based on the local microstructure mh

s and its neighbor-
hood information. The combination of information at spatial
voxel s and its neighborhood can be organized using a triplet
of indices (s, l, and t), described in detail below:

• Neighborhood level l is used to group neighbors based
on their distance from the main voxel of interest. More
specifically, it includes all voxels in the neighborhood
that are at a center-to-center Euclidean distance of

√
l

from the voxel of interest s. For example, the neigh-
borhood level l = 0 contains only the voxel s as the
distance is 0. For l = 1, there are six voxels which are
one cell away in both negative and positive reference
directions of the three-dimensional coordinate system.
As another example, there are no neighbors at l = 7
since there are no voxels that corresponds to center-
to-center euclidean distance

√
7 away from spatial

voxel s.
• Index t enumerates the voxels in a neighborhood level.

All voxels in the same neighborhood level have the
same importance; thus, they are simply indexed with
integers. For instance, voxels at neighbor level l = 1 for
a selected voxel s can be indexed as (s, 1, 0), (s, 1, 1),
(s, 1, 2), (s, 1, 3), (s, 1, 4), and (s, 1, 5). MVEs used
in this study are assumed to be periodic and periodic
boundary conditions are invoked in all FEM simula-
tions. If the voxel in interest, s is close to the border of
MVE, the neigborhood information is selected accord-
ing to the periodicity in the microstructure.

Following this nomenclature, ms,0,0 actually corresponds
to microstructure function mh

s which is the local microstruc-
ture information without the neighborhood information. In
other words, ms,0,0 is considered the focal voxel and ps

is its corresponding local response. In our prior work [8],
the main protocol we followed for predictive modeling was
composed of two key processes: (i) feature extraction, and
(ii) construction of a regression model where the local
neighborhood information ms,l,t and the local response ps

were used as input and output, respectively. The utility of
each process was evaluated and demonstrated through an
ablation test with various data experiments. However, in
that work, all data experiments performed predictive mod-
eling in a “global” fashion, where MVEs that span a long
spectrum of structural (morphological) characteristics were
used in the same model without discrimination. The result

of this approach was a single-agent model learned from all
available MVEs. The target of this work is to improve the
approach presented in [8] by increasing the efficiency in
building the model and increasing the accuracy of predicting
the linkages.

The concept of this work is to enforce context aware-
ness to the modeling. We define contexts in this scenario as
the a priori processing and/or structural information that is
responsible for the end property. The means to achieve con-
text awareness is through multi-agent learning. The research
on multi-agent learning has been pursued by the machine
learning community but was mainly limited to reward-based
reinforcement learning problems [51]. Supervised learning
problems, as those we encounter in this work, are not sys-
tematically addressed. Another related area of research is
ensemble learning, where a collective of different classi-
fiers are trained on the same data and the final outcome is
formed by an aggregation (usually, an average) of their indi-
vidual results. However, in an ensemble, the fact that each
agent learns from the same data diminishes the diversifica-
tion impact that supposedly could help with the prediction
performance. Although in some cases as random forest clas-
sifiers, multiple agents are built from randomized subsets
of data, the lack of prior knowledge of each subdivision
makes it less applicable to our problem. In our design, we
make use of existing information from microstructure and
convert it into useful representation of contexts, and con-
sequently have multiple agents that separately learns from
each context.

Design of Experiments

The variation of volume fractions in MVE samples first
inspired us to construct a divide-and-conquer scheme with
multiple learners, each learned from and designated to pre-
dict for a specific data class. The key is to divide data
samples into multiple classes. The division strategy can
be either a hard threshold (e.g., based on values of vol-
ume fraction) or a fuzzy statistical boundary. While volume
fraction-based division is relatively straighforward, it may
not result in the best model. Indeed, in high contrast com-
posites, the mechanical response of different MVEs can
be dramatically different even with the same volume frac-
tion. Therefore, it is necessary to seek more generalization
by building a learning system that automatically extracts
microstructure characteristics, in order to group statistically
similar MVEs into the same context.

The basic idea explored in this work is to create a homo-
geneous modeling environment for each machine learning
predictor by assembling MVEs with structural similarity.
This two-level learning intends to break down a large-scale
prediction problem into multiple subproblems, each hav-
ing the same or similar setup, but targeting a different facet
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of input distribution. In the end, the multiple sub-models
learned are selectively and collaboratively applied on new
samples, and one or more sub-models can be invoked to
contribute to the final prediction.

The outline of such a learning structure is shown in
Fig. 2b. Compared with Fig. 2a, which is the framework
used in [8], the major advancement is the designed two
layers of feature extraction: the macro-layer, and the micro-
layer. The macro-layer features are generated to probe
MVE-level similarity in structures. Once a representation of
similarity is defined, the original set is divided into multiple
subsets with low inter-similarity and high intra-similarity.
MVEs within the same context group possess higher resem-
blance with each other, in terms of solely their structure
representation, than those from different groups. Micro-
layer features, on the other hand, specialize in learning the
voxel level characteristics. The influence of various selec-
tions of micro-level features has been discussed in [8]. In
this paper, we adopt the set of 57 features that gave the
best performance in [8]. Features are listed in Table 1. prh

l

stands for the fraction of voxels with microstructure phase
h at neighbor level l. Prh

l stands for the fraction of voxels
with microstructure phase h up to neighbor level l. Ih

norm is
the normalized impact of all 12 levels of neighbors of phase
h. Definitions are provided in Table 2 (further definitions
for S3 and S9, the symmetry indices, can be found in [8]).

In the approach explored here, the macro features man-
age the task of “divide” and micro features are in charge
of the “conquer” phase of the design. Within each context

Table 1 The input feature set used in our experiments contains 57
voxel-level features. In [8] it is shown to be the best performing set

Rank Feature

1 ms,0,0

2 – 7 ms,1,2, ms,1,3, ms,1,1, ms,1,0, ms,1,4, ms,1,5

8 – 13 ms,2,2, ms,2,3, ms,2,0, ms,2,1, ms,4,4, ms,2,4

14 – 16 pr11 , ms,2,6, pr01

17 I 0norm

18 Pr11

19 – 20 S9, S3
21 – 23 ms,2,8, ms,2,5, ms,3,3

24 Pr01

25 – 30 ms,3,6, ms,5,6, ms,5,10, ms,2,9, ms,8,28, ms,5,11

31 – 36 ms,5,3, ms,5,2, ms,5,7, ms,5,20, ms,5,15, ms,3,1

37 – 42 ms,5,14, ms,5,17, ms,2,10, ms,5,16, ms,6,7, ms,6,0

43 I 1norm

44 – 47 ms,9,5, ms,6,2, ms,6,12, ms,6,5

48 – 53 ms,6,3, ms,5,21, ms,6,1, ms,2,11, ms,5,19, ms,6,6

54 – 57 ms,5,18, ms,5,23, ms,6,9, ms,6,4

group (shown in Fig. 2), the same single-agent learning
procedure as developed in [8] is followed. In an effort to
developing macro features for data-driven strategies, we
propose the following data experiments in this paper (M
stands for multi-contextual):

• Ex M1 Use the volume fraction to divide data classes.

Fig. 2 Flowchart of data-driven
predictive modeling. a Single
agent [8]. b Multi-agent (Color
figure online)
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Table 2 Definition of micro-layer features used in all experiments, with regards to the representation of a focal voxel at s

Symbol Meaning Count Scope

ms,l,t Microstructure value of voxels at a neighbor level l, with index t , of a focal voxel at s 179 binary, {0, 1}
l = 1, . . . , 12

prh
l Fraction of voxels with microstructure phase h at neighbor level l 24 real, [0,1]

Prh
l Fraction of voxels with microstructure phase h up to neighbor level l 24 real, [0,1]

Ih
norm The normalized impact of all 12 levels of neighbors of phase h 2 real

Ih
norm = ∑12

i=1 Tl · prh
l /

√
l + T0 · prh

0 /0.5

S3 3-plane symmetry index 1 real

S9 9-plane symmetry index 1 real

• Ex M2 Use designed macroscale microstructure
descriptors to divide data classes.

• Ex M3 Use the characteristic shape of pair correlation
functions (PCF) to divide data classes.

Results and Discussion

Dataset Details

A total of 2500 MVEs with varying volume fractions were
included in this study. They are evenly distributed in 100
variations of volume fraction (VF) values, from 1.0 to
99.4%. Therefore, 25 MVEs are present in each variation,
within which 15 are used for calibration (for feature extrac-
tion, model training), and the remaining 10 are used for
validation.

The data experiments were carried out on a Linux Red
Hat 4.4.7 system with 32 GB memory and Intel Xeon CPU
2.20 GHz. Python-based machine learning library, scikit-
learn [52], is used in most implementations (except the
M5 model tree which is implemented in a C library). The
performance of the models was evaluated by the mean
absolute strain error (MASE) e in a MVE, defined as

e = 1

S

S∑

s=1

|ps − p̂s

pimposed
| × 100% (1)

where pimposed denotes the average strain imposed on the
MVE, and ps and p̂s denote the values of the strain in the
voxel s from the FE model and the surrogate model devel-
oped in this work, respectively. This metric quantifies the
average error for a single MVE microstructure. In the data
experiments presented here, we show both individual e for
each MVE as well as averaged MASE, ē, over the entire set
of 1000 validation MVEs.

In constructing training and testing data for predictive
modeling, each voxel in the MVE is examined, represented,
and transformed into a data instance consisting of “inputs”

and “outputs.” Each MVE generates 9261 data samples
(this is the number of voxels in each MVE). The com-
plete calibration set hence contains 13,891,500 samples and
validation contains 9,261,000 samples.

We term the voxel under examination as the “focal
voxel,” whose response (average elastic strain in the voxel)
is to be predicted. Each voxel in theMVE gets to be the focal
voxel once, and when it does, other voxels in its local envi-
ronment are taken to construct input features for it. By doing
this, we are assuming that the response of a focal voxel is
strongly influenced by some short-range interactions with
neighboring voxels in its local environment. This concept
is highly consistent with the concepts of Green’s functions
utilized extensively in composite theories [45, 46, 53–56].

Context Detection with Volume Fractions

The detection of contexts is carried out with three data
experiments. As a baseline, Ex M1 is designed based on
the simplest notion that MVEs are naturally categorized by
their volume fractions. 100 variations of volume fractions
in the data result in 100 individual contexts and hence 100
branches of prediction systems are built. The testing pro-
cedure is straightforward. An incoming MVE will have its
volume fraction category easily obtained, and therefore will
be handled by the system that is trained with that particu-
lar category (or closest to that category). This experiment is
used as the baseline of context study.

A more in-depth study of context detection is performed
by Ex M2 and Ex M3, where they pass the detection of
MVE contexts to another unsupervised learning system. The
following two subsections discuss how to find the right
representation of contexts through either geometric descrip-
tors, or physics-related functions. Once the representation
factors are chosen, K-means clustering algorithm [57] is
applied to construct a number of MVE clusters, each of
which would become a separate learning context. Clustering
algorithms are widely used in unsupervised learning, where
they are presented with a set of data instances that must be
grouped according to some notion of similarity. In the case
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of K-means, the Euclidean distance of (potentially, high
dimensional) features is used as the measure of similarity
to group the data into K clusters. The algorithm is unsuper-
vised, as it has access only to the set of features describing
each object, but it is not given any information (e.g., cluster
labels) as to where each of the object should be placed. The
result of K-means clustering is K cluster centers, identified
by coordinates in the feature space. To determine K , we did
a grid search between 90 and 110 and evaluated the purity
in terms of VF variance within a cluster. During testing, the
closest cluster to which a test sample should be assigned
is identified by computing its distance with all the cluster
centers and selecting the one with the minimum distance.

Context Detection with Connected Components

In Ex M2, we design seven macroscale descriptors to dis-
criminate MVE-wise statistics: volume fraction, number
of connected components, equivalent radius of the largest,
smallest and average connected component, components’
nearest surface distance, as well as nearest center distance.
Besides the volume fraction, all other MVE-level feature
descriptors depend on the identification of connected com-
ponents in a MVE, the details of which are discussed
next.

Connected-component labeling is used in computer
vision to detect connected regions in binary digital images.
A connected region or cluster is defined by pixels linked
together by a defined rank, or level of neighbors in our
setup. In terms of pixel connectivity in 3D, 6-connected, 18-
connected, and 26-connected are commonly used to define
a connected component. They correspond to a coverage of
voxels within a squared Euclidean distance of 1, 2, and 3, to
be regarded as connected. The concept of connectivity gets
looser from 6-connected to 26-connected.

Obtaining connected components from our MVE takes
additional effort, considering the assumed periodic nature
of the microstructure. The voxels at a border surface are
considered to be connected with the voxels on the oppo-
site surface, and the usual ways of connected component
labeling with pixel traversal would give a biased result. We
compute the unbiased estimate of the number of connected
components by following the following procedure:

1. Given an MVE, obtain the usual connected component
number c0.

2. Make a copy of the MVE and have the pair concate-
nated in three ways: along a border side, along a border
line, and along a border node. Denote each concatena-
tion type with an index i, i = 1, 2, 3. Within each type,
there may exist multiple variations, indexed by j , j =
0, 1, 2, . . .. Figure 3 shows for different concatenation
variations of an MVE, using a real data instance.

(a) Compute the number of connected components for
each of the double-MVE structure ci,j .

(b) Calculate di,j = 2∗ c0 − ci,j , which represents the
number of mergeable or overcounted clusters for
the given concatenation variation.

(c) Sum up di,j for each type of concatenation, i.e.,
d ′
i = ∑

j di,j .

3. The final estimate of the unbiased count of connected
components is cunbiased = c0 − d ′

1 + d ′
2 − d ′

3. The
rationale behind it is to try to have a correct count of
connected components when all periodicity scenarios
are considered. Following the decreasing order of side
- line - node, most of the potential components to be
merged with others at a lower order should also have
been identified at a higher order. For example, a cluster
appearing at a border node should have most likely been
seen at the associated border line(s) as well. Therefore,
to obtain a reasonable estimate of the unbiased count,
we subtract the number of components that are mis-
counted as singulars in c0 but turn out to be mergeable
at the side concatenation level (d ′

1), and then add back
those at the line concatenation level (d ′

2) that might been
incorrectly subtracted at the previous level, and finally
subtract those at the node concatenation level (d ′

3) that
have possibly been incorrectly added at previous level.
It is important to note that this is simply an estimate of
the actual count and may not be exactly accurate in spe-
cial cases of odd-shaped clusters at MVE boundaries
that would only be detected at lower concatenation lev-
els, but nonetheless significantly corrects for the bias
introduced by simply counting the clusters in a single
MVE and ignoring the boundary conditions. Since we
intend to only use it as a chosen input feature for the
machine learning algorithm, it is fine to use an estimate
for our purposes.

Note that if 6-connectivity is used the latter two con-
catenation forms c2,∗ and c3,∗ become irrelevant. Similarly
18-connectivity will render c3,∗ irrelevant. In our study, 18-
connectivity is used, where neighbor positions up to level 2
are considered connected to the center.

After connected component labeling and obtaining the
number of connected objects, we traverse through each
object to find its equivalent radius, its nearest surface dis-
tance, and center distance towards other objects. The max-
imum, minimum, and average of the equivalent radius, and
the minimum of the nearest surface distances, as well as the
minimum of the nearest center distances, are used together
as the set of macro features of the MVE.

Clustering algorithms take these features to determine the
grouping, based on training data. As described before, the
assignment of testing MVEs to clusters is determined by the
distance to the center of cluster.
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Fig. 3 Cube concatenation for
computing connected
components (Color figure
online)

A single cube: 

Along a side, 
3 variations.

Along a line, 
6 variations.

Along a node, 
4 variations.

Two concatenating cubes:

C1,0 C1,1 C1,2

C2,0 C2,1 C2,2

C2,3 C2,4 C2,5

C3,0 C3,1 C3,2

C3,3

C0

Context Detection with Pair Correlation Functions

Ex M3 further extends the automation of context detection
by avoiding the need for manually defining descriptors. The
design follows the concept of having (1) a more complete
representation of microstructures and (2) a generalized sta-
tistical compression of such representation. This concept
is carried out with the practice of pair correlation function
(PCF) and principal component analysis (PCA).

Pair correlation functions P hh′
r denote the probability of

finding discrete local states of h and h′ separated by a
distance r . PCF is widely used in the microstructure quan-
tifications [58, 59], microstructure reconstructions [60], and

estimation of effective properties [61]. For the case of h =
h′, the value corresponding to distance r = 0 gives the
volume fraction of the selected phase (since only one dis-
tinct local state can exist in a spatial voxel). The number of
unique distances that exist in the 21×21×21 periodic MVEs
used in this study is 179. Even though there are finite num-
ber of dimensions in this representation, the PCFs decay
quickly to a value specific to the selectedMVE and fluctuate
around it.

Even though PCF represents the microstructure in
an efficient and accurate way, the number of dimen-
sions is too large for building computationally efficient
structure-property linkages. PCA is employed to decrease
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Fig. 4 Individual MASE
attained by the three proposed
context detection systems for
each of the 1000 MVEs in test
set, along with the MASE for
the best single agent system [7]
(Color figure online)

the dimensions of the microstructure representation. In our
prior work, PCA was successfully implemented for both
dimensionality reduction [23, 25], microstructure classifi-
cation [9, 10], process-structure-property linkages [28, 30].
PCA performs the dimensionality reduction by transforming
the coordinate system where the data is represented in such
a way that the components of the new coordinate system are
ordered from highest variance to lowest variance.

Result Analysis

The quality of learning systems is gauged by their perfor-
mance on new validation data (unseen in calibration), in this
case, the set of 1000 validation MVEs. The prediction error
e (defined in “Dataset Details”) for each individual MVE is
shown in Fig. 4, with regards to the volume fraction. Essen-
tially, in Fig. 4, at each volume fraction value on x-axis,
there are 10 data points. The same pattern across all sys-
tems is observed: a parabolic dependence of the error value
is observed on the volume fraction. In other words, the mod-
els developed have the highest errors for MVEs with volume
fractions close to 0.5.

The average prediction error ē across all 1000 MVEs for
different systems is shown in Table 3. By comparing with
the previous best single-agent learning system presented in
[8], we observe that the proposed multi-agent learning sys-
tems improve the prediction performance in terms of test
error, by as much as 38% (1− 8.04/13.02). All three multi-
agent systems proposed in this paper achieve a test MASE
around 8%, which validates that the concept of context
extraction is constructive in producing more accurate pre-
diction systems. It should be noted that the error measures
of “M3” can be further reduced by using more rigorous

microstructure quantification methods [9, 25, 28, 30]. It is
also rather trivial to impose a multi-agent layer onto any
existing prediction system. Computationally, analyzing how
data samples naturally form clusters is not very demanding
and is only required one-time (before training takes place).
The efficiency depends on the size of features that go into
the clustering algorithm. As a result, in the current setting
M1 is the fastest because only one feature (VF) is used.
Computational times of M2 and M3 are similar.

The prediction output of a center slice of a randomly
selected MVE (shown is the 500th MVE, VF=50%) is illus-
trated in Fig. 5. The difference between a ground truth slice
(top one, annotated “FE”) and a predicted slice (bottom
ones, annotated “M1,” “M2,” “M3,” respectively) is almost
indistinguishable. In addition to a pixel-by-pixel compari-
son of slices, alongside the slices, we also have a statistical
comparison between the ground truth and predicted strain
distributions, over the whole MVE. Distributions are sep-
arated in color with regards to the phase (h shown in the
plots).

Table 3 Data experiment results. Different context detection strate-
gies are presented with training and testing error (the lower the better),
along with the previous best single-agent system in [8]

Experiment Context division Training Testing

based on MASE (%) MASE (%)

Previous best – 7.17 13.02

Ex M1 VF 6.21 8.88

Ex M2 Descriptors 5.70 8.44

Ex M3 correlation function 5.73 8.04

Testing error is regarded as a gauge of the prediction system quality
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Fig. 5 Comparison of strain
field predictions. A comparison
of FE and statistical model
predictions of the strain fields,
p̂, in an example MVE with the
volume fraction of 50%. The
models are those developed in
Ex M1, M2, and M3. Strain
fields on a center slice are
compared (Color figure online)

FE

M1

M2

M3

Conclusions

In spite of the tremendous popularity and interest in the
use of data science and informatics approaches to capturing
PSP linkages in advanced hierarchical materials, the design
of predictive models still remains far from optimal. Prob-
lems such as overfitting, performance discrepancy between
training, and testing sets persist. A major reason for these
problems is that it is often difficult to identify an accu-
rate representation of structure-property relationship. Even
though there are numerous efforts towards learning such a
representation, they are often conducted in a flat manner,
i.e., simply treating every pair of structure-property in the
training data as if they come from the same distribution.
Such treatment is often insufficient for complex systems,
as samples in training data could actually emerge from
many causal environments, which we define as contexts.
The challenge here is that the information about which con-
text each data sample is most likely to be associated with

is hidden and hard to infer. However, such multi-contextual
challenge of modeling unknown distributions in data has to
be addressed in order to achieve accurate modeling. Other-
wise, the common practice of building one flat classifier can
only address relatively simple systems.

In this paper, we developed and demonstrated a novel
multi-agent learning framework that breaks the large-scale
prediction problem into self-contained subproblems, intend-
ing to connect macroscale characteristics of microstruc-
ture MVEs to microscale characteristics of each localized
voxel. We evaluated three strategies of learning microstruc-
ture similarity: (1) with only volume fraction, (2) with
macroscale features designed from observing connectiv-
ity, and (3) pair correlation functions. With each of these
methods, a two-level learning scheme was implemented.
Firstly, the MVE-level learning extracts high-level morphol-
ogy information of microstructures and attempt to place
together those that are homogeneous in morphology in
one subproblem. Then, another set of microscale features
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look at local details at each specific spatial location. The
two-scale modeling of microstructure information has
boosted the predictive modeling performance vigorously. It
is clear from these trials that context-aware machine learn-
ing strategies are an important toolset for establishing high
value, low computational cost, PSP linkages in complex
hierarchical material systems.
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46. Kröner E (1977) Bounds for effective elastic moduli of disordered
materials. J Mech Phys Solids 25(2):137–155

47. Fullwood DT, Niezgoda SR, Kalidindi S (2008) Microstruc-
ture reconstructions from 2-point statistics using phase-recovery
algorithms. Acta Mater 56(5):942–948

48. Hibbitt Karlsson Sorensen (2001) ABAQUS/standard User’s Man-
ual, vol 1. Hibbitt, Karlsson & Sorensen, Providence, RI

49. Kalidindi S, Landi G, Fullwood DT (2008) Spectral representation
of higher-order localization relationships for elastic behavior of
polycrystalline cubic materials. Acta Mater 56(15):3843–3853

50. Al-Harbi HF, Landi G, Kalidindi S (2012) Multi-scale modeling
of the elastic response of a structural component made from a
composite material using the materials knowledge system. Modell
Simul Mater Sci Eng 20(5):055001

51. Panait L, Luke S (2005) Cooperative multi-agent learning: the
state of the art. Auton Agent Multi-Agent Syst 11(3):387–434

52. scikit-learn: Machine Learning in Python. http://scikit-learn.
github.io/. [Online; accessed August 2015]

53. Garmestani H, Lin S, Adams B, Ahzi S (2001) Statistical con-
tinuum theory for large plastic deformation of polycrystalline
materials. J Mech Phys Solids 49(3):589–607

54. Saheli G, Garmestani H, Adams B (2004) Microstructure design
of a two phase composite using two-point correlation functions. J
Comput-aided Mater Des 11(2-3):103–115

55. Fullwood DT, Adams B, Kalidindi S (2008) A strong contrast
homogenization formulation for multi-phase anisotropic materi-
als. J Mech Phys Solids 56(6):2287–2297

56. Adams B, Canova GR,Molinari A (1989) A statistical formulation
of viscoplastic behavior in heterogeneous polycrystals. Textures
Microstruct 11:57–71

57. MacQueen J (1967) Some methods for classification and analysis
of multivariate observations. In: Proceedings of the Fifth Berkeley
Symposium onMathematical Statistics and Probability, vol 1, CA,
USA, pp 281–297

58. Torquato S (2002) Statistical description of microstructures. Ann
Rev Mater Res 32(1):77–111

59. Torquato S (2002) Random heterogeneous materials: microstruc-
ture and macroscopic properties, vol 16. Springer, New York

60. Liu Y, Greene MS, Chen W, Dikin DA, Liu WK (2013)
Computational microstructure characterization and reconstruc-
tion for stochastic multiscale material design. Comput-Aided Des
45(1):65–76

61. Øren P-E, Bakke S (2002) Process based reconstruction of sand-
stones and prediction of transport properties. Transp Porous Media
46(2-3):311–343

http://scikit-learn.github.io/
http://scikit-learn.github.io/

	Context Aware Machine Learning Approaches for Modeling Elastic Localization in Three-Dimensional Composite Microstructures
	Abstract
	Introduction
	Methods
	Localization: Problem and Data Description
	Machine Learning Problem Definition
	Design of Experiments

	Results and Discussion
	Dataset Details
	Context Detection with Volume Fractions
	Context Detection with Connected Components
	Context Detection with Pair Correlation Functions
	Result Analysis

	Conclusions
	Acknowledgements
	Author Contributions
	Compliance with Ethical Standards
	Competing Interests
	References


