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Abstract
There has been a growing recognition of the opportunities afforded by advanced data
science and informatics approaches in addressing the computational demands of
modeling and simulation of multiscale materials science phenomena. More specifically,
the mining of microstructure–property relationships by various methods in machine
learning and data mining opens exciting new opportunities that can potentially result
in a fast and efficient material design. This work explores and presents multiple viable
approaches for computationally efficient predictions of the microscale elastic strain
fields in a three-dimensional (3-D) voxel-based microstructure volume element (MVE).
Advanced concepts in machine learning and data mining, including feature extraction,
feature ranking and selection, and regression modeling, are explored as data
experiments. Improvements are demonstrated in a gradually escalated fashion
achieved by (1) feature descriptors introduced to represent voxel neighborhood
characteristics, (2) a reduced set of descriptors with top importance, and (3) an
ensemble-based regression technique.
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Background
Material data sciences and informatics [1–12] are emerging as foundational disciplines in
the realization of the vision set forth in various high-profile national strategic documents
[13, 14]. The novel tools developed in these emerging fields focus mainly on transforming
large amounts of collected data (from both experiments and computer simulations) into
higher value knowledge that can also be easily disseminated to the broader research com-
munity. More specifically, various emerging concepts and tools in machine learning and
data mining methods are applied to represent, parse, store, manage, and analyze material
data. The higher value knowledge extracted using these tools can be used to dramatically
accelerate material development efforts for a range of advanced technologies. One of the
central tasks in the analyses of materials data is the identification and extraction of robust
and reliable structure–property relationships [15–33].
The internal structure of a material system exhibits multiple hierarchical length scales

that play a pivotal role in the behavior and performance characteristics of the material.
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Consequently, multiscale modeling is an integral component of any effort aimed at ratio-
nal material design. Almost all multiscale models currently employed in materials design
involve one-way coupling, where the information is passed mainly from a lower to a
higher length scale (also called homogenization). Communication of high-value infor-
mation in the opposite direction (also called localization) is usually very limited. For
the purpose of achieving efficient scale bridging, data-driven approaches for establish-
ing localization structure–property relationships as low-computational-cost linkages (i.e.,
surrogate models or metamodels) are of great interest.
Physics-based multiscale material models provide tools needed to explore the role of

material structure in optimizing the overall (effective) properties of interest. This is gen-
erally accomplished by solving governing field equations numerically (e.g., finite element
models), while satisfying the appropriate (lower length scale) material constitutive laws
and the imposed boundary and initial conditions. However, the computational resource
requirements of such multiscale materials models are usually very high, rendering these
tools impractical for the needs of rational material design and optimization. Besides the
high computational requirements, there is not enough attention paid to systematic learn-
ing from these simulations. In other words, in any typical design and optimization effort,
solutions of the governing field equations are generally obtained for multiple trials of the
material structures. However, most solutions that do not produce the desired property or
performance are routinely discarded without distilling transferable knowledge from them.
It is extremely important to recognize that even when the trial did not produce the desired
solution, there is a great deal of information in the solution obtained. Since a significant
computational cost was expended in arriving at the solution, it only behooves us to learn
as much as we can from the solution obtained. Machine learning techniques and data-
driven methods are ideally suited for this task and can lead to dramatic savings in both
time and effort, when implemented properly into the material development efforts. In the
present study, we demonstrate the implementation of one such strategy for capturing the
elastic localization in high-contrast composite material systems in a low-cost surrogate
model that is applicable to a very broad set of potential material internal structures.
Materials informatics is an emerging discipline that leverages information technology

and data science to uncover the essential process–structure–property (PSP) relationships
central to accelerated discovery and design of new/improved materials. A large part of
materials informatics involves the use of data mining and machine learning techniques
to exploit materials databases and discover trends and mathematical relations for mate-
rial design [34]. Data-centered methods, as opposed to ab initio methods, are generally
expressed as heuristic models, statistically learned from large amounts of historically
accumulated observations. Bearing sound generality, they are also able to adapt quickly
to new observations. The capability of establishing models from a pure statistical or
“machine-like” standpoint avoids human interference and thus enhances the chance of
finding the embedded high-value information in an objective manner, especially when
this knowledge is not easily expressed through simple equations.
The rich complexity of the material internal structure typically demands a high-

dimensional representation [3, 5, 10, 20, 35, 36]. In general, it is actually preferable to
start with a more than sufficient list of potential descriptive features (interpreted here
as measures of material internal structure) prior to building the models. In this phase
of model building, it is fully acknowledged that the salient features are only expected to
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naturally lie in a much lower dimensional space. An important step of machine learning
is the identification of these salient features using suitable feature selection techniques
or a transformation of features from a higher dimensional space to a lower dimensional
space, known as feature extraction. Both selection and extraction can be either super-
vised or unsupervised. If the response of the material structure (e.g., the elastic response
associated with the material structure in the present case study) needs to be predicted,
supervised learning provides more insights in the selection process.
Our interest in the present paper is in building data-centered localization linkages to

predict elastic deformation fields in a high-contrast two-phase composite system. For
the present study, contrast refers to the ratio of the elastic stiffness parameters of the
constituent phases of the composite system. For isotropic constituents, contrast usually
refers to the ratio of the Young’s moduli of the phases present in the composite material.
As the contrast decreases, the interactions between the microscale constituents become
less severe and therefore less significant. Thus, the errors are expected to be consid-
erably lower with lower contrasts. The error measures and results for lower contrast
materials systems have been reported in prior work [15, 19, 22, 33]. More specifically,
our goal here is to mine localization linkages from an accumulated set of observations
and then use the extracted models to predict the response in new, not yet analyzed,
structures. In this pursuit, we will explore the use and adaptation of machine learn-
ing systems specifically tailored to large-scale datasets and high-dimensional problems.
More specifically, three key data experiments are designed and conducted in progres-
sion leading finally to highly robust localization linkages for the high-contrast composites
studied:

• Features identifying the local neighborhood of a voxel to different degrees of
adequacy are explored systematically with carefully defined neighbor levels.

• Multiple strategies are explored for ranking the large number of potential features
that could be used to quantify the neighborhood of the voxel of interest.

• Different strategies for formulating regression models are critically evaluated and
contrasted for their computational efficacy and accuracy for the selected task.
Ensemble methods, which aggregate a number of weak regressors each specializing in
a subdomain of the original task, have shown substantial promise.

Methods
Problem statement

Localization, as opposed to homogenization, describes the spatial distribution of the
response at the microscale for an imposed loading condition (e.g., averaged strain)
at macroscale. Localization is critically important in correlating various failure-related
macroscale properties of the material with the specific local microstructure conforma-
tions responsible for the (local) damage initiation in the material. In this work, these two
scales are to be connected through linkages extracted by data-driven processes used in
machine learning systems.
More specifically, we focus our effort in this study on extracting localization relation-

ship for elastic deformation in a two-phase composite [15, 16, 18, 19]. The input into such
a linkage typically includes the material microstructure (defined in a three-dimensional
(3-D) microscale volume element (MVE)) and the applied macroscale loading condition
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(typically expressed as the averaged elastic strain imposed on the MVE). The output from
the linkage is the microscale elastic strain field throughout the MVE.
The first step in the application of data science methods is the collection and

organization of appropriate data from which the linkages can be mined efficiently.
At the present time, suitable datasets for this purpose can only be obtained using
numerical models. The experimental protocols for measuring 3-D stress (or strain
fields) are still very much in developmental stages [37–39]. Therefore, we proceed
here with datasets created by numerical physics-based models (e.g., finite element
(FE) models). In other words, we consider the predictions obtained by the FE models
as the “ground truth” and we want to establish the localization linkages as a surro-
gate model for the actual FE model. Our expectation is that the surrogate model will
provide a much faster answer compared to the FE model with only a modest loss in
accuracy.
In this work, we first produced a dataset containing a large ensemble of digitally cre-

ated 3-D microstructures. Each 3-D microstructure is defined on a uniformly tessellated
spatial grid and is referred as a microstructure volume element (MVE). Each MVE is
transformed into a FE model, where each spatial cell (i.e., voxel) is converted to an ele-
ment of the FE mesh. The response of eachMVE was then computed employing standard
protocols based on the use of periodic boundary conditions and the commercial finite
element software, ABAQUS [40]. Periodic boundary conditions were set in all six faces
of the MVEs for all three displacements. In this study, the strain component of interest
was selected as εxx. Hence, the periodic boundary conditions were applied to MVEs in
such a way that only the applied macroscopic strain for this component was nonzero;
this was done by setting a difference in the x component of the displacement only on the
faces perpendicular to the x direction. With these conditions, all other strain components
at macroscopic level become zero. The same approach we used for εxx strain compo-
nent can be repeated for all six strain components for a full set of linkages that would
serve for any arbitrary loading condition while exploiting the superposition principle. Fur-
ther details regarding these periodic boundary conditions and the approaches described
above can be found in our prior work [15]. For the present study, following protocols
used in prior studies, each MVE was selected to consist of 21 × 21 × 21 = 9261 voxels
[15, 22, 33]. Each element in the MVE is assigned one of the two possible phases depicted
as black and white in Fig. 1 (associated with values 0 and 1, respectively, in the description
of the microstructure), while the response field is captured as a continuous number on
the same spatial grid (one average value for each element of the FE model) that was used
to define the microstructure or the MVE. Both constituent phases of the composite are
assumed to exhibit isotropic elastic response with Young’s modulus, E = 12 GPa and ν =
0.3 for the black phase and E = 120 GPa and Poisson ratio, ν = 0.3 for the white phase.
Note that this assignment of properties for the individual phases of the composite system
corresponds to a contrast ratio of 10 (this is the ratio of the Young’s moduli of the two
phases present in the composite). It should be noted that most of the prior work in this
area has largely focused on composites with significantly lower contrast ratios of about
2 [15]. There has only been one previous work reported in the literature thus far with a
contrast ratio of 10 [18]. However, in that prior study, the feature selection was addressed
using heuristics, significantly different from the data science approaches presented in this
work.
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Fig. 1 An example microscale volume element (MVE). Each voxel in the MVE is fully occupied with either
black or white phase

Design of data experiments

Figure 2 schematically illustrates the main data-driven protocol for establishing a pre-
dictive model. It generally comprises of two key processes: (i) feature extraction, and
(ii) construction of the regression model. Each process requires numerous trials that are
generally referred to as data experiments. In this work, we have conducted two data exper-
iments for the feature extraction process and a third data experiment for the construction
of the regression model. The design of these three data experiments are detailed later in
this section.
A total of 2500 MVEs with varying volume fractions were included in this study. They

are evenly distributed in 100 variations of volume fraction values, from 1.0 to 99.4 %.
Therefore, 25MVEs are present in each variation, within which, 15 are used as calibration
(for feature extraction, model training), and the remaining 10 are used for validation.
The data experiments were carried out on a Linux Red Hat 4.4.7 system with 32-GB

memory and Intel Xeon CPU 2.20 GHz. A Python-based machine learning library, scikit-
learn [41], is used in most implementations (except the M5 model tree is implemented in

Fig. 2 A simplified data-driven modeling flowchart. It is comprised of two steps, feature extraction, and
regression, both studied in later data experiments
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a C library). The performance of the models was evaluated by the mean absolute strain
error (MASE) e in a MVE, defined as

e = 1
S

S∑

s=1
| ps − p̂s
pimposed

| × 100 % (1)

where pimposed denotes the average strain imposed on the MVE, and ps and p̂s denote
the values of the strain in the voxel s from the FE model and the surrogate model devel-
oped in this work, respectively. This metric quantifies the average error for a single MVE
microstructure. In the data experiments presented here, we show both individual e for
each MVE as well as averaged MASE, ē, over the entire set of 1000 validation MVEs.
In constructing training and test data for predictive modeling, each voxel in the MVE

is examined, represented, and transformed into a data instance consisting of “inputs” and
“outputs”. Each MVE generates 9261 data samples (this is the number of voxels in each
MVE). The complete calibration set hence contains 13,891,500 samples and validation
contains 9,261,000 samples.
We term the voxel under examination as the “focal voxel”, whose response (average elas-

tic strain in the voxel) is to be predicted. Each voxel in the MVE gets to be the focal voxel
once, and when it does, other voxels in its local environment are taken to construct input
features for it. By doing this, we are assuming that the response of a focal voxel is strongly
influenced by some short-range interactions with neighboring voxels in its local environ-
ment. This concept is highly consistent with the concepts of Green’s functions utilized
extensively in composite theories [42–47].
Following the symbolic definitions in [15–19, 22], we let the microstructure variables

m0
s and m1

s denote the volume fraction of each local state in each voxel of the composite
MVE, where 0 < s ≤ S indexes the voxels; S = 9261 is the total number of voxels in an
MVE. Since m1

s + m0
s = 1 and we employ eigenmicrostructures (each voxel is assigned

exclusively to one of the two phases allowed) in the present case study, we further sim-
plify the notation and use ms to simply denote m1

s in some of the case studies presented
here.
As noted earlier, the averaged local response (elastic strain) in each voxel in presented

as ps, where 0 < s ≤ S, S being the total number of voxels in the MVE. We expect
that not only the value of ps is influenced by ms but also the value of the microstructure
function in the voxels in the neighborhood of s. We use the notation ms,l,t to refer to the
microstructure function values in the neighborhood ofms, where l refers to the neighbor
level (defined based on distance from s) and t refers to individual voxels in the layer l.
These concepts are further elaborated below.

• Level of neighbors, l. Neighbors generally refer to voxels adjoining a given voxel.
Here, we extend the definition and serialize neighbors based on their scalar distances
from the voxel of interest. Figure 3 shows a 3-D voxel of interest in pink, surrounded
by its different levels of neighbor voxels. The level of a neighbor, l, is used in this
study to identify all of the voxels that are at a distance of

√
l from the voxel of

interest. In Fig. 3, l =1, 2, 3, 4 from the upper left to the lower right. In this work,
where MVEs are of dimension 21 × 21 × 21, a voxel can have up to 300 levels of
neighbors, although, at some of these levels, there do not exist any neighbor
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Fig. 3 Illustration of the neighbor positions at 1–4 levels

members (for example, l = 7 and l = 15 do not have any members invalid as their
squared values cannot be represented by a sum of squares of 3 whole numbers).

• Individual voxel t in a neighbor layer. In each layer of the same neighbor level, there
can be none or a number Tl of neighbor member voxels. As shown in Fig. 3, there are
T1 = 6 first-level neighbors, T2 = 12 second-level neighbors, T3 = 8 third-level
neighbors, and T4 = 6 fourth-level neighbors. To address each of them, we assign an
index variable t = 0, . . . ,Tl − 1. For example, all voxels at neighbor level 1 of s can be
indexed as (s, 1, 0), (s, 1, 1), (s, 1, 2), (s, 1, 3), (s, 1, 4), and (s, 1, 5), following the
notation introduced earlier.

Following this nomenclature, ms,0,0 is the (binary) microstructure variable at s, i.e., the
focal voxel. Its neighboring voxels, ms,l,t , along with other extracted feature variables are
included in the input feature vector when modeling ps.
Three data exercises are designed and conducted here to study the important subpro-

cesses involved in building a data-centered learning system for localization: (i) neighbor
inclusion—how large a spatial neighborhood of voxels should be considered in formulat-
ing the statistical model for the response at the focal voxel; (ii) feature extraction—what
salient features should be considered in building simplified geometrical constructs among
the neighborhood voxels; and (iii) regressors—what learning algorithm should be used
for connecting the microstructure and the desired local response.

Design of exercise 1

In this first exercise, namely, Ex 1, we focus on identifying the amount of information
needed in forming an accurate representation of a focal voxel, with its local neighbor-
hood. By only using the structure information given by ms,l,t , we explore how much of a
l is necessary in order to represent adequately the neighborhood of ms,0,0 for the elastic
localization linkages of interest. As we increase l, the number of input variables used in
the modeling ps will also increase.
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Six variations are designed, varying the number of inputs by adjusting the extent to
which level neighbors are to be included. Only input features are varied, and the pre-
diction target (ps) and regression scheme are fixed. A M5 model tree, which is a type
of decision tree with linear regression functions at the leaves, is used as the regression
model for the data experiments in this case study. The M5 model tree is based on the M5
scheme described by Quinlan [48] and implemented by Wang and Witten [49]. This set
of experiments is aimed at answering the question:Will using more information about the
neighbors’ help improve the prediction model for the elastic response at the focal voxel?

Design of exercise 2

In this exercise, we explore the design and identification of features that provide a more
complete representation of the microstructure. The full list of potential features designed
is shown in Table 1 and is further explained below. The purpose of these constructed
features is to account for not only the individual values ofms,l,t in the neighborhood of the
focal voxel but also certain aggregated neighborhood features that might bemore efficient
in capturing the desired linkages. Examples of such constructed features may include the
distribution of m1

s and m0
s at (or up to) each neighbor level l and the symmetry of a local

structure, among several others. The following specific ones (see also Table 1) have been
explored in this exercise:

• ms,l,t is what has been used in Ex 1, the microstructure value of voxels in the
neighborhood of s. We use up to the 12th level, and the total number of neighbor
voxels are 1 + 6 + 12 + 8 + . . . = 179.

• prhl is the volume fraction of phase h in neighborhood level l.
• Prhl is the accumulated volume fraction of phase h up to neighborhood level l.
• Ihnorm is defined as the aggregated “impact” to a focal voxel of all its neighbors up to a

specified level (in this exercise, we include up to the 12th level). For this purpose, we
first quantify the impact of each voxel in neighbor level l to be given by 1/

√
l; as

expected, closer neighbors have higher impact values. For all voxels at l (l > 0), the
overall impact is computed as Ihl = Tl ·prhl /

√
l. For l = 0, the impact value is assigned

as Ih0 = 2. Ihnorm is then calculated as a sum of impacts from all levels (up to 12),
Ihnorm = ∑12

i=0 Ihi . It is easy to see that the sum of I0norm and I1norm is always a constant
value (= 2.0+ T1/

√
1+ T2/

√
2+ T3/

√
3+ . . . ) where T1 = 6,T2 = 12,T3 = 8, . . ..

• S3 and S9 stand for two symmetry descriptors looking at a 3-D local microstructure,
including up to the 12 neighbor levels, centered at the focal voxel. Symmetry is

Table 1 Definition of the set of features constructed in Ex 2, with regard to the representation of a
focal voxel at s

Symbol Meaning Count Scope

ms,l,t Microstructure value of voxels at a neighbor level l, with index t, of a
focal voxel at s

179 Binary, {0,1}

l = 1, . . . , 12

prhl Fraction of voxels with microstructure phase h at neighbor level l 24 Real, [0,1]

Prhl Fraction of voxels with microstructure phase h up to neighbor level l 24 Real, [0,1]

Ihnorm The normalized impact of all 12 levels of neighbors of phase h 2 Real

Ihnorm = ∑12
i=1 Tl · prhl /

√
l + T0 · prh0/0.5

S3 3-plane symmetry index 1 Real

S9 9-plane symmetry index 1 Real
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defined as the degree of similarity between the two halves of the 3-D structure when
bisected by a specified plane. S3 considers three dividing planes passing through the
center focal voxel, and S9 uses nine, adding six diagonal ones. Planes are illustrated in
Fig. 4, where the focal voxel is placed at the center of the structure. Note that theMVE
structure in the figure is only for illustration. In actual calculation, planes cut through
an irregular but symmetrical structure where a focal voxel is in the center and all of
its neighbors up to the 12th level (in total, 178 neighbor voxels) scatter around it. For
every dividing plane, we assess how similar the resulting two half-structures are to
each other, by computing a voxel-to-voxel exclusive nor (XNOR, giving one when two
voxels are the same) of the two half-structures and then taking a distance-normalized
sum. In this way, nonconformity farther away from the focal voxel has a smaller effect.

The entire set containing 231 feature variables are examined systematically for their
effect on feature reduction. This is important because Ex 1 (see Fig. 5) demonstrated
that including more features than needed can actually deteriorate the performance of the
predictive model.
To produce a ranking of feature importance, we applied a filter method that employs

Pearson’s correlation as a heuristic measure of feature quality. When a feature is continu-
ous (all features exceptmh

l ), the standard Pearson’s correlation is applied:

rXY =
∑

(x − μx)(y − μy)

kσXσY
, (2)

where X is the feature variable to be evaluated and Y is the target variable (i.e., the elastic
strain at the focal voxel). In the above equation, k is the variable length, μ denotes the
mean, and σ is the standard deviation. In the case of evaluating discrete features such as
ms,l,t , the modified form, weighted Pearson’s correlation, is used:

r′XY = P(X = 0)rX0Y + P(X = 1)rX1Y , (3)

where P(X = h) is the prior probability that the microstructure X takes value h and Xh is
a binary attribute that takes the value 1 when X = h and 0 otherwise.
We consider the correlation between a feature X and the prediction target Y as an indi-

cation of the relevance of X in building a predictive system for Y. By obtaining correlation
coefficients for each X, a ranking is produced, seen in Table 2, where from top down, fea-
tures with the best relevance quality are listed (top 30 are shown). Ex 2, comprised of Ex
2a, Ex 2b, Ex 2c, and Ex 2d, takes various numbers of top-ranked features in constructing
prediction models.

Fig. 4 Planes used to define symmetry measures S3 and S9. The three red planes in a are used to obtain S3,
whereas for S9, all nine planes in a, b, c, and d are used
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Fig. 5 Results of Ex 1. Comparison of training time (line) and training and test errors (bars) with different
numbers of microstructure inputs. Six variations are tested. Results shown are only for the 50 MVEs with
volume fraction 48–53 % (these produce the highest errors). Most systems turn out to have a test error ē of
over 50 %, which indicates the insufficiency of representation

Design of exercise 3

In the third exercise, we intend to investigate the effect of estimator models or learning
algorithms in building a microstructure-response prediction system. Data experiments
with various classical algorithms are designed. In addition to theM5model tree, twomore
regressors are explored, identified as Ex 3a and Ex 3b and described below. The top 57
and 93 feature sets from Ex 2b and Ex 2c are used, as they provided the best models thus
far. These two features sets are identified by appending −1 and −2, respectively, to the
case studies. For example, Ex 3a−1 will utilize 57 feature inputs while Ex 3a−2 will utilize
93 feature inputs.

• Ex 3a As an extension to M5 regression tree, a random forest (RF) [50] regressor that
forms an ensemble of many tree estimators is explored. The concept of ensemble
learning or using a number of estimators and aggregating their results is expected to

Table 2 Features ranked by the correlation with the response. Top 30 are shown

Rank Feature

1 ms,0,0

2–7 ms,1,2,ms,1,3,ms,1,1,ms,1,0,ms,1,4,ms,1,5

8–13 ms,2,2,ms,2,3,ms,2,0,ms,2,1,ms,4,4,ms,2,4

14–16 pr11,ms,2,4, pr01
17 I0norm
18 Pr11
19–20 S9, S3
21–23 ms,2,8,ms,2,5,ms,3,3

24 Pr01
25–30 ms,2,6,ms,5,6,ms,5,10,ms,2,9,ms,8,28,ms,5,11
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give a better generalization towards unseen data. The number of member estimators
in RF is set to be 50.

• Ex 3b As a classic kernel-based learning model, support vector machine [51] finds an
optimized hyperplane in feature space to separate classes. To deal with continuous
class outputs, Support Vector Regression (SVR) [52] is used.

Results and discussion
The following subsections present performances of each designed data experiment in
terms of average prediction errors. Another measure of performance is the computational
time. FEM simulations for each MVE took 23 s with two processors in a supercomputer,
whereas with data models, once the model parameters are fixed, the prediction only takes
a few milliseconds per MVE.

Data exercise 1: neighbor inclusion

The first exercise studies the feature space constructed by neighbor voxels only.
Since our goal at this point is to explore potential features for building the predic-
tion model subsequently, it is not essential to use the entire dataset. In order to
save computational cost, the six models (described earlier) are built and tested on a
small subset that contained 50 MVEs with volume fractions of 48–53 %, which are
regarded as the most difficult MVEs, because the response field exhibits the high-
est level of heterogeneity. Tenfold cross-validation is conducted where in each fold,
45 MVEs are used for training the model, and the remaining 5 MVEs are used for
testing.
The results are summarized in Fig. 5, showing six variations in the inclusion of neighbor

voxels ms,l,t in building a relationship between ms (or ms,0,0) and ps. l varies from 0 up to
3, 5, 6, 8, 9, and 10, from left to right in Fig. 5. This corresponds to a number of inputs of
27, 57, 81, 93, 123, and 147, respectively.
The results indicate that usingmore neighbors does not necessarily continue to enhance

the accuracy. The model with an inclusion of neighbor level l up to 8 gives the best
(least) test error. The speed of the learning of model trees is influenced linearly by feature
dimensions.
Figure 5 also indicates that most of the experiments have a very high test error of over

50 %. The shortcoming of this series of modeling lies in the inadequacy of microstructure
representation coming solely from individual components of thems,l,t . In Ex 2, we aim to
identify a set of engineered microstructure features in addition toms,l,t to represent more
effectively the salient neighborhood features of the focal voxel.

Data exercise 2: feature extraction

With the set (see Table 1) containing 231 feature variables devised, a series of exercises
(labeled Ex 2) are conducted using different combinations of the feature variables based
on a rank generated by correlation measures, while keeping the regression model the
same. With regard to the rank of importance (partially shown in Table 2), we take various
numbers of top features with the best relevance quality in constructing prediction models
and thus designed Ex 2a, Ex 2b, Ex 2c, and Ex 2d. The top 27, 57, and 93 features are
selected to match the number of inputs used in Ex 1, and the last exercise uses all 231
features in the set.
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To allow comparisons with Ex 1 (see Fig. 5), we take the same 50 MVEs to perform
a tenfold cross-validation; the results obtained are shown in Fig. 6. Clearly, the models
produced in Ex 2 are significantly better than those obtained in Ex 1.
Next, training is done on the entire training set of 1500MVEs and tested on all 1000 test

MVEs. Figure 7 shows the individual MASE for each of the 1000 MVEs from the test set,
separated by the volume fraction. As expected, the model accuracy is highest at the low
fractions (of either phases). Conversely, the highest error occurs in the volume fractions
around 50 %, as the elastic strain fields in these composites are the most heterogeneous.
Among the four sets of experiments, Ex 2b outperforms the rest both in terms of the
average error rate and a reasonable training time.
A more direct comparison of the model results and the FE results are presented in

Fig. 8. Only the model predictions from Ex 1d (this is the best of Ex 1) and Ex 2b (this
is the best of Ex 2) are shown in this figure. In the top row of the figure are the elastic
strain distributions in the middle slice of the MVE, and in the bottom are histogram plots
of strain values predicted for the entire MVE. Two phases are separated in generating
the distribution of the predicted strain values, each compared with FE distributions. One
hundred bins are used, each of a width around 1e−05.
The example shown in this figure corresponded to a volume fraction of 50.22 % (this

is one of the cases with the highest error). The improvements in the accuracy of Ex 2b
over Ex 1d is clearly evident. In particular, it should be noted that Ex 2b is doing a very
reasonable job in predicting the locations and distributions of the hot spots (voxels with
the highest local elastic strain).

Data exercise 3: regressors

The effect of different regressionmodels, each exploring two feature sets, is demonstrated
in Fig. 9, comparing with two corresponding models (that have used 57 and 93 features)

Fig. 6 Results of Ex 2. Comparison of training time (line) and training and test errors (bars) with different
numbers of top feature inclusions. The four systems from left to right correspond to Ex 2a, 2b, 2c, and 2d.
Results shown are for 50 MVEs with volume fraction 48–53 %. Judging from the test MASE ē, the second
system with 57 features outperforms the rest



Liu et al. IntegratingMaterials andManufacturing Innovation  (2015) 4:13 Page 13 of 17

Fig. 7 Influence of volume fraction on the error for Ex 2. Individual MASE for each of the 1000 MVEs in test set
given by the four systems in Ex 2 are shown

from Ex 2. Only test performances are shown in this comparison, and the MASE is the
average among the entire 1000 test MVEs. The ensemble model RF gives the best test per-
formance in both feature sets. It is once again observed that including too many features
only deteriorates the accuracy. Although as many as 50 regression trees are built in RF,
due to the subsampling of data space, the increase in training time compared to a single
tree in the case of M5 is only moderate.

Fig. 8 Comparison of strain field predictions. A comparison of FE and statistical model predictions of the
strain fields, p̂, in an example MVE with the volume fraction of 50 %. The models are those developed in Ex 1d
and Ex 2b. Strain fields on a center slice are compared at the top. Histogram plots of strain distributions are
presented at the bottom. One hundred bins are used to generate each distribution curve for each phase
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Fig. 9 Results of Ex 3. Comparison of training time (line) and test error (bars) with different regressors making
use of two variations of microstructure representations. The six systems from the very left bar to the very right
correspond to Ex 2b, 2c, 3a−1, 3a−2, 3b−1, and 3b−2, while the training time depicted is an average of each
adjacent pair under the same regressor. The reason for using the average is that the difference of feature
sizes under the same model type is relatively trivial

A more detailed comparison of the individual MASE for each of the 1000 MVEs, with
respect to volume fractions, is shown in Fig. 10. And Fig. 11 compares the predicted strain
fields with FE results for the same MVE and slice as in Fig. 8. Only the two best models,
Ex 3a−1 and Ex 3b−1 that both use 57 features, are selected to show. Once again, it is
observed that the accuracy of the models in predicting the spatial locations and distribu-
tions of the hot spots has improved significantly in these new models compared to the
earlier ones.

Fig. 10 Influence of volume fraction on the error for Ex 3. Individual MASE for each of the 1000 MVEs in test
set given by the four systems in Ex 3 are shown
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Fig. 11 Comparison of strain field predictions. A comparison of FE and statistical model predictions of the
strain fields, p̂, in an example MVE with the volume fraction of 50 %. The models are those developed in Ex
3a−1 and Ex 3b−1. Strain fields on a center slice are compared at the top. Histogramplots of strain distributions
are presented at the bottom. One hundred bins are used to generate each distribution curve for each phase

Conclusions
In this paper, we explored multiple data mining experiments and strategies for estab-
lishing statistical models for capturing elastic localization relationships in high contrast
composites. More specifically, our focus was on a composite with a contrast of 10.
The efficacy of different approaches for feature selection and regression were studied
systematically. We demonstrated that a set comprised of basic feature descriptors com-
bined with engineered (constructed) features is able to boost the prediction performance.
Moreover, a reduced set of descriptors generated by feature ranking methods offers
even better results. In terms of regression techniques, ensemble methods such as ran-
dom forests show superiority when both accuracy and time consumption are taken into
account.
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