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Synchronous SGD with data parallelism, the most popular parallelization strategy for CNN training, 
suffers from the expensive communication cost of averaging gradients among all workers. The iterative 
parameter updates of SGD cause frequent communications and it becomes the performance bottleneck. 
In this paper, we propose a lazy parameter update algorithm that adaptively adjusts the parameter 
update frequency to address the expensive communication cost issue. Our algorithm accumulates the 
gradients if the difference of the accumulated gradients and the latest gradients is sufficiently small. 
The less frequent parameter updates reduce the per-iteration communication cost while maintaining the 
model accuracy. Our experimental results demonstrate that the lazy update method remarkably improves 
the scalability while maintaining the model accuracy. For ResNet50 training on ImageNet, the proposed 
algorithm achieves a significantly higher speedup (739.6 on 2048 Cori KNL nodes) as compared to the 
vanilla synchronous SGD (276.6) while the model accuracy is almost not affected (<0.2% difference).

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Recently, Convolutional Neural Network (CNN) has become one 
of the most popular machine learning techniques. CNNs have 
achieved great successes in a variety of applications such as im-
age classification [14,32], image regression [25,35], object detection 
[34,45], natural language processing [24,43], and scientific applica-
tions [10,19,28]. However, training a deep CNN is a computation-
ally intensive task that can take hours or even days. For instance, 
training ResNet50 [14] on ImageNet [9] using a single GPU (NVIDIA 
M40) takes about two weeks [42]. For large scale deep learning ap-
plications, efficient parallelization is crucial to finish the training in 
a reasonable amount of time.

Synchronous Stochastic Gradient Descent (SGD) [17] with data 
parallelism is the most popular parallel neural network training 
strategy. The algorithm evenly distributes each batch of training 
samples (called mini-batch) to all workers and processes them in-
dependently. Then, the locally computed gradients are averaged 
among all the workers using inter-process communications. In 
data parallel training, the local gradient size is fixed to the model 
size regardless of the number of processes. As scaling up, thus, 
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the computational workload per process proportionally decreases 
while the communication cost increases. Many previous works 
showed such an increasing communication time in their experi-
ments [21,22,38]. Especially, when accelerators are employed, such 
as GPU, Intel Xeon Phi, or TPU, the communication to computa-
tion ratio becomes higher at each iteration. Given a fixed network 
bandwidth, the faster the computation for each mini-batch, the 
higher portion of the iteration time the communication time takes 
up.

Many researchers have studied how to overlap the communi-
cations with the computations to improve the scalability [13,22,37,
38]. Since the gradients do not have data dependency across layers, 
the communication for averaging the gradients at a layer and the 
gradient computations at other layers can be performed simulta-
neously. However, the next mini-batch can be processed only after 
the parameters are updated using the gradients computed from 
the current mini-batch. Thus, all the communications posted at 
each iteration should be finished before starting the next itera-
tion. If the communication time is longer than the computation 
time within each iteration, a part of the communication time will 
be exposed making all the processes blocked until the communica-
tions are finished. Therefore, in order to achieve a good speedup of 
the parallel training, the per-iteration communication time should 
be reduced so that the exposed communication time is minimized 
keeping all the processes busy.
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In this paper, we discuss how to address the expensive per-
iteration communication cost in parallel training by delaying the 
parameter update at a part of model parameters. Since the gra-
dients are computed from the output side layers in the back-
propagation phase, only the communications at a few input side 
layers are likely exposed causing a blocking time. We propose 
to adjust the parameter update frequency such that the param-
eters at those input side layers are less frequently updated than 
the other layers. Instead of updating the parameters at every it-
eration, our lazy update method accumulates the gradients if the 
difference of the direction between the accumulated gradients and 
the latest gradients is bounded by a sufficiently small angle on 
the inner product space. The parameter update interval is adap-
tively adjusted using a constant back-off algorithm at run-time. 
This adaptive update frequency control enables to find the max-
imum update interval which allows the model to keep moving 
towards minimizing the cost function. The gradient compression 
method proposed in [26] similarly accumulates the gradients, how-
ever, the compression method only considers the magnitude of the 
gradients, based on a heuristics: “larger gradients are more impor-
tant than the others”. Our work explores the performance impact 
of the gradient accumulation in a layer-wise manner considering 
not only the magnitude but also, more importantly, the direction 
on the parameter space.

Our training strategy has several advantages: First, the inter-
process communications are less frequently performed at the lay-
ers to which our lazy update method is applied, and thus a better 
scaling performance can be achieved. Second, the proposed lazy 
update method automatically adjusts the parameter update in-
terval during training without requiring users to tune any extra 
hyper-parameters. Finally, the proposed algorithm determines the 
lazy update interval based on the observed degree of noise in the 
gradients at run-time so that it can be applied to parallel training 
independently of optimizers or hyper-parameter settings such as 
mini-batch size.

To evaluate the performance of the proposed training algorithm, 
we conduct image classification and regression experiments and 
analyze the performance results on KNL nodes of Cori supercom-
puter at NERSC. We verify the effectiveness of the proposed train-
ing method across several network architectures (Wide-ResNet20, 
ResNet50, and EDSR), datasets (CIFAR10, ImageNet, and DIV2K), 
optimizers (mini-batch SGD and Adam). Our experimental results 
demonstrate that, by having a different parameter update fre-
quency across layers, the communication time can be significantly 
reduced while maintaining the model accuracy. For ImageNet clas-
sification with ResNet50, our method improves the speedup of the 
parallel training from 50.96 to 115.11 using up to 256 compute 
nodes with a negligible effect on the validation accuracy (< 0.1%
difference).

We also study the impact of the proposed training algorithm 
on the large batch training performance. The large batch size im-
proves the degree of parallelism by having more training samples 
per mini-batch. However, the batch size does not affect the per-
iteration communication cost. Regardless of the batch size, as a 
nature of strong scaling, the ratio of computation to communica-
tion is supposed to be reduced as more processes are employed. 
We empirically verify that our proposed method can be applied 
to large-batch training by presenting and analyzing the large-batch 
training performance of ResNet50. For ResNet50 training with a 
batch size of 8192, our proposed method improves the speedup 
from 276.59 to 739.56 using up to 2048 nodes, while achieving 
almost the same accuracy to the reported accuracy (< 0.2% differ-
ence) in [11].
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2. Background and related works

2.1. Mini-batch SGD-based CNN training

In this paper, we consider minimization problems of the form

min
w∈Rd

F (w) = 1

n

n∑

i=1

f (w, xi), (1)

where w ∈ Rd is the parameter vector of the given network, x is 
the training dataset of size n, and f (w, xi) is a cost function. In 
this paper, we will refer to mini-batch SGD by SGD for short. SGD 
computes a stochastic gradient of the cost function f with respect 
to the model parameters w from a random subset of training sam-
ples B using Equation (2).

∇ fB(w) = 1

m

∑

i∈B
∇ f (w, xi), (2)

where m is the mini-batch size. Then, the parameters are updated 
by Equation (3).

wi = wi−1 − μ∇ fB(wi), (3)

where μ is the learning rate. The algorithm repeats these two 
steps until the cost function f is minimized.

2.2. Parallelization strategies

Synchronous SGD with data parallelism is the most popular 
parallel CNN training algorithm used in many applications. The al-
gorithm evenly distributes each mini-batch to all workers and each 
worker locally processes the assigned training samples. Then, the 
local gradients are averaged among all the workers using inter-
process communications. Many existing works use allreduce oper-
ation for aggregating and summing up the local gradients.

In parallel training, the communications at each layer can over-
lap with the computations at other layers. Since the gradients do 
not have data dependency across layers, the communication at one 
layer and the gradient computation at other layers can be per-
formed simultaneously. Once the gradients are computed at each 
layer in the backpropagation phase, a non-blocking communica-
tion is posted so that the communication overlaps with the later 
backward computations. Many existing works exploit the overlap 
of the communications with the computations in parallel training 
[13,19,22,28,37,38].

Asynchronous SGD (ASGD) has been proposed in [8] which 
tackles the scalability issue of mini-batch SGD. ASGD allows multi-
ple mini-batches to be concurrently processed at the cost of having 
a certain degree of gradient asynchrony. However, the number of 
asynchronous workers should be sufficiently small to guarantee 
the convergence, which is impractical in large scale applications. 
Sparse Aggregation SGD is proposed in [7], which sparsely aver-
ages the parameters among workers after multiple local updates. 
The algorithm effectively lowers the inter-process communication 
frequency and a better scalability can be expected, however the 
convergence accuracy is still largely affected by the number of 
workers.

Instead of designing a new optimization algorithm, some re-
searchers proposed to sparsify or quantize the gradients to re-
duce the communication cost [1,2,29,33,39,40]. Similarly, some 
researchers proposed gradient compression techniques [6,12,26]. 
However, the gradient sparsification methods proposed in [1,33]
have a user-tunable threshold which is used to drop out small 
gradients. In practice, tuning an additional hyper-parameter is not 
a negligible extra work for large-scale deep learning applications. 



S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23
Algorithm 1 Mini-batch SGD with Adaptive Lazy Parameter Update 
(b: the number of layers to which the lazy update method is ap-
plied. k: the number of iterations for accumulating the gradients.)

1: w ← w0, g ← 0, k ← 1
2: while stop condition is not met do
3: for i ← 1 · · · n

m do
4: B ← ith mini-batch of size m.
5: ∇ fB(wi) ← Compute_Gradient( f , B, wi ).
6: for j ← 1 · · · l do
7: if j > b then
8: Update wi, j with ∇ fB(wi, j). � Eq. (3)
9: else

10: Accumulate ∇ fB(wi, j) to g j . � Eq. (4)
11: if (i mod k) is 0 then
12: Update wi, j with g j . � Eq. (5)

13: if (i mod k) is 0 then
14: k = Calculate_Interval(g , ∇ fB(wi), b).
15: g ← 0.

In addition, these works either do not consider the extra com-
putational cost or present a limited performance improvement 
due to the expensive extra computations. For instance, the gradi-
ent quantization method proposed in [2] shows limited speedups 
(1.1 ∼ 2.1) while the data precision is reduced from 32-bit to 4-bit. 
The weight sharing technique in [12] performs K-Means data clus-
tering algorithm off-line. The gradient compression technique in 
[26] consists of a set of processes such as quantization, encoding, 
and clipping. As pointed out in [38], these gradient compression 
techniques also need to balance the trade-off between the accu-
racy and the communication cost.

Recently, a few large batch training techniques have been pro-
posed. You et al. proposed Layer-wise Adaptive Rate Scaling (LARS) 
[41]. Goyal et al. and Hoffer et al. introduced linear scaling rule 
[11] and root scaling rule [16] of mini-batch size and learning 
rate, respectively. All these large-batch training techniques have 
showed that the batch size can be increased to a certain problem-
dependent threshold without a significant loss in accuracy. Larger 
batch size implies fewer parameter updates within each epoch, 
and thus fewer communications for averaging gradients among all 
workers. However, the batch size does not affect the communica-
tion cost for averaging gradients at each iteration. As the number 
of processes increases, the communication time increases while 
the per-process computation workload is proportionally reduced. 
So, regardless of the batch size, the communication time ends up 
being dominant over the computation time and the speedup is 
saturated. In this paper, we focus on how to improve the scaling 
efficiency by reducing the communication cost for processing each 
mini-batch, regardless of the mini-batch size.

3. CNN training with lazy parameter update

In this section, we propose a mini-batch SGD-based CNN train-
ing algorithm which adaptively adjusts the parameter update fre-
quency. We begin with describing the lazy parameter update 
method.

gi = gi−1 + ∇ fB(wi) (4)

wi+k = wi − μgi+k (5)

where ∇ fB(wi) is the stochastic gradient of a cost function f
with respect to wi , the parameters at iteration i, gi+k is the ac-
cumulated gradients from iteration i to i + k, and k is the lazy 
update interval. At every iteration, the gradients computed from a 
mini-batch are accumulated using Equation (4). After k iterations, 
the parameters are updated with the accumulated gradients using 
Equation (5).
12
Algorithm 1 shows a mini-batch SGD-based CNN training algo-
rithm with the described lazy update method. The algorithm re-
peatedly traverses over n training samples until the stop condition 
is satisfied at line 2. Given the batch size m, the algorithm pro-
cesses n

m mini-batches sequentially at line 3. For each mini-batch, 
the gradients of the cost function f are computed with respect to 
the model parameters at line 5. Note that we refer the input side 
of network as ‘bottom’ and the output side as ‘top’. The parameters 
at the top (l − b) layers are updated every iteration using Equation 
(3) at line 8, where l is the number of layers in the model. The 
gradients at the bottom b layers are accumulated using Equation 
(4) at line 10. The lazy update interval k is initially set to 1 and 
re-calculated after every lazy update at line 14.

When 1 ≤ b < l, Algorithm 1 partitions the model into two 
parts and the parameters of them are updated at different frequen-
cies. The backpropagation algorithm can be considered as a dy-
namic programming of multi-layer perceptrons. The parameters of 
each layer are adjusted to minimize its own error. Since the errors 
are back-propagated through all the layers, the principle of opti-
mality holds in the backward direction and the backpropagation 
algorithm effectively minimizes the cost function that is attached 
at the end of the model. In Algorithm 1, the consecutive top side 
layers, either (l − b) or l, are updated at every iteration. Thus, it is 
guaranteed that the parameters of each layer have been updated 
more than any of its bottom layers. This condition still holds the 
principle of optimality in dynamic programming, and Algorithm 1
can effectively minimize the cost function when 1 ≤ b < l.

The lazy update interval k plays a key role in reducing the com-
munication cost in parallel training as well as achieving a high 
accuracy. The longer the lazy update interval, the more sparser 
the communications for averaging gradients, which result in a bet-
ter scalability. On the other hand, the accumulated gradients g in 
Equation (5) becomes noisier as more gradients are accumulated. 
Note that this is because we keep updating the top l − b layers 
every iteration. Assuming m training samples for each mini-batch 
are randomly extracted from the dataset, the k sets of gradients 
that are accumulated by Equation (4) can be considered as inde-
pendent random variables. Each of them is approximately normally 
distributed with mean

E[∇ f (w)] = 1

n

n∑

i=1

∇ f (w, xi) = ∇ F (w), (6)

where ∇ F (w) is the optimal gradient with respect to the param-
eters w , xi is a training sample, and n is the number of train-
ing samples. Thus, the expected accumulated gradient at iteration 
(i +k) is E[gi+k] = ∑k

j=1 ∇ F (wi+ j). The expected optimal gradient 
at iteration (i + k) is E[∇ fB(wi+k)] = ∇ F (wi+k). We can consider 
the accumulated gradients gi+k as noisy when the difference be-
tween E[∇ fB(wi+k)] and E[gi+k] is large. Intuitively, the higher 
the degree of noise, the slower the convergence rate.

3.1. Bounding gradient noise with respect to direction

To keep the difference between E[∇ fB(wi+k)] and E[gi+k] from 
becoming too large, Algorithm 1 controls the lazy update interval 
at line 14 such that the gradients are accumulated only until g is 
still in a descent direction with respect to the latest parameters.

Proposition 1. A sufficient condition for the accumulated gradient gi+k

to be in a descent direction with respect to the parameters at iteration 
(i + k) is as below.

‖gi+k − ∇ F (wi+k)‖ < ‖gi+k‖ (7)
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Fig. 1. Example of the gradients on 2-D vector space. With Inequality (8), gi+k and ∇ fB(wi+k) in both the left and right figures are considered as the same ‘descent direction’. 
With Inequality (9), in contrast, the right side figure shows the angle between gi+k − ∇ fB(wi+k) and ∇ fB(wi+k) which is smaller than π

2 and the two vectors are not 
considered as the same descent direction. Inequality (9) becomes true only when ∇ fB(wi+k) is within the blue circle as shown in the left side figure. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)
Proof. gi+k is the descent direction if and only if a condition be-
low is true:

(gi+k)
T ∇ F (wi+k) > 0

Considering the accumulated gradients gi+k and the optimal gra-
dients ∇ F (wi+k) are two vectors, the above condition guarantees 
that the angle between the two vectors in the inner product space 
is smaller than π

2 so that they can be considered as the same ‘de-
scent’ direction. Beginning from the proposed Inequality (7),

‖gi+k − ∇ F (wi+k)‖ < ‖gi+k‖
‖gi+k − ∇ F (wi+k)‖2 < ‖gi+k‖2

‖gi+k‖2 − 2(gi+k)
T ∇ F (wi+k) + ‖∇ F (wi+k)‖2 < ‖gi+k‖2

(gi+k)
T ∇ F (wi+k) >

1

2
‖∇ F (wi+k)‖2 ≥ 0

So, when Inequality (7) holds, gi+k is a descent direction with re-
spect to wi+k . �

However, the left-hand side of Inequality (7) is prohibitively ex-
pensive to compute since the optimal gradient ∇ F (wi+k) is com-
puted from the entire training samples. To address this problem, 
we replace the optimal gradient on the left-hand side with the 
current stochastic gradient ∇ fB(wi+k). Note that, as shown in 
Equation (6), each stochastic gradient is a random variable with 
mean of ∇ F (w). The classical convergence analysis of SGD usually 
assumes that the stochastic gradients have a bounded variance σ 2

[5]. Thus, Inequality (7) can be approximated by a relaxed condi-
tion with a bounded difference as below.

‖gi+k − ∇ fB(wi+k)‖ < ‖gi+k‖ (8)

Since ∇ fB(wi+k) is already computed at line 5 in Algorithm 1, In-
equality (8) can be computed without extra computations.

Inequality (8) enables to check the direction of the accumulated 
gradients with a feasible computational cost. However, ∇ fB(wi+k)

is a biased estimator due to its variance. If the variance is large, 
the direction of the accumulated gradients can be much different 
from the optimal gradients while Inequality (8) still holds. We pro-
pose another practical sufficient condition which alleviates such an 
effect as follows.

‖gi+k − ∇ fB(wi+k)‖2 + ‖∇ fB(wi+k)‖2 < ‖gi+k‖2 (9)

By expanding the left hand side, we can get an inequality,

(gi+k)
T ∇ fB(wi+k) > ‖∇ fB(wi+k)‖2 > 0,
13
which provides the same condition of gi+k as Inequality (8). We 
define θ as the angle between two vectors, gi+k − ∇ fB(wi+k)

and ∇ fB(wi+k). The l2-norm of the stochastic gradients is most 
likely smaller than that of the accumulated gradients. Under this 
condition, ‖gi+k − ∇ fB(wi+k)‖2 + ‖∇ fB(wi+k)‖2 is smaller than 
‖gi+k‖2 only when θ is larger than π

2 . Fig. 1 illustrates the pro-
posed condition on the simplified 2-D vector space. The blue circle 
shows the region in which θ ≥ π

2 . Inequality (9) becomes true only 
when ∇ fB(wi+k) is within the blue region so that the angle θ is 
larger than π

2 . So, this condition can be considered as a stricter 
condition than Inequality (8) for having gi+k with a descent direc-
tion.

One potential issue of Inequality (9) is that, as k grows up, the 
blue circle shown in Fig. 1 is enlarged and it becomes easier for 
∇ fB(wi+k) to be inside of the circle. In order to check the direc-
tion of the accumulated gradients without being affected by k, we 
use the averaged accumulated gradients instead.

‖1

k
gi+k − ∇ fB(wi+k)‖2 + ‖∇ fB(wi+k)‖2 < ‖1

k
gi+k‖2 (10)

By using the averaged accumulated gradients 1
k gi+k , the blue circle 

in Fig. 1 does not grow as k increases, and thus the angle can be 
checked more robustly. If ‖∇ fB(wi+k)‖2 is larger than ‖ 1

k gi+k‖2, 
we use the following Inequality instead.

‖1

k
gi+k − ∇ fB(wi+k)‖2 + ‖1

k
gi+k‖2 < ‖∇ fB(wi+k)‖2 (11)

Inequality (10) and (11) equally check if the two gradients, gi+k
and ∇ fB(wi+k), are close to each other.

3.2. Bounding gradient noise with respect to magnitude

To minimize the effect of the lazy updates on the convergence, 
the magnitude of the accumulated gradients also should be taken 
into account when adjusting the parameter update frequency. We 
assume F has Lipschitz-continuous gradients, that is, there is a 
constant L > 0 such that

‖∇ F (u) − ∇ F (v)‖ ≤ L‖u − v‖ ∀u, v ∈ Rd. (12)

As shown in [3,4], the change in F is bounded by

F (u) − F (v) ≤ ∇ F (v)T (u − v) + L

2
‖u − v‖2. (13)

From the above Inequality, we can get the bounded change of F
for the lazy update as follows.

F (wi) − F (wi+k) ≤ ∇ F (wi+k)
T (wi − wi+k) + L ‖wi − wi+k‖2
2
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By inserting Equation (5) into the above Inequality,

F (wi) − F (wi+k) ≤ μ∇ F (wi+k)
T (gi+k) + Lμ2

2
‖gi+k‖2.

Considering E[gi+k] = ∑k
j=1 ∇ F (wi+ j),

F (wi) − F (wi+k) < μ‖gi+k‖2 + Lμ2

2
‖gi+k‖2 =

(μ + Lμ2

2
)‖gi+k‖2.

(14)

Likewise, in SGD without the lazy update method, the change 
in F for k iterations is bounded as follows.

F (wi) − F (wi+k) ≤
k∑

j=1

(μ∇ F (wi+ j)
T ∇ fB(wi+ j)

+ Lμ2

2
‖∇ fB(wi+ j)‖2)

≈ k(μ + Lμ2

2
)‖∇ fB(wi+k)‖2

(15)

The above approximation is under an assumption that the magni-
tude of gradients is not significantly different among k iterations.

If the right-hand side of Inequality (14) is smaller than that of 
Inequality (15), SGD with the lazy update method can converge 
more slowly than without the lazy update method. To avoid such 
a potential slow convergence, we propose to check the following 
condition when adjusting the parameter update frequency.

k‖∇ fB(wi+k)‖2 < ‖gi+k‖2 (16)

Note that Inequality (16) is under a strong assumption that 
the magnitude of stochastic gradients is not significantly differ-
ent across k iterations. In practice, if the batch size is small, the 
stochastic gradients have a high variance and the magnitude of 
the gradients can be unstable among k iterations. So, satisfying 
Inequality (16) cannot solely guarantee a sufficiently low degree 
of noise in the accumulated gradient. In our training algorithm, 
therefore, both Inequality (9) and (16) are taken into account when 
adjusting the parameter update frequency.

3.3. Adaptive lazy update interval

To strictly force the lazy update to be a descent direction, the 
state of the accumulated gradients should be checked at every iter-
ation so as to stop the accumulation before the gradients become 
too noisy. However, such frequent checks will incur an expensive 
extra computational cost. Furthermore, we empirically found that 
the accumulated gradients violate Inequality (10) and (16) after a 
sufficiently large number of accumulations.

We design an adaptive lazy update interval calculation method 
which sparsely re-calculates the lazy update interval based on In-
equality (10) and (16). As shown in Algorithm 1 at line 1, the lazy 
update interval k is initialized to 1 at the beginning of the train-
ing. During the training, k increases by 1 if both Inequality (10)
and (16) are true. On the other hand, the interval is reduced by 1
if both Inequality (10) and (16) are not satisfied.

This constant back-off algorithm enables to sparsely check the 
state of the accumulated gradients and automatically makes the 
lazy update interval stay around the maximum value that allows 
descent direction gradients. Note that k is adjusted by 1, which is 
the minimum granularity of the interval adjustment. With a larger 
step size, k will approach to the maximum allowed interval faster, 
and thus a better scaling efficiency can be expected. On the other 
hand, the larger step size can give a larger difference between the 
14
Algorithm 2 Calculate_Interval(g, ∇ fB(w), b, k).
1: angle ← false
2: magnitude ← false
3: b′ ← layer with the largest |w| among bottom b layers.
4: diff ← ‖ 1

k g − ∇ fB(w)‖2 at layer b′ .
5: normg ← ‖ 1

k g‖2 at layer b′ .
6: norm f ← ‖∇ fB(w)‖2 at layer b′ .
7: if (diff +norm f ) < normg then
8: angle ← true

9: if (k · norm f ) < normg then
10: magnitude ← true

11: if angle is true and magnitude is true then
12: Increase k by 1.
13: else if angle is false and magnitude is false then
14: Decrease k by 1.

left-hand side and the right-hand side in both Inequality (10) and 
(16), which implies a slower convergence. In this work, we focus 
on minimizing the accuracy drop while improving the scalability. 
So, we propose to use the minimum granularity of the interval 
adjustment.

We also propose to calculate Inequality (10) and (16) from a 
single layer that has the largest number of parameters among the 
bottom b layers. If they are computed from the whole parameters 
of the bottom b layers, one layer that satisfies the conditions by 
a huge margin can cancel out other layers’ violations. Note that, 
due to the non-linearity between layers caused by non-linear acti-
vation functions or pooling layers, the gradients at different layers 
do not have a strong correlation. By calculating the two conditions 
from a single largest layer, we can achieve a more reliable interval 
adjustment as well as a cheaper computational cost.

3.4. Parallel implementation

Distributed gradient computation – In data parallel training, 
the communications for averaging the gradients at one layer and 
the gradient computations at other layers can be performed simul-
taneously since the gradients do not have data dependency across 
layers. However, if the overall communication time is longer than 
the backward computation time, a part of communications may 
not be hidden behind the computations causing a blocking time 
between every two consecutive iterations. In this work, we set b to 
the number of bottom layers whose communications cannot over-
lap with any computations. In practice, b can be found by checking 
how many communications have not been started when the back-
propagation computation is completed at the bottom layer.

Equation (17) shows how the accumulated gradient gi+k is 
computed in parallel training.

gi+k =
P∑

p=1

g p
i+k =

P∑

p=1

k∑

j=1

∇ f p
B(wi+ j), (17)

where P is the number of workers, ∇ f p
B(w) is the local stochas-

tic gradients computed from m
P training samples by worker p, and 

g p is the locally accumulated gradients at worker p. On the right-
hand side of Equation (17), the first summation is performed by 
inter-process communications (typically allreduce operations) and 
the second summation is the local accumulation based on Equation 
(4). Since |g| and |∇ fB(w)| are the same, the overall communica-
tion cost within k iterations is reduced to 1

k . Therefore, the bigger 
the k, the lower the communication cost.

Software framework – We implemented a software frame-
work for neural network training in C language. The framework is 
specifically designed for parallel training on CPU-based distributed 
memory platforms. The implementation details can be found in 
our previous work [21]. We use Intel Math Kernel Library (Intel 
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Fig. 2. A schematic time-flow chart for synchronous SGD with and without lazy update method. This example assumes a network with two layers (0 and 1). (a) shows the 
vanilla synchronous SGD without lazy update and (b) shows the synchronous SGD with lazy update. FF and BP indicate feedforward and backpropagation, respectively. UP
indicates the parameter update. AC is the gradient accumulation that corresponds to Equation (4).
MKL) for the kernel functions such as matrix operations. We em-
ploy MPI-OpenMP programming model such that each MPI process 
runs on one node and the process performs the kernel operations, 
such as matrix multiplications, using OpenMP. This design option 
is due to the following two reasons. First, training a neural network 
requires a large amount of memory space to keep the intermedi-
ate data such as activations, errors, and gradients. Therefore, it is 
a common practice that only one process runs on each CPU node 
so that all the memory space is fully utilized by the process. On 
GPU systems, the common practice is to run as many processes as 
the number of GPUs per node for the same reason. Second, our 
design option minimizes the local data size per node in all the 
gradient communications. Because each process computes a fixed 
number of local gradients regardless of the number of processes, 
the data exchanged across the nodes proportionally increases as 
more processes run on each node. Therefore, depending on the al-
lowed network bandwidth at each node, the communication time 
can increase if many processes run on each node.

Overlap of computation and communication – Fig. 2 shows 
a schematic illustration of the vanilla synchronous SGD without 
lazy update (a) and the synchronous SGD with lazy update (b). 
These illustrations show how the communications can be over-
lapped with the computations during parallel training. FF, BP, UP, 
and AC denote feedforward, backpropagation, parameter update, 
and gradient accumulation, respectively. COMM indicates the gradi-
ent communication. The postfix digit of each operation means the 
layer ID. In this example, we consider a network with two layers, 
and thus the layer ID is either 0 or 1. Once the gradients at layer 
1 is computed (BP 1), the corresponding communication (COMM 1) 
is posted so that the communication time is overlapped with the 
backpropagation time at layer 0. At each iteration, the communi-
cations are posted twice, and a part of the communication time is 
exposed (blocking time) if the total communication time is longer 
than the backpropagation time and the parameter update time. In 
(a), the same pattern is repeated across all the iterations, and thus 
the blocking time takes up a large portion of the whole training 
time. In (b), the lazy update algorithm skips updating layer 0 ac-
cumulating the gradients. Because (b) does not have COMM 0 at 
iteration i, the training can proceed to the iteration i + 1 with-
out having a blocking time. When updating the layer 0 at iteration 
15
i + 1, a communication is posted for layer 0 to average the ac-
cumulated gradients among all the workers. So, this iteration has 
exactly the same computations and communications as the vanilla 
synchronous SGD.

There are several possible design options for implementing 
the overlap of the computations and communications. First, the 
gradient averaging algorithm we employed [21] can be imple-
mented using MPI asynchronous API such as MPI_Iallgather
and MPI_Alltoall. Many modern MPICH implementations sup-
port asynchronous progress of these collective MPI communica-
tions. Second, a helper thread can be employed to use MPI syn-
chronous API explicitly overlapping the communications with the 
computations. Our software framework is implemented using a 
POSIX thread that is dedicated to the communications. The im-
plementation details can be found in our previous works [21,23]. 
Third, any third-party communication libraries can be employed 
for asynchronous communications. For instance, one can consider 
using Casper, an adaptive asynchronous progress method designed 
for parallel applications [31]. As long as the requested communica-
tions are immediately started in background, a similar performance 
gain can be expected regardless of the design choice. Note that, 
the proposed lazy update method is readily applicable to any im-
plementations because Algorithm 1 and 2 are independent of the 
underlying communication patterns.

4. Performance evaluation

We evaluate the performance of the proposed parallel CNN 
training algorithm using open benchmark datasets, CIFAR-10, Im-
ageNet, and DIV2K. All experiments were carried out on Cori, a 
Cray XC40 supercomputer at National Energy Research Scientific 
Computing Center (NERSC). Each compute node has an Intel Xeon 
Phi Processor 7250, Knights Landing (KNL), that has 68 cores. AVX-
512 vector pipelines with a hardware vector length of 512 bits are 
available at each node. In all our experiments, we used the ‘cache’ 
mode of MCDRAM. The system has Cray Aries high-speed inter-
connections with ‘dragonfly’ topology. When building our software 
framework on Cori, we used the system default Intel C++ compiler 
(19.0.3) and cray-MPICH (7.7.6) on Cori. Before evaluating the per-
formance of our proposed lazy update method, we first present 
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Fig. 3. The scaling performance comparison between TensorFlow + Horovod and PCNN, our own software framework [23]. We trained ResNet20 on CIFAR-10 using synchronous 
SGD and compared the average epoch time (sec) and the speedup on Cori KNL nodes. We see that PCNN slightly outperforms TensorFlow + Horovod mainly due to the overlap 
of computation and communication.
the scaling performance comparison between our software frame-
work and TensorFlow (2.2.0) + Horovod (0.19.0), one of the most 
popular parallel training software packages. Both our framework 
and Horovod are built based on the system default cray-MPICH li-
brary. We trained ResNet20 using synchronous SGD and compared 
the average epoch time. Fig. 3 presents the scaling performance 
comparison. This comparison demonstrates that our scaling perfor-
mance study is based on a reasonable baseline performance. The 
same experimental result can be found in our previous work [23].

We compare scaling performance among four different parallel 
training settings. First, ‘No overlap’ represents data parallel training 
without overlapping. In this setting, the gradient communications 
are posted after computing all the gradients, and thus the entire 
communication time is exposed. Horovod is one of the most pop-
ular software framework that falls into this setting [30]. Second, 
‘Without LazyUp’ indicates data parallel training with overlapping. 
We employed an overlapping strategy that allows to overlap the 
communications with not only the backward computations but 
also the forward computations at the next iteration, proposed in 
[21]. A similar overlapping strategy was proposed in [38]. Third, 
‘With LazyUp’ is data parallel training that employs the lazy update 
method. The communications are overlapped with computations 
using the same algorithm as ‘Without LazyUp’. Finally, ‘Comp only’ 
is the computation only performance. We consider this computa-
tion timings as the ideal performance we can achieve in parallel 
training.

Note that we do not compare the performance between the 
proposed method and gradient quantization/sparsification meth-
ods. These methods zero out small gradients or replace the similar 
gradient values with a single representative value based on the 
gradient properties such as magnitude of each gradient or statis-
tical distribution of the absolute gradient values. In our proposed 
method, the gradients are not modified but accumulated at a part 
of model layers. We consider the gradient quantization and sparsi-
fication methods and our proposed method are orthogonal tech-
niques. In other words, we can apply both of them to parallel 
training without any conflicts, expecting a better scaling perfor-
mance. Therefore, we do not directly compare the performance 
between them.

4.1. CIFAR-10 classification

CIFAR-10 has 50,000 training images and each image size is 
32 × 32. We present the performance of Wide-ResNet20 training 
for CIFAR-10 classification. Wide-ResNet20 is a variant of ResNet20, 
which has an increased width of residual blocks compared to 
the original model architecture. In this experiment, we double 
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the number of filters at all the convolution layers. All the hyper-
parameter settings are the same as shown in [44]. We use mini-
batch SGD with the batch size of 128, the initial learning rate of 
0.1, and the momentum factor of 0.9. The learning rate decreases 
by a factor of 5 after 60, 80, and 120 epochs. The training is per-
formed for 200 epochs in total. We use up to 64 compute nodes 
in which the baseline execution time starts to increase. We found 
that the communications at the bottom 6 layers do not overlap 
with any computations on 64 nodes, so we set b = 8.

Fig. 4 presents the training loss (left) and the validation accu-
racy (right). We performed the parallel training on 64 KNL nodes 
and collected the learning curves. We can observe that the lazy 
update method provides almost the same convergence accuracy as 
the original mini-batch SGD (Without Lazy Update: 94.23 ± 0.1%, 
With Lazy Update: 94.36 ± 0.2%). Note that the reported accuracy 
of similar Wide-ResNet series in [44] is 93.58% ∼ 94.27%. Fig. 5
shows the strong scaling performance. First, ‘No overlap’ shows a 
significantly longer execution time than the others. The difference 
between ‘No overlap’ and ‘Comp only’ can be considered as the 
overall communication time. Our method reduces the average exe-
cution time per epoch from 64.05 seconds to 42.47 seconds on 64 
nodes. We can see that ‘With LazyUp’ and ‘Comp only’ timings are 
almost the same, which means the communication cost is effec-
tively reduced by the proposed method.

One noticeable observation is that the computation time does 
not linearly scale up. As the number of workers increases, the 
number of local training samples is proportionally reduced in data 
parallelism. It is already known that a sufficiently large amount 
of workload is needed to fully utilize the computation resources 
in each KNL node [18,27]. In our experiments, we found that In-
tel MKL shows a poor scaling performance when the number of 
local training samples is lower than 16. Another factor that af-
fects the scaling efficiency is the model size. The input data size 
of Wide-ResNet20 for CIFAR-10 classification is 32 × 32 and the 
number of filters at the first few convolution layer is 16 only. Such 
a small model size causes small matrix operations which cannot 
fully-utilize the computation power.

4.2. ImageNet classification

ImageNet is a large-scale image dataset for classification, that 
consists of 1.2 millions of high-quality images with varying sizes. 
We train ResNet50 on ImageNet and compare the performance 
between with and without the lazy update method. We use mini-
batch SGD with the batch size of 256, the initial learning rate of 
0.1, and the momentum factor of 0.9. The learning rate is reduced 
by a factor of 10 after 30, 60, and 80 epochs as shown in [11]. The 
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Fig. 4. Training loss curves (left) and validation accuracy curves (right) of Wide-ResNet20 training on CIFAR-10. Both the training loss and the validation accuracy are almost 
not affected by the proposed lazy update method (Without LazyUp: 94.23 ± 0.1%, With LazyUp: 94.19 ± 0.1%).

Fig. 5. Execution time and speedup of parallel Wide-ResNet20 training on CIFAR-10. The proposed method effectively reduce the communication time so that it achieves 
almost the same execution time to the computation-only time.
training is scaled up to 256 nodes where the training time without 
the proposed method starts to increase. We found that the com-
munications at the bottom 24 ∼ 25 layers do not overlap with the 
computations on 256 nodes, so we set b = 25.

Fig. 6 shows the training loss (left) and the validation accu-
racy (right). We performed the parallel training on 128 KNL nodes 
and collected the learning curves. Our proposed training method 
quickly increases the validation accuracy in the early epochs and 
then it ends up being saturated to a similar accuracy to the base-
line (Without LazyUp: 75.89 ± 0.2%, With LazyUp: 75.81 ± 0.2%). 
Note that our baseline accuracy is slightly higher than that in [15]
(75.3%) and lower than that in [11] (76.26%). Considering the long 
training time, we employed only the basic data augmentation as 
shown in [41], such that each image is re-scaled to 256 ×256 and a 
random 224 × 224 patch is extracted from it. So, our validation ac-
curacy is slightly lower than that reported in [11] achieved by rich 
data augmentation. Fig. 7 shows the average execution time per 
epoch (left) and the speedup (right). The proposed method reduces 
the execution time from 0.62 hours to 0.27 hours. We see that 
the execution time of the proposed method is almost the same 
as the computation-only time. As a result of the reduced param-
eter update frequency at the bottom 25 layers, the per-iteration 
communication time is effectively reduced, and thus ‘With LazyUp’ 
achieves a similar speedup to ‘Comp only’.

4.3. DIV2K image super-resolution

We perform image super-resolution using Enhanced Deep 
Super-Resolution (EDSR) [25] and DIV2K dataset. EDSR is a deep 
CNN which has 32 residual blocks and 256 filters per layer. DIV2K 
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is a dataset from NTIRE2017 Super-Resolution Challenge [36], 
which contains 800 high-quality 2K resolution pictures. We use 
Adam with a batch size of 64 and a learning rate of 0.0004. All 
the other hyper-parameters are set to the same values as shown 
in [25]. For the regression accuracy, we use Peak Signal-to-Noise 
Ratio (PSNR) which measures how much different the given two 
images are. The training is scaled up to 64 nodes where the num-
ber of local training samples becomes 1. The communications at 
the bottom 14 layers do not overlap with the computations on 64 
nodes, so we set b = 14.

Fig. 8 presents the training loss curves (left) and the valida-
tion PSNR curves (right). We performed the parallel training on 64 
KNL nodes and collected the learning curves. Our training method 
achieves a comparable validation PSNR (33.54 ± 0.1 dB) to the 
baseline (33.55 ± 0.1 dB). Fig. 9 shows the execution time per 
epoch and speedup. The training with our method takes 31.23 sec-
onds per epoch while the baseline takes 56.06 seconds. Like the 
other experiments, we see that the proposed method reduces the 
communication cost and the scaling efficiency is improved.

4.4. Performance analysis and discussion

Impact of the number of lazy update layers on accuracy – We 
set b to the number of layers whose communications do not over-
lap with any computations due to the high ratio of communication 
to computation. Thus, the value of b is affected by the factors 
that determine the ratio of communication to computation, such 
as hardware configurations and hyper-parameter settings. To in-
vestigate the impact of the value of b on the training results, we 
compare the learning curves of ImageNet training across different 
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Fig. 6. Training loss (left) and validation accuracy (right) of ResNet50 training on ImageNet. The proposed method increases the validation accuracy faster, however both 
curves end up being saturated to a similar accuracy (Without LazyUp: 75.89 ± 0.2%, With LazyUp: 75.81 ± 0.2%).

Fig. 7. Execution time and speedup of parallel ResNet50 training on ImageNet. Our proposed algorithm achieves a speedup of 115.11 on 256 nodes while the baseline peaks 
on 128 nodes achieving a speedup of 50.96.
b values. We use three b settings, 12, 25, and 37. ResNet50 has 50 
layers with tunable parameters in total. So, these three b settings 
roughly represent 25%, 50%, and 75% of the parameters, respec-
tively. Fig. 10 presents the training loss (left) and the validation 
accuracy (right). We first see that all the three b settings provide 
a similar convergence training loss. In contrast, the larger the b, 
the lower the convergence validation accuracy. The three b set-
tings give a validation accuracy of 75.86 ± 0.1%, 75.81 ± 0.2%, and 
75.33 ± 0.2%, respectively.

As b increases, more parameters are updated using the accu-
mulated gradients that are noisy. As explained in Section 3.1, the 
accumulated gradients are noisier than the stochastic gradients 
computed from a single mini-batch. Although Inequality (10) and 
(16) bound the degree of noise, we can expect a lower quality of 
updates as more parameters are updated using the accumulated 
gradients. However, even when the lazy update method is applied 
to about 75% of parameters, the validation accuracy is still compa-
rable to that of the baseline (< 0.5% difference). This experimental 
result demonstrates that the proposed lazy update method can be 
generally applied to different systems regardless of the ratio of 
computations to communications.

Adaptive lazy update interval – Algorithm 1 repeatedly adjusts 
the lazy update interval based on Inequality (9) and Inequality 
(16). Fig. 11 shows the average lazy update interval k within each 
epoch of (a) CIFAR-10, (b) ImageNet, and (c) DIV2K training. The 
average lazy update interval among the whole training epochs is 
about 10, 18, and 5 for the three datasets, respectively. Consider-
ing the number of iterations per epoch, 390 for CIFAR-10, 5,004 for 
ImageNet, and 50 for DIV2K, such large update intervals mean that 
the parameter update frequency at the bottom side layers is re-
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markably reduced, and thus the per-iteration communication cost 
is expected to be reduced.

Timing breakdowns – We analyze how the proposed method 
affects the computation time and communication time. The gradi-
ent accumulation, Equation (4), has a cheaper computational cost 
than the regular parameter update shown in Equation (3). So, the 
only extra computational cost of our method comes from the lazy 
update interval computation in Algorithm 2. The computational 
complexity of Algorithm 2 is O (|wb′ |), where b′ is the layer with 
the largest number of parameters among the bottom b layers. Ta-
ble 1 shows the timing breakdown of the average computation 
time per epoch. Compared to the feed-forward, backpropagation, 
and parameter update times, the interval calculation time takes up 
almost a negligible portion of the total computation time.

Table 2 shows the timing breakdown of the average execution 
time per epoch. The ‘regular’ columns show the timings at kth it-
eration while the ‘lazy’ columns show the timings at all the other 
iterations (0, · · · , k − 1). We see that the communication time is 
significantly reduced when the gradients are accumulated for k − 1
iterations. In our implementation, the communications at the top 
(l − b) layers overlap with the backpropagation computations. The 
‘Overall’ row shows the actual end-to-end execution time which 
is the sum of the computation time and the exposed communi-
cation time. If all the communications are overlapped with the 
computations ideally, the ‘Overall’ timing becomes as short as the 
computation time. That is, the shorter the ‘Overall’ time, the bet-
ter the scaling efficiency. Note that the communication time at kth

iteration is almost the same as that of the baseline because |gi+k|
and | fB(wi+k)| are the same at the bottom b layers.

Scalability of computation – In all our experiments, we observe 
that the computation-only timings do not provide linear speedup. 
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Fig. 8. Training loss (left) and validation accuracy (right) of EDSR training on DIV2K dataset. Both the training loss and the validation accuracy are almost the same for the 
whole training.

Fig. 9. Execution time and speedup of parallel EDSR training on DIV2K. Our proposed lazy update method improves the speedup from 25.01 to 44.67 on 64 KNL nodes.
As the number of workers increases, the number of local training 
samples is proportionally reduced in data parallelism. It is already 
known that a sufficiently large amount of workload is needed to 
fully utilize the computation resources in each KNL node [18,27]. 
In our experiments, we found that Intel MKL BLAS library shows 
a poor scaling performance when the number of local training 
samples is lower than 16. Another factor that affects the scaling 
efficiency is the model size. For example, in Wide-ResNet20 train-
ing, the input data size is 32 × 32 and the number of filters at 
the first few convolution layer is 16 only. Such a small model size 
causes small matrix operations which cannot fully-utilize the com-
putation power.

Potential drawbacks of lazy update method – In order to 
present a holistic view of our study, we discuss the potential draw-
backs of the lazy update method. First, Algorithm 1 spends an ex-
tra memory space to keep the accumulated gradients g at the bot-
tom b layers (

∑b
i=1 |gi | floating-point numbers). However, consid-

ering the rich memory space of modern HPC systems, this mem-
ory consumption can be considered as negligible. For instance, 
ResNet50 has ∼ 25.6 millions of parameters that take 98 MB of 
memory space while each Cori KNL node has 96 GB DDR4 mem-
ory space. Moreover, the extra memory space is smaller than the 
whole model size because b < l. Second, the lazy update method 
can cause a minor validation accuracy drop. The impact of the de-
layed updates on the model accuracy heavily depends on the input 
data. Although the noise of the accumulated gradient is bounded 
in both its direction and magnitude, our theoretical analysis is fo-
cused only on the training loss. Our future work includes analyzing 
the impact of the lazy update method on the generalization per-
formance.
19
Table 1
Timing Breakdown of Computation Time (sec).

- CIFAR-10 ImageNet DIV2K

# of nodes 64 256 64

Feed-forward 9.23 190.98 8.89
Backprop 27.38 544.43 18.30
Update 6.51 163.14 3.74
Interval Calc. 0.27 7.77 0.20

Total 43.49 906.32 31.13

Table 2
Timing Breakdown of Overall Execution Time (sec).

- CIFAR-10 ImageNet DIV2K

# of nodes 64 256 64

Update type regular lazy regular lazy regular lazy
Comp 42.01 43.81 900.47 908.49 30.08 32.01
Comm 72.34 42.21 2101.48 900.37 51.39 27.39

Overall 77.66 44.49 2432.24 958.4 56.07 32.27

4.5. Large batch training

Increasing the batch size is an intuitive way to improve the de-
gree of parallelism. A large batch size means that each mini-batch 
can be distributed to more processes and concurrently processed. 
Recently, several large-scale scientific applications used large batch 
sizes to scale up the training [10,19,20,28]. However, the batch size 
does not affect the communication cost for averaging the gradients 
at each iteration. As the number of processes increases, the ratio 
of computation to communication within each iteration drops by 
the nature of the strong scaling, and the communication time ends 
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Fig. 10. Learning curves of ResNet50 training on ImageNet with varying b values. b = 12, b = 25, and b = 37 give a validation accuracy of 75.86 ± 0.1%, 75.81 ± 0.2%, and 
75.33 ± 0.2%, respectively.

Fig. 11. The lazy update intervals measured in (a) CIFAR-10, (b) ImageNet, and (c) DIV2K training. The three interval curves correspond to the results shown in Fig. 4, Fig. 6, 
and Fig. 8, respectively. For all the three cases, the interval is much larger than 1, which means the parameters are less frequently updated at the bottom b layers.
up being dominant over the computation time. Thus, in order to 
achieve a good scaling efficiency, the expensive per-iteration com-
munication problem should be addressed regardless of the batch 
size.

We report the large batch training learning curves and scaling 
performance and then analyze the impact of our proposed lazy 
update method on the large batch training. There are two possible 
learning rate settings for large batch training, linear scaling rule 
[11] and root scaling rule [16]. Goyal et al. empirically showed that 
the batch size and learning rate can be proportionally increased 
until a problem-dependent threshold without a significant loss in 
accuracy. Hoffer et al. theoretically explained that the variance of 
stochastic gradients stays the same if the learning rate is increased 
by a square root of the ratio of the increased batch size to the base 
batch size. However, it has been shown that the root scaling rule 
yields a significantly lower validation accuracy for AlexNet training 
with a batch size of 8, 192 [16] (about 4% accuracy difference). So, 
in this paper, we consider the large batch training with the linear 
scaling rule as a baseline and compare it to the large batch training 
with the proposed method.

Fig. 12 shows the learning curve comparison between with and 
without the lazy update method. The batch size is set to 8, 192 and 
the initial learning rate is 3.2. The learning rate decays by a factor 
of 10 after 30, 60, and 80 epochs. The gradual learning rate warm-
up technique is used in the first 5 epochs as explained in [11]. 
Our parameter update rule is the classical update rule which mul-
tiplies the learning rate after adding the momentum term to the 
gradients. So, we do not apply the momentum correction method 
proposed in [11]. We can see that the proposed training method 
achieves a comparable validation accuracy (75.22 ± 0.1%) to the 
baseline (75.41 ± 0.1%). Note that, for the lazy update method, b is 
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set to 24, which means the lazy update method is applied to the 
24 bottom layers. We see that the training with the lazy update 
method achieves almost the same training and validation curves 
to the baseline. The average update interval at the bottom 24 lay-
ers is between 5 and 6.

Fig. 13 presents the scaling performance of large batch train-
ing for ImageNet classification. We scale the training up to 
2, 048 nodes (139, 264 cores) where the baseline stops scaling. 
First, without overlapping the communications with the computa-
tions (‘No overlap’), the speedup is flattened from 256 processes. 
When the communications are overlapped (‘Without LazyUp’), the 
speedup is improved, however the scaling still stops from 512 
processes. By applying our proposed method (‘With LazyUp’), the 
scaling efficiency is effectively improved and it achieves a speedup 
of 739.56 on 2, 048 nodes. The speedup of the computation time 
(‘Comp only’) is 1208.90 on 2, 048 nodes.

Discussion – The increased batch size improves the degree of 
parallelism. However, as the number of processes increases, it be-
comes more challenging to achieve a good scaling efficiency due 
to the increased communication cost. For example, let us consider 
a case in which the number of local training samples per pro-
cess is 8. If the training with a mini-batch size of 256 is scaled 
up to 32 processes, each process works on 8 samples per itera-
tion and the achieved speedup is 22.4 (70% scaling efficiency) even 
without overlapping the communications. If the batch size is in-
creased to 8192 and the training is scaled up to 1024 processes, 
each process handles the same 8 samples per iteration. However, 
the achieved speedup is only 171.4 (16.7% scaling efficiency). Al-
though each process has the same computational workload per 
iteration, the large batch training averages the gradients across a 
larger number of processes, and the communication cost is signif-
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Fig. 12. The training loss (left) and top-1 validation accuracy of ResNet50 training with a batch size of 8, 192. Both the training and validation curves do not show a large 
difference (75.41 ± 0.1% vs 75.22 ± 0.1%).

Fig. 13. The scaling performance of ResNet50 training with a batch size of 8, 192. The training scales up to 2, 048 processes on 2, 048 Cori KNL nodes. ‘With LazyUp’ shows 
a significantly improved scalability than ‘Without LazyUp’.
icantly increased. This scaling efficiency issue can be alleviated by 
applying our proposed method. As shown in Fig. 13, the lazy up-
date method lowers the update frequency at the bottom layers and 
the per-iteration communication cost is significantly reduced. This 
result demonstrates that the proposed method effectively improves 
the scaling efficiency regardless of the mini-batch size.

In our ImageNet training with a batch size of 8192, the up-
date interval k moves between 5 and 6 during the whole training. 
This means that the parameters at the bottom 24 layers are up-
dated using the accumulated gradients computed from 40K ∼ 48K 
training samples. This result implies that, by having a different up-
date frequency across layers, we can break the problem-dependent 
threshold of batch size that degrades the generalization perfor-
mance.

5. Conclusion

In this paper, we proposed a parallel CNN training algorithm 
that adjusts the parameter update frequency at a part of model 
layers at run-time. In this study, we get an insight that a fixed 
same parameter update frequency at all the layer may not be 
needed for minimizing the cost function. Our experimental re-
sults demonstrate that the lower parameter update frequency at 
the input side layers than the output side layers does not much 
affect the convergence accuracy while significantly reducing the 
per-iteration communication cost in parallel training. We also em-
pirically proved that the proposed method effectively improves the 
scaling efficiency of the large batch training as well. Our approach 
is to control the parameter update frequency based on the de-
gree of noise in the gradients during the training. So, although 
21
we studied the scaling performance of parallel CNN training, the 
lazy update method can be applied to other types of neural net-
works such as fully-connected network or recurrent neural net-
work. If a small accuracy drop is acceptable by users, the proposed 
training strategy can be a practical option for large-scale deep 
learning-based applications. In addition, we could observe that our 
proposed training method increases the validation accuracy more 
rapidly than the classical mini-batch SGD training before decaying 
the learning rate. We believe that explaining this symptom and 
finding a way of keeping the good generalization performance un-
til the convergence can be an interesting future work.
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