
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 718

Communication-Efficient Local Stochastic Gradient
Descent for Scalable Deep Learning
Sunwoo Lee, Qiao Kang, Ankit Agrawal, Alok Choudhary, and Wei-keng Liao

Department of Electrical and Computer Engineering
Northwestern University

Evanston, USA
{slz839,qkt561,ankitag,choudhar,wkliao}@eecs.northwestern.edu

Abstract—Synchronous Stochastic Gradient Descent (SGD)
with data parallelism, the most popular parallel training strat-
egy for deep learning, suffers from expensive gradient com-
munications. Local SGD with periodic model averaging is a
promising alternative to synchronous SGD. The algorithm allows
each worker to locally update its own model, and periodically
averages the model parameters across all the workers. While this
algorithm enjoys less frequent communications, the convergence
rate is strongly affected by the number of workers. In order
to scale up the local SGD training without losing accuracy,
the number of workers should be sufficiently small so that the
model converges reasonably fast. In this paper, we discuss how to
exploit the degree of parallelism in local SGD while maintaining
model accuracy. Our training strategy employs multiple groups
of processes and each group trains a local model based on data
parallelism. The local models are periodically averaged across
all the groups. Based on this hierarchical parallelism, we design
a model averaging algorithm that has a cheaper communication
cost than allreduce-based approach. We also propose a practical
metric for finding the maximum number of workers that does
not cause a significant accuracy loss. Our experimental results
demonstrate that our proposed training strategy provides a
significantly improved scalability while achieving a comparable
model accuracy to synchronous SGD.

Index Terms—Deep Learning, Local SGD, Parallel Training

I. INTRODUCTION

Training a deep and large neural network is an extremely
time-consuming task which can take hours or even days. To
reduce the training time, researchers have put much effort
into developing parallel training algorithms. The most popular
parallel training algorithm is synchronous Stochastic Gradient
Descent (SGD) with data parallelism. This parallel training
strategy evenly distributes each mini-batch to all workers,
and each worker independently processes the given training
samples. Then, the locally computed gradients are averaged
across all the workers using inter-process communications.
Although this synchronous parallel approach guarantees a fast
convergence of training loss, the scalability is limited due to
the expensive gradient communications.

Recently, local SGD has been highlighted due to its less
frequent communications than synchronous SGD. We refer the
local SGD with periodic model averaging to ‘local SGD’ for
short. The algorithm allows workers to locally train their own
models and periodically averages the model parameters across
all the workers. Thus, the communications are performed only

when averaging the model parameters. Compared to the syn-
chronous SGD that averages the gradients every iteration, local
SGD enjoys a significantly reduced communication frequency,
and thus a better scalability.

Despite the low communication frequency, local SGD has
a limitation that hinders effective scaling such that the con-
vergence rate of training loss is adversely affected as the
number of workers increases. It also has been empirically
shown that, given the same number of training epochs and
a fixed local batch size, a larger number of workers yields
a lower validation accuracy [1], [2]. For instance, Lin et. al
observed a considerable accuracy drop when increased the
number of workers to 16 [1]. To address this issue, the authors
proposed post-local SGD that uses a single worker in the early
epochs and then increases the number of workers once the
learning rate is decayed. This approach significantly sacrifices
the degree of parallelism. The experimental results in [3] also
show that the training loss converges to a higher value as
the number of workers increases. In practice, researchers use
8 ∼ 16 workers for local SGD training.

In this paper, we discuss how to exploit the degree of
parallelism of local SGD without a significant accuracy loss.
We first describe a hierarchical parallelism that applies data
parallelism to each local model training. Our training strategy
employs multiple groups of processes and each group inde-
pendently trains a local model based on data parallelism. The
local models are periodically averaged across all the groups.
Thus, this hierarchical parallelism has two communications,
one for averaging gradients within each group and the other
for averaging model parameters across the groups. Usually,
local SGD is implemented with allreduce operations such that
each local model is updated using the gradients and then the
model parameters are aggregated and summed up across all the
processes using allreduce operations. In this approach, all the
workers periodically average the entire model parameters, and
thus the communications cost is a constant regardless of the
number of processes. We propose a communication-efficient
model averaging algorithm that allows each process to average
only a distinct subset of model parameters across the groups.
The communication cost of the proposed algorithm is reduced
as more processes work in each group.

We also discuss how to find the proper number of workers
for local SGD, that makes a good balance between the

1

719

scalability and the convergence rate. We argue that the number
of workers for local SGD should be considered as a tunable
hyper-parameter since it strongly affects the training conver-
gence rate as well as the generalization performance. We
propose a metric for estimating how effectively the workers
contribute to minimizing the shared cost function. Based on the
metric, we explain how to find the largest number of workers
that achieves a good convergence rate. The proposed distance
metric enables to find the proper number of workers within a
few early iterations rather than running the entire training.

We validate our proposed training strategy using popular
benchmark classification and regression applications. First,
we compare the learning curves between the synchronous
SGD and local SGD with different numbers of workers. We
empirically verify the effectiveness of the proposed distance
metric by showing that the accuracy does not drop when the
number of workers is chosen based on the proposed distance
metric. Then, we present the strong scaling performance and
analyze the impact of the proposed hierarchical parallelism
with the communication-efficient model averaging algorithm
on it. Our experimental results demonstrate that our local
SGD-based parallel training strategy dramatically improves
the scalability of neural network training without a significant
accuracy loss with a minimal extra tuning effort.

II. BACKGROUND AND RELATED WORKS

We first define a few notations for describing the algorithms.
• B: the mini-batch size
• P : the number of workers
• I: the model averaging interval
• µ: the learning rate

A. Synchronous SGD with Data Parallelism

Synchronous SGD represents a synchronous-parallel version
of mini-batch SGD. Mini-Batch SGD iteratively adjusts the
model parameters using the gradients computed from a random
subset of training samples that is called mini-batch. The
algorithm updates the model parameters using Equation 1.

wt+1 = wt − µ
1

B

B∑
i=1

∇f(wt, xi), (1)

where wt is the model parameters at iteration t, and
∇f(wt, xi) is the stochastic gradient of a cost function f with
respect to the model parameters wt, computed from a training
sample xi.

In synchronous SGD with data parallelism, mini-batch SGD
is parallelized such that each mini-batch of size B is evenly
distributed to all P workers and processed independently.
Then, the workers synchronize their gradients by a global
averaging operation. Finally, the shared model parameters are
updated using the averaged gradients so that all P workers
always view the same model parameters. Typically, the model
parameters are averaged using allreduce operations. The com-
munication cost of an allreduce operation is proportional to
the data size. Thus, when the neural network consists of a

large number of parameters, the parallel training suffers from
the expensive communications and it results in achieving a
poor scaling performance.

B. Local SGD with Periodic Model Averaging

Local SGD has been highlighted due to the lower commu-
nication frequency than the classical synchronous SGD. Given
P workers, each worker trains its own model using Equation
1. After every I iteration, the model parameters are averaged
among all the P workers using Equation 2.

wt =
1

P

P∑
i=1

wt,i, (2)

where wt,i is the local model parameters of worker i at
iteration t.

Recently, a few variants of local SGD have been proposed.
Cong et. al [4] proposed Sparse Aggregation SGD (SASGD)
which locally accumulates the gradients and periodically sums
up the gradients among all the workers to adjust the shared
model parameters. Lin et. al [1] proposed post-local SGD
which employs the classical mini-batch SGD in the early train-
ing epochs. Yu et. al [3] named the same algorithm as restart
SGD and studied the theoretical convergence analysis. The
authors showed that the convergence rate is O(1

PT) assuming
T > P 3, where T is the number of iterations. Haddadpour et.
al [2] also analyzed the convergence rate of local SGD. The
authors showed that the expected difference of the training
loss after T iterations and the optimal training loss is bounded
by O(1

PBT) when I is small enough. Although these works
present slightly different conclusions, we can observe two
common facts from their convergence rate analysis. First, to
achieve a fast convergence rate, the model averaging interval
should be sufficiently small. Some researchers proposed adap-
tive model averaging interval methods to improve the scaling
efficiency [2], [5]. Second, the larger the number of workers,
the slower the model converges. This is a critical limitation
that hinders the scalable parallel training of neural network.

III. COMMUNICATION-EFFICIENT LOCAL SGD FOR
PARALLEL DEEP LEARNING

In this section, we discuss our parallelization strategy for
local SGD-based neural network training. We first describe a
hierarchical parallelism that improves the degree of parallelism
in local SGD training. Based on the hierarchical parallelism,
we design a model averaging algorithm that has a cheaper
communication cost than allreduce-based approach. Then, we
discuss how to find the proper number of workers for local
SGD training. Our tuning method is based on a distance
metric that estimates how effectively the workers contribute
to minimize the shared cost function.

A. Hierarchical Parallelism

Local SGD iteratively assigns disjoint B samples on each
worker, and P workers independently process the given sam-
ples and update their local models every iteration. Thus, in
data parallel training, the degree of parallelism of local SGD

2

720

∇𝑊𝑊0
0 ∇𝑊𝑊1

0 ∇𝑊𝑊0
1 ∇𝑊𝑊1

1

∇𝑊𝑊0
2 ∇𝑊𝑊1

2 ∇𝑊𝑊0
3 ∇𝑊𝑊1

3

Worker group 0

Worker group 1

∇𝑊𝑊0
0 ∇𝑊𝑊0

1 ∇𝑊𝑊1
0 ∇𝑊𝑊1

1

∇𝑊𝑊0
2 ∇𝑊𝑊0

3 ∇𝑊𝑊1
2 ∇𝑊𝑊1

3

𝑊𝑊0
0+1 𝑊𝑊1

0+1

𝑊𝑊0
2+3 𝑊𝑊1

2+3

�𝑊𝑊0 �𝑊𝑊1

�𝑊𝑊0 �𝑊𝑊1

�𝑊𝑊0 �𝑊𝑊1 �𝑊𝑊0 �𝑊𝑊1

�𝑊𝑊0 �𝑊𝑊1 �𝑊𝑊0 �𝑊𝑊1

Step1:
MPI_Alltoall() for
local gradients
within group

Step3:
MPI_Allreduce() for
the updated
parameters across
groups

Step2:
Sum up the received
gradients and update
the corresponding
model parameters

Step4:
MPI_Allgather() for
the averaged
model parameters
within group

Output:
Globally averaged
model parameters �𝑊𝑊

Fig. 1. An example of model averaging in local SGD training. Two worker groups run local SGD and each group employs data parallelism with 2 processes.

is BP . However, the typical setting in local SGD is that one
process trains one model. For example, Wang et. al [2] run 4
processes each of which trains its own VGG/ResNet model on
a separate GPU. Lin et. al [1] locally train 16 ResNet models
using 16 processes. Yu et. al [3] run 8 pyTorch processes on
8 GPUs for VGG training.

Motivated by these observations, we design a hierarchical
parallel training strategy that fully utilizes the degree of
parallelism. Our training strategy consists of two levels of
parallelism. First, K processes contribute to a single shared
model based on data parallelism. Each mini-batch of size B is
evenly distributed to the K processes and the gradients are in-
dependently calculated. Then, the locally computed gradients
are averaged across the K processes and the shared model is
updated by the averaged gradients. Second, P groups of such
processes train their models independently and periodically
average the model parameters across all the groups after every
I iterations. The number of processes that participate in the
training is PK in total. Note that, in our discussion, a ‘worker’
indicates each K processes that train one shared model.

The described hierarchical parallel training strategy has
two inter-process communications. First, once a mini-batch
is processed by each group of processes, the locally computed
gradients are averaged across all the K processes within
each group. Given N training samples, this communication is
performed N

BP times per epoch. Second, the model parameters
are averaged across P groups after every I iterations. The
model parameters are averaged N

BPI times per epoch.
If the training is performed on accelerators such as GPUs

or Intel Xeon Phi, the ratio of computation to communication
is significantly reduced, and thus the communication time
becomes the performance bottleneck. We overlap the gradient
communications with the computations in order to improve
the scaling efficiency of each local model training. Since

the gradients do not have data dependency across layers,
the gradient communication at one layer and the gradient
computations at other layers can be performed simultaneously.
Recently, many researchers have studied how to maximize
the overlap of computation and communication [6]–[10]. We
adopt the gradient averaging algorithm proposed in [10].
This communication algorithm enables to overlap the gradient
communications with not only the backward computations but
also the forward computations at the next iteration.

B. Communication-Efficient Model Averaging

In local SGD training, the communication cost for averaging
the model parameters scales up with the number of workers.
We propose a communication-efficient model averaging algo-
rithm based on our proposed hierarchical parallelism. First,
once every process computes the gradients, K processes within
each group performs an all-to-all personalized communication
for the local gradients. After the communication, each process
becomes to have K sets of local gradients of a distinct
subset of parameters. Second, each process element-wisely
averages the received gradients and update the corresponding
parameters. Third, each process averages the updated param-
eters by calling an allreduce communication across P groups
and element-wisely multiplying 1

P . Finally, all the processes
perform an allgather communication within each group. After
these 4 steps, every process ends up having a full set of the
state-of-the-art parameters.

Figure 1 presents an example of the proposed communi-
cation algorithm. The example shows the case of 2 groups
(P = 2) each of which has 2 processes (K = 2). In Figure
1, ∇W i

j indicates the gradients computed by process i for the
jth subset of the parameters. After 3 communication and 1
computation steps, all the individual process has a full set of
parameters W̄ 0∼3.

3

721

Communication Cost Analysis – We analyze and compare
the communication cost between the classical allreduce-based
approach and our proposed algorithm. In this work, we follow
the cost model used in many previous works [11]–[13],

T = sα+ wβ, (3)

where s is the number of messages, w is the message size,
α is the communication latency cost, and β is the reciprocal
bandwidth.

In all the previous local SGD works, Allreduce operations
were used for averaging the model parameters across workers
[1]–[3], [5]. MPICH implements the Allreduce operation using
two different algorithms depending on the message size [12],
[14]. When the message is smaller than or equal to 2KB, a
binomial tree algorithm is used, which is known to be optimal.
For the messages larger than 2KB, Rabenseifner’s algorithm
is used. In practice, the size of gradients at one layer in
modern neural networks is most likely larger than 2KB. So, we
consider the communication cost of Rabenseifner’s algorithm
only in this work. The communication cost of the algorithm
is as follows [12].

2log(p)α+ 2
p− 1

p
wβ, (4)

where p is the number of processes that participate in the
communication.

There are two communications in our hierarchical paral-
lelism; one for averaging the gradients among K processes
within each group and the other for averaging the model
parameters across P worker groups. So, when MPI Allreduce
operation is used for these two communication, the overall
communication cost within each epoch is calculated as fol-
lows.

T =
N

BP
(2log(K)α+ 2

K − 1

K
Mβ)+

N

BPI
(2log(K)α+ 2

P − 1

P
Mβ),

(5)

where N is the number of training samples, M is the number
of parameters, B is the mini-batch size per worker group, P
is the number of worker groups, K is the number of processes
per worker group, and I is the model averaging interval. Note
that, in this cost analysis, we consider that B, P , K, and I
are all pre-defined constants.

The proposed model averaging algorithm consists of three
separate communications. The first communication step is
MPI Alltoall and its communication cost T0 is as follows.

T0 =
N

BP
((K − 1)α+M

K − 1

K
β) (6)

The second communication step is MPI Allreduce across the
groups and its cost T1 is as follows.

T1 =
N

BPI
(2log(P)α+

2M

K

P − 1

P
β) (7)

Finally, the third communication step is MPI Allgather and
its cost T2 is as follows.

T2 =
N

BP
((K − 1)α+M

K − 1

K
β) (8)

In this work, we assume the startup time term of the cost
model shown in Equation 3 is much smaller than the transfer
time term. So, when comparing the communication cost,
we focus on the second term only. Under this assumption,
T0 + T2 is the same as the communication cost of a single
MPI Allreduce call with a message size of M , that is the first
term of the right-hand side of Equation 5. So, the difference
between T and T0 + T1 + T2 comes from the message size
of the MPI Allreduce that is performed across the groups.
In allreduce-based approach, the message size is M , the
size of the entire model parameters, while that is M

K in
our approach. This analysis proves that our approach has a
cheaper communication cost than allreduce-based approach
when K > 1.

Applying to variants of local SGD – There have been
several variants of local SGD such as Post-local SGD [1],
Sparse Aggregation SGD (SASGD) [4], and a few adaptive
averaging interval methods [2], [5]. Our proposed hierarchical
parallelism and the model averaging method can be applied
to all these algorithms because the proposed methods are
independent of any parameter update rules or hyper-parameter
settings. For instance, the post-local SGD begins the training
with a single synchronous model and then increases the
number of workers allowing local updates after the learning
rate is decayed for the first time. Once the number of workers
increases, it becomes exactly the same as the local SGD
training, and thus our hierarchical parallelism and the model
averaging algorithm can be directly applied to achieve a better
scaling efficiency. SASGD averages the accumulated gradients
across all the workers using allreduce communications. Like-
wise, if the hierarchical parallelism is applied to the training,
the proposed communication pattern can be used to average
the accumulated gradients instead, and thus a better scaling
efficiency can be expected.

C. Hyper-Parameter Tuning for Scalable Local SGD

We discuss three hyper-parameters of local SGD, that affect
the model accuracy: the local batch size B, the number of
workers P , and the model averaging interval I . Especially, to
the best of our knowledge, the number of workers P has not
been considered as a hyper-parameters in the previous works,
and set to a certain small number between 4 ∼ 16. In practice,
P is usually equal to the number of available GPUs.

Finding the proper number of workers – We argue
that the number of P is a hyper-parameter and should be
carefully tuned to achieve a good convergence accuracy. In
local SGD, the model moves on the parameter space when
either the model parameters are updated using the gradients
or the models are averaged across all the workers. The number
of parameter updates is a constant which is the same as
the number of mini-batches. However, local SGD averages
the local models N

BPI times per epoch. Thus, the number
of workers P strongly affects how much the model can
move on the parameter space in each epoch. In ideal, if the
distance between the local models and the averaged model
is proportionally increased as P increases, we can expect the

4

722

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000

D
is

ta
n

ce

Number of processed samples

P=2
P=4
P=8
P=16
P=32 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

D
is

ta
n

ce

Number of processed samples

P=2
P=4
P=8
P=16
P=32 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000

D
is

ta
n

ce

Number of processed samples

P=2
P=4
P=8
P=16
P=32 0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000

D
is

ta
n

ce

Number of processed samples

P=2
P=4
P=8
P=16
P=32

(a) (b) (c) (d)

Fig. 2. The distances between local models and the averaged model with different numbers of workers and averaging intervals for CIFAR10 classification.
The local batch size (B) is fixed to 128 and the number of workers (P) increases from 2 to 32. The chart (a), (b), (c), and (d) show the distances with the
averaging intervals (I) of 2, 4, 8, and 16, respectively.

model to explore a similar size of parameter space regardless
of the P setting.

Figure 2 presents the distances between local models and
the averaged model in ResNet-20 training on CIFAR10. The
local batch size B is set to 128 and the learning rate is fixed
to 0.1. The model averaging interval I is set to 2, 4, 8, and 16
for the chart (a), (b), (c), and (d), respectively. When P ≤ 4,
we commonly see that the distance effectively increases as P
increases in all the four charts. When P increases beyond 4,
the distance is not much increased or even reduced. Regardless
of the model averaging interval, therefore, we can expect the
model to move more slowly on the parameter space when
using more than 4 workers.

A slow movement of model can cause two potential prob-
lems as follows. First, it is equivalent to using a smaller
learning rate. It has already been known that the learning rate
should be sufficiently large to avoid falling into local minima
that poorly generalize to the test data [2], [5], [15]. Second,
given the same number of epochs, the model explores a smaller
region of the parameter space. Some researchers have shown
that a certain degree of noise in gradients makes the model
explore more parameter space which results in having a better
chance to achieve a high model accuracy [16], [17].

By comparing the validation accuracy among different P
settings, we can indirectly view the impact of the model
averaging on the quality of the training output. The model
averaging interval is fixed to 8. The validation accuracy
achieved after 200 epochs with P = 2 and P = 4 is almost
the same (91.98± 0.2% and 91.41± 0.2%). When P = 8 and
P = 16, we observed that the accuracy is significantly dropped
(86.08 ± 0.1% and 83.49 ± 0.2%). The similar experimental
results have been reported in [1]. These results demonstrate
that a large P makes the model moves more slowly and it
results in degrading the generalization performance.

Note that these results can be also analyzed using the
concept of ‘effective batch size’ of local SGD. Given a fixed
local batch size B, local SGD handles P mini-batches at
each iteration. So, we can consider the ‘effective batch size’
is BP . Lin et al [1] empirically studied the impact of the
effective batch size on the validation accuracy. Their key

observation is that the larger the effective batch size, the lower
the validation accuracy after the same number of epochs. They
proposed post-local SGD that sets P to 1 until the learning
rate is decayed. Post-local SGD takes advantage of a fast loss
reduction at the early epochs while significantly sacrificing the
degree of parallelism.

Based on our analysis, we consider the distance from
local models to the averaged model as a practical metric for
measuring how effectively the local models contribute to the
training. We formally define the distance metric D as follows.

D =
1

P

P∑
i=1

‖W i − W̄‖2, (9)

where W i is the local model parameters of worker i and W̄ is
the model parameters averaged across all the workers. Based
on our heuristics, we propose to tune the number of workers
P as follows.

• In order to scale up the local SGD training without a
significant accuracy loss, increase P up to the threshold
in which D stops increasing proportionally.

Another advantage of this metric is that it enables to find
the proper P without running the full training until the loss
converges. As shown in Figure 2, the D values are flattened in
the early few iterations regardless of P , B, and I settings. So,
users can determine the best number of workers by running
a few iterations with different P settings and comparing the
distances. Considering the ever-increasing available training
data and deep networks, this distance metric can dramatically
reduce the time and resource for the hyper-parameter tuning.

Finding the model averaging interval – By increasing
the model averaging interval I , the model parameters are
synchronized less frequently and the overall communication
cost is reduced. However, if I is too large, the local models
can move towards different minima and it can result in making
the model converge slowly. The statistical analysis presented
in [2] also shows that a smaller I gives a better convergence
rate. Therefore, I should be carefully tuned to make a good
balance between the scalability and the convergence rate.

The recent works focus on how to maximize the interval
without adversely affecting the convergence rate. Some re-

5

723

searchers have proposed adaptive model averaging methods
[2], [5]. These methods adaptively adjust the model averaging
interval based on the statistical analysis of the impact of I on
the convergence rate at run-time.

In our proposed model averaging algorithm, the commu-
nication cost of the model averaging is shown in Equation
7. In the second term, the message size is 2M

K , which
means the communication cost is proportionally reduced as
more processes are employed for each local model training.
Note that the first term of Equation 3, the startup cost of
each communication, is negligible in parallel neural network
training due to the large message size w. Thanks to the
reduce communication cost complexity, we found that the
communication cost for model averaging is not significant
compared to the cost of the computations and the gradient
communications within each group. Therefore, when using our
model averaging algorithm, we choose a sufficiently small I
which gives a good convergence rate. In many previous works,
I is usually set to a certain value between 10 ∼ 128. In our
experiments, we found that, even when I is set to 2 ∼ 4,
the communication cost for averaging the model parameters
is almost negligible.

Adjusting the learning rate for local SGD – Like any
other SGD-based algorithms, local SGD also requires users
to properly adjust the learning rate to achieve a good model
accuracy. Especially when P is large, as shown in Figure 2,
the averaged model moves slowly and it makes the model
easily fall into sharp minima. We present our learning rate
adjustment method for local SGD as follows.

• Increase the learning rate as the number of workers
increases.

• Apply gradual warm-up technique to each local model
training.

First, we propose to increase the learning rate as the number
of workers increases. It has been both empirically observed
[1] and statistically analyzed [2], [3] in the previous works
that increasing the number of workers yields a similar impact
on the model accuracy as using a larger mini-batch size.
As the batch size increases, the variance of the gradients
goes down, and thus the training more easily converges to
a sharp minimum that poorly generalizes to the test data
[15]. Researchers have found that increasing the learning rate
can alleviate such an effect [15], [18], [19]. Based on the
same principle, if the learning rate is increased in local SGD
training, the inherent noise scale can be considered to be
increased. Smith et. al also proposed a concept of noise scale
that is proportional to the learning rate in [20]. Thus, by
averaging such noisy models in local SGD, the training does
not easily converge into a minimum and keeps exploring the
parameter space heading towards minima that better generalize
to the test data (called ‘flat’ minima [15], [20]).

Second, we empirically found that the warm-up method
helps stabilize the training when using larger learning rates.
We employ the gradual warm-up method proposed in [18]
within each local model such that the learning rate is initially
set to µ0 that is the best-tuned learning rate for the local batch

size and then gradually increase it in the first few epochs.
There are two known learning rate scaling methods for large
batch synchronous SGD training: ‘linear scaling rule’ [18] and
‘root scaling rule’ [19]. Since the upper bound of learning
rate that guarantees the convergence is problem-dependent,
users should empirically find the maximum allowed learning
rate considering the dataset size and other hyper-parameter
settings. When the linear scaling rule is applied, the gradual
warm-up increases the learning rate to Pµ0. For the root
scaling rule, the learning rate is increased to

√
Pµ0.

IV. PERFORMANCE EVALUATION

We evaluate the proposed local-SGD training algorithm for
deep neural networks. We apply our parallel training strategy
to two representative classification and regression problems,
CIFAR10 classification with ResNet-20 and DIV2K image
super-resolution with EDSR.

Systems – All our experiments are carried out on Cori,
a Cray XC40 supercomputer at National Energy Research
Scientific Computing Center (NERSC). Each compute node
has an Intel Xeon Phi Processor 7250, Knights Landing
(KNL), that has 68 cores. AVX-512 vector pipelines with a
hardware vector length of 512 bits are available at each node.
The system has Cray Aries high-speed interconnections with
‘dragonfly’ topology.

Datasets – CIFAR10 [21] is a popular benchmark dataset
for deep learning study. The dataset consists of 50,000 training
samples and 10,000 validation samples. Each sample is an
3-channel image of size 32 × 32. DIV2K is a dataset from
NTIRE2017 Super-Resolution Challenge [22], which contains
800 high-quality 2K resolution pictures. We used bicubic low-
resolution images as the training data.

Models – For CIFAR10 classification, we used ResNet-20
[23] which is also one of the most popular CNN model archi-
tecture. The model has 20 layers in total, including convolution
layers, pooling layers, and fully-connected layers. The layers
also have residual connections between non-adjacent layers.
For DIV2K image regression, we used EDSR [24] which is
a deep CNN model. The model has 32 residual blocks each
of which has 2 convolution layers and a residual connection
between the input and the output of the block.

Software – We developed our own deep learning framework
that is designed for parallel training on distributed-memory
platforms. The software framework adopts MPI-OpenMP pro-
gramming model. Each MPI process uses OpenMP to utilize
all the cores for kernel functions such as matrix operations.
Each process also employs a communication-dedicated POSIX
thread that performs blocking MPI communications. In this
way, the computation and communication can be explicitly
overlapped based on users’ overlapping strategy.

We chose to fix the number of training epochs and compare
the model accuracy. It has been empirically shown that a
large batch training can achieve a similar accuracy to the
training with the best-tuned small batch size if the model
is trained for proportionally increased epochs [19]. However,
in practice, researchers usually stop the training when an

6

724

60

65

70

75

80

85

90

95

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)

Epochs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

Tr
ai

ni
ng

 lo
ss

 (s
of

tm
ax

)

Epochs

B=128, P=2, I=8
B=128, P=4, I=8
B=128, P=8, I=8
B=128, P=16, I=8
B=128, P=32, I=8

Fig. 3. Comparison of learning curves for CIFAR10 classification with
ResNet-20 across different numbers of workers P . We fixed the local batch
size B to 128 and the model averaging interval I to 8. Both the training loss
and the validation accuracy are degraded when P ≥ 8.

TABLE I
VALIDATION ACCURACY OF CIFAR10 CLASSIFICATION WITH

RESNET-20. THE LOCAL BATCH SIZE B IS 128, THE MODEL AVERAGING
INTERVAL I IS 8. THE LEARNING RATE µ FOR P = 1 IS 0.1 AND IT

PROPORTIONALLY INCREASES AS P INCREASES.

B P I µ accuracy (%)
128 1 1 0.1 91.91%
128 2 8 0.2 91.61%
128 4 8 0.4 91.58%
128 8 8 0.8 91.11%
128 16 8 1.6 89.28%
128 32 8 3.2 85.55%

acceptable accuracy is achieved, rather than waiting until the
training loss entirely converges. Considering such a common
practice, we do not focus on adjusting the training epochs to
achieve a better accuracy.

A. Comparison with Local SGD Variants

There are several algorithms that seek to improve upon local
SGD, including post-local SGD [1], Sparse Aggregation SGD
(SASGD) [4], and local SGD with adaptive model averaging
interval [2], [5]. We found that all these algorithms use
allreduce operations to average the model parameters across
all the workers. post-local SGD begins with synchronous
SGD and then increases the number of local models after
decaying the learning rate. Once the number of local mod-
els increases, the model parameters are averaged using the
allreduce operations. SASGD also averages the accumulated
local gradients using allreduce operations. The adaptive model
interval adjustment methods aim to minimize the frequency of
the communications, however the communication pattern for
averaging the model parameters is still the same.

We compare scaling performance among three different
parallel training methods: synchronous SGD, allreduce-based
local SGD, and our proposed local SGD. Although all the local
SGD variants have different hyper-parameter adjustment meth-
ods or parameter update rule, they share the same communi-
cation pattern for averaging the model parameters. Therefore,
we categorize all such algorithms to ‘allreduce-based local
SGD’. Note that our proposed model averaging algorithm can
be independently applied to any local SGD variants because
it can directly replace the allreduce operations.

0

1

2

3

4

5

6

7

8

0 10000 20000 30000 40000 50000 60000 70000

Di
st

an
ce

Number of processed samples

B=128, P=2, I=8
B=128, P=4, I=8
B=128, P=8, I=8
B=128, P=16, I=8
B=128, P=32, I=8

Fig. 4. Comparison of average distance between the local models and the
averaged model. B is set to 128, I is set to 8. P varies between 2 and 32.
The learning rate is initially set to 0.1 and gradually increased to 0.1P in the
first five epochs (gradual warm-up). Compared to Figure 2, the distance is
more effectively increased as P increases.

B. CIFAR10 Classification

Classification performance – Figure 3 shows the training
loss curves (left) and the validation accuracy curves (right)
with different P settings. Table I presents the best validation
accuracy in the last 10 epochs. We report the accuracy results
that are averaged across three separate experiments. The local
batch size B is fixed to 128 and the number of workers varies
between 1 and 32. The model averaging interval I is set to 8.
For synchronous SGD (P = 1), we use a learning rate of 0.1
that is the best-tuned value for B = 128. We proportionally
increase the learning rate for local SGD as P increases. The
gradual warm-up is applied to the first five epochs when P ≥
2. We can observe that a comparable validation accuracy to
the synchronous SGD with the best-tune batch size is achieved
only when P ≤ 4. Note that we consider that the accuracy
drop is significant if it is larger than 0.5%

We demonstrate the effectiveness of the proposed distance
metric D by comparing the learning curves and the distance
curves. Figure 4 presents the distance curves measured from
the CIFAR10 classification experiments. When P = 2, the
distance is rapidly flattened and becomes around 0.8 ∼ 0.9.
When P increases to 4, the distance is also proportionally
increased to 1.9 ∼ 2.0. As shown in Table I, the difference of
validation accuracy between P = 2 and P = 4 is negligible.
As P further increases to 8, the distance is increased to 3 ∼ 3.4
that is slightly lower than the expected one (∼ 3.9). Likewise,
the validation accuracy is dropped by ∼ 0.4%. We can clearly
see that D and P are no longer proportional to each other
when P > 8. As shown in Figure 3, when P > 8, the training
loss converges much slowly and the validation accuracy is also
dropped significantly. These results empirically prove that the
distance between the local models and the averaged model
indirectly represents how effectively the workers contribute to
minimizing the shared cost function in local SGD. Note that
Figure 4 shows much longer distances than shown in Figure 2.
The difference comes from the increased learning rate based
on the learning rate control proposed in Section III-C.

Scaling performance – We found that the maximum P

7

725

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

Sp
ee

du
p

Number of processes (nodes)

0

10

20

30

40

50

60

70

80

8 16 32 64 128

Ep
oc

h
tim

e
(s

ec
)

Number of processes (nodes)

synchronous SGD
Allreduce local SGD (P=4, I=8)
Proposed local SGD (P=4, I=8)

Fig. 5. Comparison of the epoch time (left) and speedup (right) for CIFAR10
classification among synchronous SGD, allreduce-based local SGD, and the
proposed local SGD. For synchronous SGD, we used the batch size of 512.
For local SGD, the local batch size B is 128, the number of workers P is 4,
and the model averaging interval I is 8.

0
0.05

0.1
0.15

0.2
0.25

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

16 32 64 128

Co
m

m
un

ic
at

io
n

tim
e

(s
ec

)

Number of processes (nodes)

gradient averaging
model averaging

Fig. 6. Comparison of the communication time per iteration for ResNet-
20 training among synchronous SGD, allreduce-based local SGD, and the
proposed local SGD.

providing a good accuracy in local SGD training for CIFAR10
classification is 4, using our proposed distance metric. So, we
study the scaling performance using 4 workers. That is, when
scaling up, the number of local models is fixed to 4 and the
number of processes increases for data parallel training of each
local model. We compare the performance among synchronous
SGD, allreduce-based local SGD, and the proposed local SGD.

Figure 5 shows the average epoch time (left) and speedup
(right). The local batch size B is 128 and the model averaging
interval I is 8. Note that when the number of processes
is smaller than P , we performed synchronous SGD. For
synchronous SGD, to fairly compare the scaling performance,
we used a large batch size of 512. The speedup of synchronous
SGD is flattened when the training is scaled up to 32 processes.
In data parallel training, as the number of processes increases,
the computational workload is proportionally reduced while
the communication cost increases. Therefore, the communica-
tion time ends up being dominant over the computation time
and it results in flattening the speedup.

We can see that the proposed local SGD significantly outper-
forms synchronous SGD. It achieves almost a linear speedup
until 16 processes and then the scaling efficiency is degraded
as more processes are employed. allreduce-based approach
also shows better scaling performance than synchronous SGD,

however, the speedup is flattened from 64 processes. Because
the proposed model averaging algorithm does not affect the
computational workload, the timing difference between allre-
duce-based approach and the proposed approach comes only
from the reduced communication cost.

Figure 6 presents the communication time comparison
among the three parallel training methods. We measured the
gradient averaging communications and the model averaging
communications separately. First, local SGD training has a
shorter communication time than synchronous SGD. Because
the gradients are averaged within each group only, the com-
munication cost is reduced as more workers are employed.
Second, our proposed model averaging algorithm significantly
reduces the model averaging communication cost compared to
the allreduce-based approach. This communication time com-
parison clearly shows how effectively our proposed algorithm
improves the scalability of local SGD.

It is worth noting that the communication cost of model
averaging is a constant regardless of the overall number of
processes. Since the model is averaged across all the groups,
the communication cost is affected only by the number of
workers P . When scaling up the training, we fix the number
of workers P to 4 and increase the group size K. So, the
communication cost of gradient averaging increases as the
number of processes increases, while the communication cost
of model averaging stays the same.

C. DIV2K Super-Resolution

Image super-resolution is one of the popular regression
problems. We use Enhanced Deep Super-Resolution (EDSR)
[24], a residual network that has 32 residual blocks each of
which has two convolution layers. This model is much deeper
and larger than ResNet-20 used in the previous experiment.

Regression performance – For DIV2K super-resolution
experiments, we use Peak Signal-to-Noise Ratio (PSNR) as a
similarity metric between the estimated high-resolution images
and the original images. We follow all the hyper-parameter
settings used in [24], except the batch size and learning rate.
The model is trained using Adam [25], a variant of the classical
SGD, for 1200 epochs. Note that, the EDSR training diverges
when P increases to 8 and the learning rate is proportionally
increased. So, in order to keep the learning rate from being
increased out of the safe range, we multiply

√
P to the learning

rate as P increases, as shown in Table II.
Figure 7 shows the learning curves with different P settings.

Table II shows the best validation accuracy in the last 100
epochs. We observe that almost the same validation accuracy
is achieved when P ≤ 8. When P = 8, the accuracy achieved
after 1200 epochs is 33.89 dB which is just 0.36 dB lower
than that of synchronous training. However, when P = 16,
the validation accuracy is dramatically dropped to 30.95 dB.

Figure 8 presents the distance from the local models to the
averaged model with different P settings. We can see the same
pattern that has been shown in Figure 4. When P = 2, the
distance D is measured to be 0.02 ∼ 0.03. As P increases,
the distance curve also moves up proportionally until P = 8

8

726

0
5

10
15
20
25
30
35
40

20 12
0

22
0

32
0

42
0

52
0

62
0

72
0

82
0

92
0

10
20

11
20

Va
lid

at
io

n
PS

N
R

(d
B)

Epochs

B=16, P=2, I=4
B=16, P=4, I=4
B=16, P=8, I=4
B=16, P=16, I=4

0
2
4
6
8

10
12
14

20 12
0

22
0

32
0

42
0

52
0

62
0

72
0

82
0

92
0

10
20

11
20

Tr
ai

ni
ng

 lo
ss

 (M
AE

)

Epochs

B=16, P=2, I=4
B=16, P=4, I=4
B=16, P=8, I=4
B=16, P=16, I=4

Fig. 7. Comparison of learning curves for DIV2K image super-resolution
with EDSR across different numbers of workers P . We fixed the local batch
size B to 16 and the model averaging interval I to 4. Both the training loss
and the validation accuracy are degraded when P ≥ 16.

TABLE II
VALIDATION ACCURACY OF DIV2K SUPER-RESOLUTION WITH EDSR.

THE LOCAL BATCH SIZE B IS 16, THE MODEL AVERAGING INTERVAL I IS
4. THE LEARNING RATE µ FOR P = 1 IS 0.0001. AS P INCREASES, WE

INCREASE THE LEARNING RATE BY MULTIPLYING A SQUARE ROOT OF THE
INCREASED RATIO.

B P I µ accuracy (PSNR)
16 1 1 0.1 34.35 dB
16 2 4 0.1414 34.39 dB
16 4 4 0.2 34.10 dB
16 8 4 0.2828 33.89 dB
16 16 4 0.4 30.95 dB

(0.04 ∼ 0.07 when P = 4 and 0.07 ∼ 0.13 when P = 8).
Thus, we consider that the workers still effectively contribute
to adjusting the global model towards minima when P ≤ 8.
However, when P = 16, the distance is significantly reduced
and slowly increases as the training progresses. This result is
aligned with the accuracy drop shown in Table II.

Scaling performance – Based on our heuristics, given
B = 16, we can find the maximum number of workers that
provides a good accuracy to be 8 for DIV2K regression.
So, we study the scaling performance using 8 workers. For
synchronous training, we use the batch size of 128 for a fair
comparison. Figure 9 shows the average epoch time (left) and
the speedup (right). We see that the speedup of synchronous
training is flattened as the number of processes is 64. Both
local SGD approaches effectively scale up to 64 processes,
and our proposed local SGD outperforms the allreduce-based
approach. Figure 10 shows the communication time com-
parison. Similarly to Figure 6, both local SGD approaches
have a cheaper gradient averaging cost than synchronous
SGD. Additionally, our proposed model averaging algorithm
significantly reduces the model averaging cost and it results
in achieving a better speedup as shown in Figure 9.

D. Comparison with TensorFlow

TensorFlow with Horovod is one of the most popular
software frameworks for deep learning. We compare the scal-
ing performance between TensorFlow and our own software
framework (‘PCNN’). This comparison demonstrates that our
scaling performance study is based on a reasonably good
baseline. We used TensorFlow 2.2.0 and Horovod 0.19.0,

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 5000 10000 15000 20000 25000 30000

Di
st

an
ce

Number of processed samples

B=16, P=2, I=4
B=16, P=4, I=4
B=16, P=8, I=4
B=16, P=16, I=4

Fig. 8. Comparison of average distance between the local models and the
averaged model. B is set to 16, I is set to 4. P varies between 2 and 16.
The learning rate is initially set to 0.0001 and gradually increased to 0.1

√
P

in the first five epochs (gradual warm-up).

the latest versions supported on Cori. Figure 11 presents the
execution time and speedup of synchronous SGD training.
We see PCNN outperforms TensorFlow when the number of
processes is larger than or equal to 16. The performance differ-
ence largely comes from the communication overlap. Horovod
performs allreduce communications after TensorFlow returns
the gradients. Thus, the communications cannot be overlapped
with any computations and the whole communication time is
exposed degrading the scaling efficiency. PCNN adopts the
overlapping strategy proposed in [10]. In Figure 5 and Figure
9, ‘synchronous SGD’ represents the synchronous parallel
training performance of our framework.

V. CONCLUSION

In this paper, we discussed how to exploit the degree of
parallelism in local SGD neural network training. We proposed
a hierarchical parallelism that applies data parallelism to each
local model training. When scaling up, we fix the number
of workers to the best-tuned value and increase the number
of processes for each local model training. The number of
workers is tuned using the proposed distance metric that
evaluates how effectively each local model contributes towards
minimizing the shared cost function. Our experimental results
demonstrate that the proposed hierarchical parallelism enables
to achieve significantly improved scaling performance while
maintaining the model accuracy. This paper can provide a
guideline for large-scale deep learning applications to improve
the scaling efficiency with a minimal extra hyper-parameter
tuning. We believe that applying the existing large-batch
training techniques to each local model training and studying
the impact can be an interesting future work.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC) program, under the “RAPIDS
Institute”. This work is also supported in part by the DOE
awards DE-SC0021399, DE-SC0014330, DE-SC0019358, and
NIST award 70NANB19H005. This research used resources of

9

727

0

50

100

150

200

250

4 8 16 32 64

Ep
oc

h
tim

e
(s

ec
)

Number of processes (nodes)

synchronous SGD
Allreduce local SGD (P=8, I=4)
Proposed local SGD (P=8, I=4)

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of processes (nodes)

Fig. 9. Comparison of the epoch time (left) and speedup (right) for DIV2K
regression among synchronous SGD, allreduce-based local SGD, and the
proposed local SGD. For synchronous SGD, the batch size is set to 128.
For local SGD, the local batch size B is 16, the number of workers P is 8,
and the model averaging interval I is 4.

0
0.2
0.4
0.6
0.8

1
1.2

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

Sy
nc

hr
on

ou
s

Al
lre

du
ce

 lo
ca

l
Pr

op
os

ed
 lo

ca
l

8 16 32 64

Co
m

m
un

ic
at

io
n

tim
e

(s
ec

)

Number of processes (nodes)

gradient averaging
model averaging

Fig. 10. Comparison of the communication time per iteration for EDSR
training (synchronous SGD, allreduce-based local SGD, and the proposed
local SGD).

the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-
batches, use local sgd,” arXiv preprint arXiv:1808.07217, 2018.

[2] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Local
sgd with periodic averaging: Tighter analysis and adaptive synchroniza-
tion,” in Advances in Neural Information Processing Systems, 2019, pp.
11 080–11 092.

[3] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 5693–5700.

[4] G. Cong, O. Bhardwaj, and M. Feng, “An efficient, distributed stochastic
gradient descent algorithm for deep-learning applications,” in 2017 46th
International Conference on Parallel Processing (ICPP). IEEE, 2017,
pp. 11–20.

[5] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update sgd,” arXiv preprint
arXiv:1810.08313, 2018.

[6] S. Lee, D. Jha, A. Agrawal, A. Choudhary, and W.-k. Liao, “Parallel
deep convolutional neural network training by exploiting the overlapping
of computation and communication,” in 2017 IEEE 24th International
Conference on High Performance Computing (HiPC). IEEE, 2017, pp.
183–192.

[7] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Acceler-
ating distributed deep learning with communication scheduling,” arXiv
preprint arXiv:1803.03288, 2018.

0

20

40

60

80

100

120

4 8 16 32 64

Ep
o

ch
 t

im
e

(s
ec

)

Number of processes (nodes)

TF + Horovod PCNN

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

d
u

p

Number of processes (nodes)

Linear

TF + Horovod

PCNN

Fig. 11. Comparison of the scaling performance between TensorFlow +
Horovod and our own software framework (PCNN). The training is scaled
up using synchronous SGD. The mini-batch size is 128.

[8] S. Wang, A. Pi, and X. Zhou, “Scalable distributed dl training: Batching
communication and computation,” in Proc. of AAAI, 2019.

[9] H. Wang, S. Guo, and R. Li, “Osp: Overlapping computation and
communication in parameter server for fast machine learning,” in Pro-
ceedings of the 48th International Conference on Parallel Processing,
2019, pp. 1–10.

[10] S. Lee, A. Agrawal, P. Balaprakash, A. Choudhary, and W.-K. Liao,
“Communication-efficient parallelization strategy for deep convolutional
neural network training,” in 2018 IEEE/ACM Machine Learning in HPC
Environments (MLHPC). IEEE, 2018, pp. 47–56.

[11] M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G. Payne, and
J. Watts, “Interprocessor collective communication library (intercom),”
in Proceedings of IEEE Scalable High Performance Computing Confer-
ence. IEEE, 1994, pp. 357–364.

[12] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[13] R. W. Hockney, “The communication challenge for mpp: Intel paragon
and meiko cs-2,” Parallel computing, vol. 20, no. 3, pp. 389–398, 1994.

[14] R. Rabenseifner, “A new optimized mpi reduce and allreduce algorithm,”
1997.

[15] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[16] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,
and J. Martens, “Adding gradient noise improves learning for very deep
networks,” arXiv preprint arXiv:1511.06807, 2015.

[17] M. Zhou, T. Liu, Y. Li, D. Lin, E. Zhou, and T. Zhao, “Towards
understanding the importance of noise in training neural networks,”
arXiv preprint arXiv:1909.03172, 2019.

[18] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[19] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better:
closing the generalization gap in large batch training of neural networks,”
in Advances in Neural Information Processing Systems, 2017, pp. 1731–
1741.

[20] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the
learning rate, increase the batch size,” arXiv preprint arXiv:1711.00489,
2017.

[21] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[22] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim,
S. Son, H. Kim, S. Nah, K. M. Lee et al., “Ntire 2017 challenge on
single image super-resolution: Methods and results,” in Computer Vision
and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference
on. IEEE, 2017, pp. 1110–1121.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[24] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2017, pp. 136–144.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

10

