
Parallel Deep Convolutional Neural Network Training by Exploiting the
Overlapping of Computation and Communication

Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary, and Wei-keng Liao

Electrical Engineering and Computer Science Department
Northwestern University

Evanston, IL USA
{slz839, dkj755, ankitag, choudhar, wkliao}@eecs.northwestern.edu

Abstract—Training Convolutional Neural Network (CNN)
is a computationally intensive task whose parallelization has
become critical in order to complete the training in an
acceptable time. However, there are two obstacles to developing
a scalable parallel CNN in a distributed-memory computing
environment. One is the high degree of data dependency
exhibited in the model parameters across every two adjacent
mini-batches and the other is the large amount of data to be
transferred across the communication channel. In this paper,
we present a parallelization strategy that maximizes the overlap
of inter-process communication with the computation. The
overlapping is achieved by using a thread per compute node
to initiate communication after the gradients are available.
The output data of backpropagation stage is generated at
each model layer, and the communication for the data can
run concurrently with the computation of other layers. To
study the effectiveness of the overlapping and its impact on
the scalability, we evaluated various model architectures and
hyperparameter settings. When training VGG-A model using
ImageNet data sets, we achieve speedups of 62.97× and 77.97×
on 128 compute nodes using mini-batch sizes of 256 and 512,
respectively.

Keywords-Convolutional Neural Network; Deep Learning;
Parallelization; Communication; Overlapping

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have shown the

state-of-the-art classification accuracies in various applica-

tions such as visual recognition [1], [2], speech recognition

[3], [4] and natural language processing [5]. Since AlexNet

[1] won the ImageNet competition with a large margin over

the other traditional approaches, CNN has become one of the

most promising machine learning algorithms. It is widely

known that deeper network can possess better learning

capability [6]. Recently, deep CNNs have been popularly

used to solve problems involving large-scale datasets [7], [8].

However, training deep CNNs on large datasets is extremely

computing-intensive and takes an enormous execution time.

Parallelizing CNNs has been considered to be challenging

due to the inherent sequential nature of Stochastic Gradient

Descent (SGD) algorithm used for training. In SGD, the

gradient of a cost function is calculated using a small group

of input data (typically called mini-batch) and the cost

function is minimized by updating the parameters using their

gradients [9]. Given a set of mini-batches, the algorithm

iteratively updates the parameters using the gradient at each

mini-batch and there is a data dependency on the parameters

across different mini-batches. Such sequential nature of SGD

limits the scalability of the training CNNs.

CNN training can be parallelized across either model-

dimension or data-dimension. If a model is split among

multiple compute nodes and trained on the same data,

it is called model-parallelism. In contrast, if the data is

distributed on multiple nodes and the same model is used

for training, it is called data-parallelism. Hybrid approaches

leveraging both parallelisms also have been proposed [6],

[10], [11]. In the hybrid approaches, a small number of

nodes are grouped to train a model together using the model-

parallelism, and a data set is partitioned to the groups to

be processed concurrently exploiting the data-parallelism.

Many of them employs master-slave model such that a

parameter server controls the parameter updates in a cen-

tralized fashion [12], [6], [10], [13]. However, the parameter

server eventually leads to performance bottleneck since all

the groups have to communicate with the single parameter

server. Another popular approach to solve the scaling issue

is asynchronous SGD. The asynchronous scheme allows a

better scaling at the cost of suboptimal parameter updates.

Many asynchronous SGD-based training algorithms have

been proposed for better scaling [6], [14], [15].

We address the scaling issue of CNN training algorithm

by proposing a novel approach for overlapping communi-

cation with computation. In backpropagation algorithm, the

gradient of the cost function is calculated with respect to the

parameters. Since there is no data dependency between the

gradients across different model layers, the communication

for exchanging the gradients among all compute nodes can

run concurrently with the computations of other layers. The

computation and communication overlap is essential to fully

utilize the given hardware resources and achieve a high

speedup. The existing works mostly focus on the efficient

workload distribution for a lower communication cost, while

overlapping is largely overlooked. We demonstrate the im-

pact of the overlapping on the scalability of CNN training.

In this paper, we parallelize CNN models using data-

183

2017 IEEE 24th International Conference on High Performance Computing

0-7695-6326-0/17/$31.00 ©2017 IEEE
DOI 10.1109/HiPC.2017.00030

�������	
��

��������	����

�������������	
��

���������	
��

�

����
������������	
��

��������	
��

�����	� �	
���

�

��	����� 	��
 	���������

���������������

���	������������

Figure 1: Structure of a CNN. A model consists of convolution
layers, pooling layers and fully-connected layers.

parallelism. The models are trained using synchronous SGD

such that the result from parallel training is exactly same as

the sequential training result. Our parallelization strategy is

based on two key techniques to maximize the computation

and communication overlap. First, we aggregate all the

gradients of parameters into two large chunks and reduce

them across all the nodes using asynchronous communica-

tions. Based on a data dependency analysis, we maximize

the overlap by choosing the optimal size of each gradient

chunk. Second, we replicate gradient calculation in a few

fully-connected layers. Depending on model architecture, the

replicated gradient calculation can significantly reduce the

communication cost. It also allows to overlap the communi-

cation time with feed-forward time for the next mini-batch.

When training VGG-A [7] model, we achieve up to 62.97×
and 77.97× speedups using 128 nodes with mini-batch sizes

of 256 and 512, respectively. We also explore various model

architectures and hyper-parameter settings to evaluate the

proposed algorithm and the overlapping methods.

II. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN) is a type of artifi-

cial neural networ which contains convolution layers [16].

The convolution layers enable the model to exploit the

spatially-local correlation in the input images by using the

local connectivity pattern. The local connectivity pattern is

called either a feature map or a filter.

A CNN model can contain three types of layers, convolu-

tion layer, pooling layer and fully-connected layer. Figure 1

illustrates the typical structure of a CNN model. Given the

training images at the first layer, a few convolution layers are

connected to the input layer. Each convolution layer can be

followed by a pooling layer. Finally, a set of fully-connected

layers is at the end of the model. Typically, the last layer uses

softmax as the activation function, while all the other layers

use Rectified Linear Unit (ReLU) [17]. Various activation

functions such as sigmoid or tanh can be used depending

on the applications. In Figure 1, the dotted lines indicate

the local connections, while the solid lines present the full

connections. The local connection is the connection pattern

where a neuron takes inputs from a subset of neurons in

Algorithm 1 Mini-Batch SGD CNN Training Algorithm
(M : the number of mini-batches, L: the number of layers

1: for each mini batch m = 0, ...M − 1 do
2: Initialize ΔW = 0

3: Get the mth mini batch, Dm.

4: for each layer l = 0, ...L− 1 do
5: Calculate activations Al based on Dm.

6: for each layer l = L− 1, ...0 do
7: Calculate errors El.

8: Calculate weight gradients ΔW l.

9: for each layer l = 0, ...L− 1 do
10: Update parameters, W l and Bl.

the previous layer. In contrast, the full connection is the

case where a neuron receives inputs from all the neurons

in the previous layer. Convolution layers have the local

connections, whereas fully-connected layers have the full

connections only.

A. Mini-Batch SGD CNN Training Algorithm

A CNN model is trained using backpropagation

algorithm[18]. The most popular optimization technique for

the backpropagation is Stochastic Gradient Descent (SGD)

[19]. In SGD, a model is trained on a small subset of the

given dataset (known as mini-batch), which is typically on

the order of 10 ∼ 512 for visual recognition tasks.

The training consists of two stages, feed-forward and

backpropagation. In feed-forward, the activations are cal-

culated using the input images and propagated in a forward

direction. In backpropagation, based on the activations at

the last layer, the errors are calculated and propagated in a

backward direction. The activations and errors are calculated

using Equation 1 and 2.

al
n = σ(

|W |−1∑

i=0

wl
ia

l−1
n+i + bln) (1)

el
n =

|W |−1∑

i=0

wl+1
i el+1

n−i, (2)

where al
n, b

l
n, and el

n are the nth activation, bias, and error

in layer l respectively, wl
i is an weight on the ith connection

between layer l and layer l−1, |W | is the number of weights
in a feature map, and σ is the activation function. Once

the errors are computed, the gradients of all parameters are

calculated by Equation 3.

Δwl
n =

|X|−|W |∑

i=0

el
ia

l−1
n+i, (3)

where |X| is the number of neurons in the l − 1th layer.

In the first layer, al−1
n+i is a pixel of the input image.

184

Algorithm 2 Data-Parallel CNN Training
(M : number of mini-batches, N : size of mini-batch, L: number of layers, k: number of layers for the first gradient chunk,
f : number of fully-connected layers that replicate the gradient calculation)

1: Define s← the layer ID of the first fully-connected layer.

2: for each worker p ∈ {0, ...P − 1} parallel do
3: for each mini batch m = 0, ...M − 1 do
4: Get the sub-mini batch Dm

p ← N
P
images from Dm, the mth mini batch.

5: Initialize the local gradient sum, Gl
p = 0

6: for each layer l = 0, ...L− 1 do � Feed-Forward

7: if l ∈ {s, ..., s+ f} and m �= 0 then
8: Wait until communications for Al−1

p and El
p, posted in iteration m− 1, are finished (line 12 and 25).

9: Calculate weight gradients ΔW [l:l+f]
p for Dm and update the corresponding weights W [l:l+f]

p .

10: Calculate activations Al
p using the given sub mini-batch Dm

p .

11: if l ∈ {s− 1, ..., s+ f − 1} then
12: Post asynchronous communication: Allgather Al

p.

13: for each layer l = L− 1, ...0 do � Backpropagation

14: Calculate errors El
p.

15: if l /∈ {s, ..., s+ f} then
16: Calculate weight gradients ΔW l

p for Dm
p

17: Add the weight gradiets to the local gradient sum: Gl
p+ = ΔW

l
p.

18: if l is equal to k then
19: Post asynchronous communication: Allreduce G[L−k:L−1]

p .

20: Post asynchronous communication: AllReduce G[0:L−k−1]
p .

21: Wait until the communication for G[L−k:L−1]
p is finished (line 19).

22: for each layer l = L− 1, ...0 do � Parameter Update

23: if l is equal to L− k then
24: Wait until the communication for G[0:L−k−1]

p is finished (line 20).

25: for each layer l = s, ...s+ f do
26: Post asynchronous communication: Allgather El

p.

27: if l /∈ {s, ..., s+ f} then
28: Update parameter, W l

p.

Algorithm 1 presents the simplified version of the training

algorithm. The input dataset is randomly partitioned to M
mini-batches and the model is trained on mini-batches one

after another. Each iteration of the outermost loop has a

strong data dependency caused by the parameter update at

line 10. The scalability of SGD-based training algorithm is

limited by this data dependency.

We define a few notations to analyze the complexity of

the algorithm: K is the largest number of neurons among

all layers, L is the total number of layers, M is the number

of mini-batches, and N is the size of each mini batch. The

size of input feature maps and output feature maps cannot

be larger than K. Thus, the complexity of processing each

image at a layer is O(K2). Algorithm 1 trains L layers

on MN images. Therefore, the complexity of the overall

training is O(LMNK2).

III. PARALLELIZATION STRATEGY FOR CNN

Algorithm 2 presents the data-parallel CNN training al-

gorithm that leverages the computation and communica-

tion overlap. The algorithm updates the parameters syn-

chronously and the result of training is exactly same as that

of Algorithm 1. In the following sections, we will analyze

the computation and communication patterns, as well as the

data dependency of the parameters in Algorithm 2.

We define a set of notations to describe data structure:

Do/Di (the depth of output/input feature maps), Ro/Ri (the

number of rows of the output/input neurons), Co/Ci (the

number of columns of the output/input neurons), Rf/Cf (the

number of filter rows/filter columns), Kb/Kc (the number

of neurons in the bottom/current layers) and N (the number

of images).

A. Computation Workload and Data Layout

CNN has two types of computation-intensive layers, con-

volution layer and fully-connected layer. In convolution

layers, we use im2col [20] to rearrange the input data

so that the computation pattern is changed from convolu-

tion to matrix multiplication. In fully-connected layers, the

computation pattern is also a matrix multiplication [21].

185

!
�"
��
�

#"���

��$���

%

!�
��

"
�
"
�

��

��	���&

!�"���

'
��
�(
�&
��
��
�
��
�
	�
��
&

'
��
�(
�)
��
��
�
��
�
	�
��
&

%

'
��
�(
�"
�
�
�
�)
��
��
�
��
�
	�
��
#
�)

'
��
�(
�)
��
��
�
��
�
	�
��
#
�)

'
��
�(
�&
��
��
�
��
�
	�
��
#
�)

%

'
��
�(
�"
�
�
�
�)
��
��
�
��
�
	�
��
&

!
�

*���+��

!
�

#"���

�������,����	�����

�

!�
��

"
�
"
�

��

��	���#�)

%
�

Figure 2: Computing activations using im2col at the first fully-
connected layer. N images are transformed to a single matrix and
the weight matrix is multiplied by the transformed matrix. The
result is the output activations.

Therefore, the overall computation workload is a set of

data transformations and matrix multiplications. This unified

computation pattern allows an efficient implementation in

practice.

im2col and col2im are well-known data transformation

utilities used in open source frameworks such as Caffe[21]

or Torch[22]. Given an input data and a filter size, im2col
rearranges filter-sized blocks of the input data into columns

and concatenate them into a 2-dimensional matrix. The

col2im transforms columns to blocks of the original data

layout. We customize these functions to transform the input

activations from multiple images into a single large matrix.

Figure 2 illustrates the workload of the first convolution layer

in feed-forward stage.

In feed-forward, the first convolution layer receives the

input images that are stored in row-major order. Each mini-

batch of N images is organized into a matrix of size

N × DiRiCi, which is then transformed by im2col into
a DiRfCf ×NRoCo matrix. Then, the matrix is multiplied

by the weight matrix of Do×DiRfRc and added by the bias

vector of Do. The output activation matrix of Do ×NRoCo

is computed by Equation 4 and 5.

Cl−1 = im2col(Al−1) (4)

Al = σ(W lCl−1 +Bl), (5)

where σ is an activation function, Al is the activation

matrix calculated in layer l, B is bias vector and C is the

matrix generated by im2col. From the second convolution

layer, the input from the previous layer is an activation

matrix of size Di ×NRiCi. We make im2col support both
data layouts, N ×DiRiCi and Di ×NRiCi, so that it can

be used in any convolution layers. In Algorithm 2, these

computations are performed at line 10.

In backpropagation, a convolutional layer receives a Di×
NRiCi error matrix from the previous layer. Instead of

transforming the error matrix using im2col, we multiply that
by the weight matrix first and then transform the result into

the output error matrix using col2im. This approach avoids

an extra layout transformation of weight matrix [21]. Note

that the error matrix E and activation matrix A have the

same data layout. E is computed by Equation 6 and 7. In

Algorithm 2, these computations are performed at line 14.

Cl =W l+1El+1 (6)

El = col2im(Cl), (7)

In addition to the errors, the gradients of parameters

are calculated in backpropagation. When calculating the

gradients in layer l, the activation matrix of layer l − 1 is

transformed to a DoRfCf × NRiCi matrix using im2col.
Then, the Di ×NRiCi error matrix of layer l is multiplied
by the new activation matrix. Due to the order of dimen-

sions, the error matrix should be transposed. The result is

Di ×DoRfCf gradient matrix of layer l. The computations
are shown in Equation 4 and Equation 8, and they are per-

formed at line 16 of Algorithm 2. The im2col performs the
same transformations in feed-forward and backpropagation.

Therefore, if memory space is sufficiently large, the im2col
in backpropagation can be avoided by saving the matrix

Cl−1 calculated in the feed-forward stage.

ΔW l = Cl−1El, (8)

The proposed computation using im2col and col2im is

independent from both model architecture and mini-batch

size. Any convolution layer can be trained with only 3 layout

transformation and 3 matrix multiplications using Equation

4, 5, 6, 7, and 8.

For the fully-connected layers, the computations can be

described by Equation 5, 7, and 8 if the matrix C is replaced

with its original matrices Al−1, El and Al−1 repectively.

Each fully-connected layer has a Kb × Kc weight matrix.

When multiplying this weight matrix by the input activation

matrix, to make the memory accesses contiguous, all the

activations from each image should be stored in a contiguous

memory space. So, in the first fully-connected layer, we

transform the input activation matrix into a N × DiRiCi

matrix. Note that Kb is equal to DiRiCi in fully-connected

layers. In the backpropagation stage, to make the memory

accesses contiguous when multiplying the weight matrix and

the input error matrix, we transform the input errors into a

Do ×NRoCo matrix in the first fully-connected layer.

B. Inter-Process Communications

As our parallel CNN training algorithm adopts the data-

parallelism, each mini-batch is partitioned among multiple

computing nodes and an individual model is trained on

the assigned subset of the mini-batch in each node. The

gradients should be aggregated across all the nodes and

186

averaged to update the weights and biases. The gradients

from different images are summed up within each node

first. Then, the gradient sums are aggregated across all the

nodes. The number of weight gradients in each node, Sw,

is calculated by Equation 9.

Sw =

Lc−1∑

i=0

Di
oD

i
iR

i
fC

i
f +

Lf−1∑

i=0

Ki
bK

i
c, (9)

where Lc and Lf are the number of convolution layers

and fully-connected layers. Likewise, the number of bias

gradients in each node, Sb, is calculated by Equation 10.

Sb =

Lc−1∑

i=0

Di
o +

Lf−1∑

i=0

Ki
c (10)

The communication pattern in data-parallel training is

defined such that each node has Sw+Sb gradient sums, and

they are aggregated across all nodes by a reduction sum.

1) Data Dependency: In the feed-forward stage, the

activations are propagated from the first layer to the last

layer and data dependency exists between any two consec-

utive layers. Likewise, in backpropagation, the errors are

propagated from the last layer to the first layer and data

dependency exists between any two consecutive layers. The

gradients are also calculated in backpropagation using the

activations of the next layer and the errors of the current

layer. Thus, the gradients are dependent on the activations

and errors. In contrast, the gradients in different layers

are independent of each other. Figure 3 illustrates the data

dependencies in CNN. Each arrow in the figure indicates the

data dependency.

The weights and biases of each layer should be updated

before it reaches the layer in the feed-forward stage for the

next mini-batch. Since the gradients in different layers are

independent of each other, the parameter updates in different

layers are also independent of each other. In other words, the

parameters can be updated out-of-order across the layers. In

the following section, we present our overlapping strategy

based on these data dependencies.

C. Overlapping Computation and Communication

Algorithm 2 has a few communications that aggregate

the gradients across all nodes. They are overlapped with

computation such that the communication time is hidden

behind the computation time as much as possible. We first

propose two methods to maximize the overlap, and then

explain the communications in Algorithm 2 in detail.

1) Overlap of Communication for Gradients and Com-
putation: To overlap communication with computation as

much as possible, two factors should be taken into ac-

count: number of communications and data size for each

communication. First, the number of communication should

be minimized to reduce the overall communication cost.

,����	����

-�	�����

.����

��������	��

�	
���&

,����	����

-�	�����

.����

,����	����

-�	�����

.����

,����	����

-�	�����

.����

�

�	
���) �	
�����$ �	
�����)�

Figure 3: Data dependency in CNN. The activations are propagated
from left to right in feed-forward stage, and the errors are prop-
agated from right to left in backpropagation stage. The gradients
are computed using the activations and errors. Each arrow indicates
the data dependency.

Each communication consists of two times, Ts and Tm,

startup time and transfer time. Every communication has Ts

regardless of the data size. So, the overall communication

time can be reduced by having less communications. Sec-

ond, in order to maximize the overlap, the communications

should aggregate as many gradients as possible before the

backpropagation is finished. Since the last communication

cannot be overlapped with the backpropagation, the data size

for the last communication should be minimized.

Considering these two factors, we gather the entire gra-

dients across all nodes with two communications. The first

communication is started after the backpropagation at the

first few layers is finished. Then, the second communication

is started after the entire backpropagation is ended. This ap-

proach enables to overlap much of the communication time

with computation time while the number of communications

is considerably reduced. In the later sections, we will call

the gradients for each communication gradient chunk.

Unfortunately, the optimal size of gradient chunks cannot

be known in advance. The optimal data size varies depending

on many factors such as computing power, network speed,

and model architecture. We define a new hyper-parameter,

k, the number of layers for the first communication. The

value of k should be tuned heuristically such that the first

communication is overlapped with the backpropagation as

much as possible. We will study the impact of various k
values on the scalability in section 5.

2) Replicated Gradient Calculation in Fully-Connected
Layers: The convolution layers are computationally more

expensive than the fully-connected layers. In majority of

CNN models, a convolution layer has much more neurons

than a fully-connected layer. In contrast, the fully-connected

layers cause heavier communications than the convolution

layers. The fully-connected layers have full connections

while the convolution layers have local connections as

explained in Section 2. Since each connection has the corre-

sponding weight parameter, a fully-connected layer typically

has more weights than a convolution layer. For example,

VGG-A [7] model has three fully-connected layers and each

of them has about 103 millions, 17 millions, and 4 millions

of weights respectively whereas the convolution layers have

5 millions of weights in total. In data-parallelism, since the

187

�����

'����

-	�+���,

"������*&

"������*) /��	���&���

-	�+���.

����0)�

/��	���)���

/��	���$���

�����1	��+��

�����1	��+��0)

����2 ����2

3���
'����

Figure 4: Time-flow chart with the maximized overlap. This figure
illustrates the ideal case on which all communications are hidden
behind the computation. In this case, a linear speedup can be
expected.

gradient is calculated with respect to the parameters, the

communication for such a huge number of gradients can be

a performance bottleneck.

We replicate the gradient calculation in fully-connected

layers to reduce the communication cost. First, the local

activations and errors calculated using the assigned subset of

mini-batch are gathered across all the nodes. The data size of

the communication is (Kl
b +Kl

c)N . Then, the gradients for

all images in the mini-batch are computed in every node.

Note that if the gradients are calculated in parallel, the

data size of the communication is Kl
bK

l
c. In modern CNNs,

most likely, Kl
bK

l
c is much larger than (Kl

b + Kl
c)N in

fully-connected layers. Thus, the communication cost can be

dramatically reduced by replicating the gradient calculation.

Since every node calculates the gradients for all the image, it

takes a constant time regardless how many nodes it runs on.

However, the computation time rather effectively overlaps

the communication time for other gradients and does not

adversely affect the scaling performance.

In VGG-A model, for example, Kl
b is 25,088 and Kl

c

is 4,096 in the first fully-connected layer. Saying N is

256 which is the most popular mini-batch size in large-

scale visual recognition tasks, the values of Kl
bK

l
c and

(Kl
b+Kl

c)N are 102,760,448 and 7,471,104. If the gradient

calculation is replicated in the first fully-connected layer,

assuming the data is 4-byte single-precision floating point

numbers, the reduction of 392MB is replaced with the

gathering of 28.5MB.

We define another hyper-parameter, f , the number of

fully-connected layers that replicate the gradient calculation.

Selecting the optimal value of f is also crucial to maximize

the overlap. If the gradient calculation is replicated in all

the fully-connected layers, the early backpropagation time

does not overlap any communication time. Furthermore,

the replicated computation can take so much time that the

speedup is lowered. Thus, f should be heuristically tuned

to allow both a large overlap and the reasonable amount of

constant computation time. In Section 5, we demonstrate the

impact of various values of f on the scalability.

3) Communications in data-parallel CNN: Algorithm 2

has 2f+2 communications at each iteration. In feed-forward,
f asynchronous communications are posted to gather the

activations of the first f fully-connected layer across all

nodes at line 12. In backpropagation, once the gradients of

k layers are computed, they are summed across the local

images first, and then an asynchronous communication is

posted to aggregate the gradient sums across all the nodes

at line 19. When the backpropagation is finished, another

asynchronous communication is posted again to aggregate

the last of the gradients of the model at line 20. Finally,

f asynchronous communications are posted to gather the

errors of the first f fully-connected layers across all nodes

at line 26. Algorithm 2 has three blocking points: line 8, 21,

and 24. Before updating parameters, it should wait until the

corresponding gradients are gathered across all the nodes.

Note that the parameter update for f fully-connected layers

is delayed to the next mini-batch training.

Figure 4 presents an example time-flow chart of Algo-

rithm 2. GatherA and GatherE are f communications

for gathering activations and errors respectively. ReduceW0
and ReduceW1 are the reductions for gradient chunks.

Ideally, if each communication time is shorter than the

corresponding computation time, the entire communication

can be hidden behind the computation. It is worth noting that

the gradient computation and parameter update at the first

f fully-connected layers are delayed to the next mini-batch

training. It allows to overlap GatherE with the feed-forward

computation for the next mini-batch.

D. Complexity Analysis

In Algorithm 2, each mini-batch is partitioned to P nodes

at line 3. Thus, the complexity is reduced to O(LMNK2

P).
However, due to the replicated gradient calculations in f
fully-connected layers at line 9, the amount of serial work-

load should be taken into account. We use two notations,

C and F , the number of convolution layers and fully-

connected layers, respectively. The complexity of Algorithm

2 is O((CP + F)MNK2).

IV. EVALUATION

The parallel CNN training algorithm described in this

paper is implemented in C using Intel MKL library for

computational kernels such as matrix multiplication. The

data-parallelism is implemented using MPI for all the inter-

process communications and non-kernel loops are paral-

lelized using OpenMP. All experiments are performed on

Cori Phase I, a Cray XC40 supercomputer at the National

Energy Research Scientific Computing Center. Each com-

pute node has two sockets and each socket contains a 16-core

Intel Haswell processor at 2.3GHz. The system has Cray

Aries high speed inteconnections with ‘dragonfly’ topology.

188

&

4&

)&&

)4&

$&&

$4&

5&&

54&

6&&

76)$8 $47 4)$

.
�
��
�
��
�
�
�3
��
��
�
��
�

 ����'	��+���9�

�	��� �	�	������##

&

)&

$&

5&

6&

4&

7&

:&

8&

76)$8 $47 4)$

.
�
��
�
��
�
�
�3
��
��
�
��
�

 ����'	��+���9�

�	��� �	�	������##

Figure 5: VGG-A training time on a single node: sequential per-
formance (left) and multi-threaded (32 cores) performance (right).
Caffe is an open-source framework and parallel CNN is our
implementation. The experiments are performed with varying mini-
batch size.

)

$

6

8

)7

5$

76

)$8

�
�
��
�
�
�

#��1������������#��1������������

!� �	�	������## ����	�

&

4

)&

)4

$&

$4

5&

54

.
�
��
�
��
�
�
�3
��
��
�
��
�

#��1������������#��1������������

!� �	�	������##

Figure 6: VGG-A training time (left) and speedup (right) for a
single mini-batch size of 256). k is set to 9 and f is set to 2. We
compare our approach (parallel CNN) with the pure data-parallel
training algorithm (DP). The speedup is calculated with respect to
the number of nodes.

The most representative dataset for visual recognition

tasks is ImageNet. It contains 1.2 million 3-channel (RGB)

images of various sizes. The classification on this dataset is

considered to be extremely challenging not only because the

images are high-resolution real-world pictures, but also be-

cause the training on such a large dataset takes an enormous

execution time. We use the preprocessed ImageNet dataset

that has 3× 224× 224 pixels in each image.

We use VGG-A model [7], a deep CNN with 16 layers

and 133 millions of parameters. Additionally, we built three

variants of VGG-A, VGG-128, VGG-256, and VGG-512.

These models have 128, 256, and 512 feature maps in

convolution layers and contain 48 millions, 76 millions,

and 140 millions of parameters respectively. Since the same

workload is repeated across the mini-batches, we measure

the execution time to process a single mini-batch 10 times

and average the timings.

A. Single-Node Performance Study

1) Single-Node Performance Comparison with Caffe:
We compared the performance of our implementation with

Caffe, a popular open-source framework for neural network

training. We compiled the main branch source code [23]

with MKL library. Figure 5 presents the single-threaded

and multi-threaded performances with varying mini-batch

size. We observe that our implementation delivers shorter

execution time than Caffe for all the mini-batch sizes. First,

&2&&&&&)

&2&&&&)&

&2&&&)&&

&2&&)&&&

&2&)&&&&

&2)&&&&&

)2&&&&&&

)&2&&&&&&

)&&2&&&&&&

.
�
��
�
��
�
�
�3
��
��
�
��
�

#��1������������#��1������������

��������;	���3���

'	�(����	�	�����3���

 �	���	1�����������	�����3���

��������	�����3���

Figure 7: Timing breakdown for VGG-A training (mini-batch size
of 256). Communication time is the accumulated time for all inter-
process communications. Measurable communication time is a part
of the communication time which is not overlapped with any
computation time.

the performance gain of the single threaded training is

achieved by the computation pattern described in section

3. We perform only 3 matrix multiplications and 3 lay-

out transformations for each layer, while Caffe performs

3N matrix multiplications and 3N layout transformations.

Given the same workload, less function calls improves the

performance due to the reduced function call overhead.

Second, in the multi-core training, we have approximately

10% of additional performance gain by parallelizing im2col
and col2im. Our results demonstrate that the multi-node

performance study following this section is based on the

reasonable level of single-node performance.

B. Multi-Node Performance Study

In this section, we present the scalability of our parallel

CNN with various software settings and analyze the exper-

imental results. All speedup charts are the strong-scaling

results.

1) End-to-End Training Time and Speedup: We com-

pare our parallelization strategy with the pure data-parallel

training of CNN (DP). Three hyper-parameters are set in

advance: N (mini-batch size) is set to 256, k (number of

layers for the first gradient chunk) is set to 9, and f (number

of layers that replicate gradient calculation) is set to 2. Figure

6 presents the training time and speedup. The speedups are

calculated with respect to the number of nodes, based on the

single-node performance presented in the previous section.

We see that our parallel CNN shows a significantly improved

speedup. We achieve a speedup of 62.97× on 128 nodes,

while DP delivers upto 19.92× speedup.

2) Timing Breakdowns: If a communication for the gra-

dients is not finished before updating the corresponding

parameters, the update is blocked until the communication

is finished. We define this blocking time as measurable com-

munication time. To evaluate the proposed overlapping strat-

189

&

$&

6&

7&

8&

)&&

$ 6 8)7 5$ 76)$8

�
��
��
	�
��
��
�"
	�
��
�
<
�

#��1�����������

#=)$8 #=$47 #=4)$

)

$

6

8

)7

5$

76

)$8

) $ 6 8)7 5$ 76)$8

�
��
��
��

#��1�����������

#=)$8 #=$47 #=4)$ ����	�

Figure 8: Overlapping ratio (left) and speedup (right) with varying
mini-batch size. k is set to 9. and f is set to 2. The larger mini-batch
size increases the computation workload and allows the higher
overlapping ratio.

&

$&

6&

7&

8&

)&&

)7 5$ 76)$8

�
��
��
	�
��
��
�.
��
��
��
��

�
<
�

#��1�����������

)$8�68 � $47�:7 � 4)$)6& �

)

$

6

8

)7

5$

76

)$8

) $ 6 8)7 5$ 76)$8

�
��
��
��

#��1�����������

)$8�68 � $47�:7 �

4)$)6& � ����	�

Figure 9: Overlapping ratio (left) and speedup (right) with varying
number of parameters. VGG-128, VGG-256, and VGG-512 models
are trained on a single mini-batch size of 256. Maximum speedups
are 54×, 61×, and 80× respectively.

egy, we compared the measurable communication time as

well as the actual communication time. Figure 7 presents the

timing breakdown (y-axis is in log scale) for training VGG-

A on a single mini-batch. We see the clear gap between

the communication time and the measurable communication

time. This gap implies that our proposed methods make the

communication overlapped with the computation effectively.

The measurable communication time appears from 8 nodes

since the computation time becomes so short that it does not

hide the entire communication time.

C. Computation and Communication Overlapping

We investigate the scalability of the proposed algorithm

with various model architectures and hyper-parameter set-

tings. There are four hyper-parameters that affect the per-

formance: mini-batch size, number of parameters, number

of layers for each gradient chunk, and number of fully-

connected layers that replicate the gradient calculation. With

various settings of these hyper-parameters, we evaluate the

proposed overlapping strategy and discuss the impact on

the scalability. We define overlapping ratio, a metric for

analyzing how much communication is overlapped with the

computation. The ratio R is calculated by Equation 11.

R =
100×∑2f+1

i=0 (T
i
c − T i

b)∑2f+1
i=0 T i

c

, (11)

where T i
b is the measurable communication time and T i

c

is the actual communication time for the ith communication.

1) Scalability with respect to mini-batch size: To replicate
the gradient calculation in f fully-connected layers, the

&

$&

6&

7&

8&

)&&

$ 6 8)7 5$ 76)$8

�
��
��
	�
��
��
�"
	�
��
�
<
�

#��1������������

�=& �=) �=$ �=5

)

$

6

8

)7

5$

76

)$8

) $ 6 8)7 5$ 76)$8

�
��
��
��

#��1������������

�=& �=) �=$ �=5 ����	�

Figure 10: Overlapping ratio (left) and speedup (right) with varying
number of fully-connected layers that replicate the gradient calcula-
tion. Replicating the gradient calculation at all the fully-connected
layers can drop the speedup.

&

$&

6&

7&

8&

)&&

) $ 6 8)7 5$ 76)$8

�
��
��
	�
��
��
��
	�
��
�
<
�

#��1������������

(=5 (=7 (=> (=)$

)

$

6

8

)7

5$

76

)$8

) $ 6 8)7 5$ 76)$8

�
��
��
��

#��1������������

(=5 (=7 (=> (=)$ ����	�

Figure 11: Overlapping ratio (left) and speedup (right) with varying
number of layers that have the gradients for the first gradient chunk.
The gradients should be grouped into two chunks such that the
overlapping ratio of two communications are maximized.

activations and errors are gathered across all the nodes.

The communication cost depends on mini-batch size since

the number of the activations and errors in each layer

is (Kl
b + Kl

c)
N
P . Figure 8 shows the overlapping ratio

and the speedup for VGG-A training with varying size of

mini-batch-128, 256 and 512. As shown, the larger mini-

batch size allows higher overlapping ratio and it results

in achieving higher speedup. The maximum speedups are

17.82×, 62.97× and 77.97× respectively.

We observe that the speedup curve drops suddenly on a

certain number of nodes. The reason is that the overlapping

ratio sharply drops if the computation time becomes less

than the communication time, and the increased measurable

communication time lowers the speedup. In data-parallelism,

the larger mini-batch size gives more computation workload

while it does not affect the communication cost. Thus, we

can expect a better scalability with a larger mini-batch size.

2) Scalability with respect to number of parameters:
The number of parameters affects both the computation

time and the communication time. To compare the scaling

performance across the sizes of model, we measured the

performance of training VGG-128, VGG-256 and VGG-

512. We set the hyper-parameters: N to 256, k to 9, and

f to 2. Figure 9 presents the overlapping efficiencies and

the speedups. We see that the model with more parame-

ters achieves higher speedup. The computation complexity

of the training algorithm is (CP + F)NK2) whereas the

communication cost is directly proportional to the number

of parameters. If the number of parameters is increased,

due to the N term that is independent of the number of

parameters, the computation cost is more increased than the

190

communication cost and it allows higher overlapping ratio.

3) Replicating the gradient calculation in fully-connected
layers: To evaluate the impact of replicating the gradient

calculation on the scalability, we measured the overlapping

raito and speedup with varying value of f . Figure 10 shows
the results. If all the fully-connected layers replicate the

gradient calculation (f is 3), due to the large number of

activations and errors to be gathered across all the nodes,

the measurable communication time can be rather increased

while the early backpropagation time does not overlap any

communication time. In contrast, if none of the fully-

connected layers replicate the gradient calculation (f is 0),

as explained in Section 3, the large gradient chunks engender

the expensive communications. In our experimental environ-

ment, we achieved the best speedup when f is set to 2.

4) Number of layers covered by each communication:
We measured the speedup with varying value of k-3, 6,
9, and 12. The values are selected for dividing the entire

gradients into two chunks based on pooling layers. We

skipped the case where k was set to 1 since it allowed almost
no overlap and showed a similar speedup with DP. Figure

11 presents the overlapping ratio and speedup. When k is

set to 3 or 6, due to the small size of the first gradient

chunk, most of the backpropagation time does not overlap

any communication time and it gives a higher chance to have

a longer measurable communication time for the second

gradient chunk reduction. In contrast, if k is set to 12, the

first gradient chunk is so large that the communication is

not fully overlapped with the backpropagation. We achieve

the best overlapping ratio when k is set to 9.

D. Comparison with Previous Works

In this section, we compare our approach with the existing

works. Table 1 summarizes the previous works.

1) Comparison with parallel algorithms on GPUs: GPUs
have been used to speedup the computing-intensive work-

load of training CNNs [1], [12], [24], [7], [13]. Many of the

large-scale CNN trainings on GPUs are based on master-

slave model. The parameter server plays a role as a master to

update the parameters in a centralized fashion. Our approach

is a fully-distributed parallel algorithm which only performs

collective-communications such as all-to-all reduction or all-

to-all gather, while the master-slave model has point-to-point

communications. We do not compare the execution time

directly between our approach and the GPU-based training

algorithms. First, due to the different underlying hardware

architecture, the exeuction time comparison is unfair. Sec-

ond, all the existing works have different software settings

such as model architecture, mini-batch size, and optimization

method. Considering these differences, we only compare

the scalability instead of the execution time. FireCaffe [12]

reports 47× speedup of training with synchronous SGD. For

asynchronous SGD, Strom et al. achieved 54× speedup.

Table I: Summary of the previous works. The columns are HW/SW
settings. The Max speedup column shows the maximum speedup
(left) and how many machines are used (right).

Publication
Communication

GPU/CPU
sync/async

Max speedup
model SGD

Theano-mpi fully-distributed GPU sync 7.3/8

GeePS master-slave GPU sync 13/16

FireCaffe master-slave GPU sync 47/128

Strom et al. fully-distributed GPU async 54/80

Dean et al. master-slave CPU sync 12/128

Adam master-slave CPU async 20/90

Das et al. fully-distributed CPU sync 90/128

)

$

6

8

)7

5$

76

)$8

) $ 6 8)7 5$ 76)$8

�
��
��
��

#��1�����������

!� !�0�����	�

�	�	������## ����	�

&

$&

6&

7&

8&

)&&

$ 6 8)7 5$ 76)$8

�
��
��
	�
��
��
��
	�
��
�
<
�

#��1�����������

!� !�0�����	� �	�	������##

Figure 12: Overlapping ratio (left) and speedup (right) of VGG-
A training (mini-batch size of 256). DP is the baseline without
overlapping, DP+Overlap is the reproduced work based on [11],
and parallel CNN is our proposed approach.

2) Comparison with parallel algorithms on CPU-based
clusters: Many researchers have put much effort into scaling

CNNs on CPU clusters [6], [11], [10], [25]. Recently,

Dipankar Das et al. [11] reported the state-of-the-art speedup

by developing PCL-DNN framework using their multi-

threaded communication library which enables to overlap

communication with computation. For a mini-batch size of

512, they trained VGG-A on 128 nodes and achieved upto

90× speedup. PCL-DNN performs a communication for

each layer and overlaps the communication with the back-

propagation. Some communications are delayed to the next

iteration such that the communication is overlapped with the

feed-forward too. We reproduced the work in [11] based on

the common ground such as distributed-memory parallelism,

fully-distributed communication model, and synchronous

SGD. To compare the overlapping strategy only, we used

the same versions of Intel MKL library and MPI. Figure

12 presents the comparison. DP is the baseline which

has no overlap and DP+Overlap is the reproduced work.

We see that our approach scales better than the others.

DP+Overlap hardly scales beyond 32 nodes due to the

expensive communications at the fully-connected layers and

the poor overlapping ratio.

V. CONCLUSION

Overlapping computation and communication is a fun-

damental technique to improve the scalability. Regardless

of the type of neural network, the model architecture, and

the optimization methods, the overlap should be maximized

to fully-utilize the underlying hardware resources. In this

paper, we propose a parallelization strategy for CNN training

based on two major techniques to maximize the overlap.

191

We demonstrate that the communications can be overlapped

with most of the computations and it results in achieving a

considerably higher speedup. Since the proposed techniques

are based on the data dependency in CNN, we believe that

our approach can be applied to any other data-parallel deep

neural networks.

VI. ACKNOWLEDGMENT

This work is supported in part by the following grants:

NSF awards CCF-1409601; DOE awards DE-SC0007456,

DE-SC0014330; AFOSR award FA9550-12-1-0458; NIST

award 70NANB14H012; resources of the National Energy

Research Scientific Computing Center, a DOE Office of

Science User Facility supported by the Office of Science

of the U.S. Department of Energy under Contract No. DE-

AC02-05CH11231.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[2] C. Nebauer, “Evaluation of convolutional neural networks for
visual recognition,” IEEE Transactions on Neural Networks,
vol. 9, no. 4, pp. 685–696, 1998.

[3] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recog-
nition,” IEEE/ACM Transactions on audio, speech, and lan-
guage processing, vol. 22, no. 10, pp. 1533–1545, 2014.

[4] P. Swietojanski, A. Ghoshal, and S. Renals, “Convolutional
neural networks for distant speech recognition,” IEEE Signal
Processing Letters, vol. 21, no. 9, pp. 1120–1124, 2014.

[5] Y. Kim, “Convolutional neural networks for sentence classi-
fication,” arXiv preprint arXiv:1408.5882, 2014.

[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al., “Large scale
distributed deep networks,” in Advances in neural information
processing systems, 2012, pp. 1223–1231.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[8] Y. Qian, M. Bi, T. Tan, and K. Yu, “Very deep convolu-
tional neural networks for noise robust speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 24, no. 12, pp. 2263–2276, 2016.

[9] S. Ruder, “An overview of gradient descent optimization
algorithms,” arXiv preprint arXiv:1609.04747, 2016.

[10] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project adam: Building an efficient and scalable deep learn-
ing training system.” in OSDI, vol. 14, 2014, pp. 571–582.

[11] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Srid-
haran, D. Kalamkar, B. Kaul, and P. Dubey, “Distributed
deep learning using synchronous stochastic gradient descent,”
arXiv preprint arXiv:1602.06709, 2016.

[12] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer,
“Firecaffe: near-linear acceleration of deep neural network
training on compute clusters,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016, pp. 2592–2600.

[13] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.
Xing, “Geeps: Scalable deep learning on distributed gpus with
a gpu-specialized parameter server,” in Proceedings of the
Eleventh European Conference on Computer Systems. ACM,
2016, p. 4.

[14] S.-Y. Zhao and W.-J. Li, “Fast asynchronous parallel stochas-
tic gradient descent: A lock-free approach with convergence
guarantee.” in AAAI, 2016, pp. 2379–2385.

[15] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-
aware async-sgd for distributed deep learning,” arXiv preprint
arXiv:1511.05950, 2015.

[16] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural networks, vol. 61, pp. 85–117, 2015.

[17] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Under-
standing deep neural networks with rectified linear units,”
arXiv preprint arXiv:1611.01491, 2016.

[18] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and
A. Y. Ng, “On optimization methods for deep learning,” in
Proceedings of the 28th International Conference on Machine
Learning (ICML-11), 2011, pp. 265–272.

[19] L. Bottou, “Large-scale machine learning with stochas-
tic gradient descent,” in Proceedings of COMPSTAT’2010.
Springer, 2010, pp. 177–186.

[20] K. Chellapilla, S. Puri, and P. Simard, “High performance
convolutional neural networks for document processing,” in
Tenth International Workshop on Frontiers in Handwriting
Recognition. Suvisoft, 2006.

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolu-
tional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[22] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular
machine learning software library,” Idiap, Tech. Rep., 2002.

[23] E. Shelhamer and . contributors, “Caffe,”
https://github.com/BVLC/caffe.git, 2017.

[24] N. Strom, “Scalable distributed dnn training using commodity
gpu cloud computing.” in INTERSPEECH, vol. 7, 2015, p. 10.

[25] I.-H. Chung, T. N. Sainath, B. Ramabhadran, M. Picheny,
J. Gunnels, V. Austel, U. Chauhari, and B. Kingsbury, “Paral-
lel deep neural network training for big data on blue gene/q,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 6, pp. 1703–1714, 2017.

192

