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Summary

On the verge of the convergence between high-performance computing andBigData processing,

it has become increasingly prevalent to deploy large-scale data analytics workloads on high-end

supercomputers. Such applications often come in the form of complex workflows with various

different components, assimilating data from scientific simulations as well as from measure-

ments streamed from sensor networks, such as radars and satellites. For example, as part of

the Flagship 2020 (post-K) supercomputer project of Japan, RIKEN is investigating the feasi-

bility of a highly accurate weather forecasting system that would provide a real-time outlook

for severe guerrilla rainstorms. One of the main performance bottlenecks of this application is

the lack of efficient communication among workflow components, which currently takes place

over the parallel file system.In this paper, we present an initial study of a direct communication

framework designed for complex workflows that eliminates unnecessary file I/O among compo-

nents. Specifically, we propose an I/O arbitration layer that provides direct parallel data transfer

(both synchronous and asynchronous) among job components that rely on the netCDF interface

for performing I/O operations. Our solution requires only minimal modifications to application

code. Moreover, we propose a configuration file–based approach that allows users to specify the

desired data transfer pattern among workflow components, offering a general solution for dif-

ferent application contexts. We present a preliminary evaluation of the proposed framework on

the K Computer (running on up to 4800 compute nodes) using RIKEN's experimental weather

forecasting workflow as a case study.
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1 INTRODUCTION

With the accelerating convergence between high-performance com-

puting (HPC) and a new generation of Big Data technologies, high-end

supercomputers are increasingly being leveraged for processing the

unprecedented amount of data scientific simulations and sensor net-

works produce.1 Consequently, the HPC community has been heavily

focusing on how to provide the appropriate execution environment for

Big Data processing workloads on large scale HPC systems.

A motivating example, as well as our case study in this paper, is

SCALE-LETKF,[2–4] a complex weather forecasting application that is

being developed at RIKEN.With the next generation Japanese flagship

supercomputer (post-K) as its primary target platform, SCALE-LETKF

is intended to provide high-resolution, real-time weather forecasting

of severe guerrilla rainstorms* in Japan. Similar to other operational

weather forecasting applications, the SCALE-LETKF mainly con-

sist of 2 components developed separately: a numerical weather

prediction (NWP) model and a data assimilation system. The NWP

model used here is the SCALE-LES (scalable computing for advanced

library and environment–LES[5,6]), which simulate the time evo-

lution of the weather-related atmosphere and land/sea surfaces

based on physical equations (hereafter, Simulation). Meanwhile, the

data assimilation method used here is the local ensemble transform

*The term of guerrilla rainstorms is a Japanese expression used to describe a short, localized,
sudden downpour of over 100mmof rain per hour.
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Kalman filter (LETKF7), which assimilate observation data taken from

the real world into the simulated state to produce a better initial

condition for the model (hereafter, Assimilation). The 2 components

run in a cyclic way: after the simulation finishes, the data assimilation

starts taking the results from the simulation as its input data, and after

the data assimilation finishes, the simulation of the next cycle follows,

depending on the results from the data assimilation. Additionally,

since the observation data are required in each cycle, they need to

be streamed directly into RIKEN's supercomputing facility when

executing the workflow in real time.

Both the simulation (SCALE) and data assimilation (LETKF) compo-

nents in the current workflow rely on netCDF for I/O operations using

the parallel file system. netCDF is a self-describing, portable, scalable,

appendable, andshareable file format,which iswidelyused toexchange

array-oriented scientific data, such as grids and time-series.8 Histori-

cally, the decision for file-baseddata exchangewasmainly drivenby the

fact that thesemodels arebeingdevelopedandmaintainedby indepen-

dent research entities and it has been strongly desired not to modify

either of the component models purely for the purpose of building a

coupled forecasting system.

The prediction of guerrilla heavy rains, however, is a strictly

time-constrained procedure, andwe identified that file I/O-based data

transfer between the 2 components is one of the hindering factors for

acquiring the needed realtimeness. A large number of coupling tools,

targetingeffective integrationof separatelydevelopedmodelsor appli-

cations, have been proposed[9–15]; nevertheless, all of them require

numerousmodifications to the applications.

Our main focus in this paper is to provide an I/O arbitration frame-

work that can enable high-performance, direct data exchange among

workflow components, which process large amounts of data and use

netCDF for their underlying data format. Furthermore, we seek to

provide a solution that retains the original netCDF API and requires

only minimal changes to existing application code. On the whole, this

papermakes the following contributions:

• General I/O arbitrationmiddleware.We propose a general I/O arbi-

tration middleware, ie, a software library that enables direct par-

allel data transfer among workflow components that use netCDF

for their data representation. As a result, our middleware benefits

the integration of existing, separately developed models for solving

complicated problems. Individualmodels or applications are usually

developed to tackle specific scientific issues, and easy integration

of existing models into complex workflows enables solving more

intricate problems. The proposed I/O middle software offers a gen-

eral communication mechanism for intermodel (or interapplication)

communication, which is beneficial for integrating existing models

and applications to overcome new problems, particularly with focus

on Big Data processing.

• Accelerated data exchange in coupled systems. Compared to

file-based data exchanging over the parallel file system, the

proposed middleware adopts communication pattern-based opti-

mization to efficiently support direct data transfer. Therefore, it

shortens the time required for exchanging data among the compo-

nents of coupled systems so that rigid time constraints of real-time

applications can be satisfied.

• Asynchronous data transfer. To overlap data transmissionwith com-

putation, we propose an asynchronous data transfer scheme in the

middleware. Specifically, when internalmemory buffer becomes full

at the sender process, part of output data is transferred to the

destination processes immediately. Data transfer is performed by a

background thread and can proceed in parallel with the subsequent

computation phase of the application. Consequently, in addition to

enabling asynchronous read operations on the receiver side, the

time required for data transfer after computationon the sender side

can be also significantly reduced. For a detailed description of the

asynchronous data transfer extension, refer to Section 3.4.

• Customizable data distribution. We propose a mechanism that

enables users to specify the data transfer pattern among workflow

components. Users are required to provide a configuration file with

a high level description of the desired data transfer pattern among

different components of the application. Themiddleware interprets

the description at initialization time and performs data transfer

according to the specification. Various data transfer patterns (eg,

one-to-one, one-to-all, and all-to-all) are supported. For more infor-

mation on the configuration file, see Section 3.6.

Note that, as an extension to our previous work,16 only the last 2

of contributions are new in this paper. We perform a preliminary eval-

uation of the direct data transfer mechanism using the SCALE-LETKF

weather forecasting workflow, a representative example of Big Data

assimilation applications. As ourmeasurements indicate, the proposed

framework can provide an order of magnitude faster I/O performance

compared to file system–based data exchange, while it remains highly

transparent at the application source code level. Moreover, asyn-

chronous data transfer further reduces the time required for data

transmission, in contrast to the previously proposed, synchronized

scheme.

The remainder of the paper is structured as follows. Related work

is described in Section 2. The design and implementation of the pro-

posed middleware are explained in Section 3. Section 4 introduces the

evaluation methodology and discusses experimental results. At last,

concluding remarks are given in Section 5.

2 RELATED WORK

In weather forecasting and geoscientific systems, individual models

usually have their limited focus and are in charge of analyzing a specific

phenomenon. On the other hand, a practical forecasting system takes

various aspects into account, and thus, it normally uses several exist-

ing models to achieve its final goal rather than developing everything

fromscratch. This section introduces relatedwork focusingoncoupling

existing models or applications, as well as on related work about con-

ducting data transfer among the component models or applications in

such systems.

Integration mechanisms for individual models. The intricate global

climate problems motivate researchers from different scientific

disciplines to integrate existing multiphysics computation models or

applications for exhaustivemodeling by using a software framework or

a coupled system.17 TheModel Coupling Toolkit13 is a library providing
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routines and datatypes for creating a coupled system, and it is mainly

used in Community Climate System Model.14 Hereafter, S. Valcke

et al18 have summarized major coupling technologies used in Earth

system modeling, and their paper shows common features of the

existing coupling approaches including the functionality to communi-

cate and regrid data.

The OASIS coupler is another related study (the latest version is

OASIS3), which is able to process synchronized exchanges of coupling

information generated by different components in a climate system,

and the coupler mediates communication among the components.19

But the OASIS coupler has its own interface and is not a solution for

general cases. Armstrong et al20 have designed an approach to sepa-

rate thecodeofmodels fromthecoupling infrastructure, but it doesnot

provide coupling functions such as data transfer. However, it enables

users to choose the underlying coupling functions from other cou-

plers, such as the OASIS coupler. Besides, there are numerous existing

middlewares for coupling specific models, such as ESMF,21 the FMS

coupler,22 and C-Coupler1,23 which adopt similar integration schemes

to the above mentioned solutions, but unfortunately, they also require

applicationmodifications.

Moreover, Waston et al24 proposed the scheme to us parallel

coupling tool for effectively integrating the existing programming and

performance tools, to benefit the development of parallel applications.

Dorier et al25 have summarized several tools developed by themselves,

which can flexibly couple simulations with visualization packages or

analysis workflows. Rivi et al26 have explored coupling applications

through their I/O interface for in situ visualization, where HDF527 is

leveraged. GLEAN offers a flexible and extensible framework to facili-

tate simulation-time data analysis and I/O acceleration, when applica-

tions uses the existing I/O interfaces including HDF5.28

Data transfer approaches in coupling or other large-scale systems.Many

integrated approaches use file-based I/O to exchange data, since the

data stored on the global file system can be easily accessed by all

participating components.18 It is worth mentioning the MCT frame-

work again, which also enables data transfer among different com-

ponents via MPI communication29 rather than file-based I/O. For

instance, the CCSM4 system is a single executable implementation,

which includes a top-level driver and components integrated via stan-

dard init/run/finalize interfaces by leveraging MCT.30 From a function-

ality view point, the MCT tool might be the most similar approach to

our work, but it requires to compile all individual models or applica-

tions together togenerate a single executablebinary file. The combined

binary ensures that all processes can share the sameMPI intracommu-

nicator to communicate with each other through MPI function calls.

However, this prerequisite is not easy to meet, because it is difficult to

combine a large number of separately developed components due to

possible collisions on global variables and function names.

However, since allMPIprocesses share the sameMPI_COMM_WORLD

communicator in MCT, local broadcast operations within a specific

(individual) model becomes visible to all other processes belonging to

other components. To overcome this limitation, Browne and Wilson31

have proposed a very similar mechanism for coupling 2 specified mod-

els for the purpose of data assimilation, through a different use of the

message-passing interface. In their solution, although 2models are still

compiled together to generate a single MPI job, they split the MPI

communicator to enable local MPI communication within individual

components. However, this solution implies that the source codes of

all involved models have to be modified for enabling usage of split MPI

communicators for local communication.

In addition, for supporting flexible communication patterns and bet-

ter communication efficiency of I/O data transfer, the adaptable I/O

system framework32 has been proposed to support flexible direct data

transfer having different I/O patterns. Similar with the OASIS coupler,

the users have to modify the models or applications to use adapt-

able I/O system's specific interfaces. Moreover, Zhang et al have pro-

posed and implemented a butterfly implementation of data transfer

and then develop an adaptive data transfer library for the coupled

systems.33 Zhang et al presented a distributed data sharing and task

execution framework to minimize interapplication data exchange.34

Kendall et al have proposed a pattern-based I/O mechanism to boost

I/O performance for large-scale parallel particle tracing and visualiza-

tion applications.35

In summary, existing works fail to provide a general framework to

integrate separately developed models or applications into a coupled

system (so that direct parallel data transfer among all componentmod-

els could be supported) without modifying source codes of the indi-

vidual models. To the contrary of related studies, our I/O middleware

intends to offer a universal communication framework to accelerate

data transfer among components in coupled systems to meet strict

time constraints. Additionally, our framework requires only minimal

modifications to the existing application code†.

3 I/O ARBITRATOR MIDDLEWARE

This section discusses the design and implementation of the I/O arbi-

tratormiddleware for supporting direct parallel data transfer between

theSCALEmodel and theLETKFmodel,which fulfill the simulationstep

and the data assimilation step, respectively, to eventually accelerate

forecasting local severe weather of guerrilla rainstorms.

3.1 Functional overview

As we mentioned before, our target coupling system of SCALE-LETKF

repeatsa2-stepcycleof simulationanddataassimilation,performedby

2 separately developed models, ie, SCALE and LETKF. The I/O commu-

nication of one cycle in the current SCALE-LETKF system is depicted

in Figure 1A. As seen, the netCDF output data of the Simulation pro-

cesses are first written to the global parallel file system, which in turn

is read by the Assimilation processes. To put it from another angle,

in each simulation step the NWP model calculates the time evolu-

tion of atmospheric states for every grid point in 3-dimensional space,

where each atmospheric state is represented as a set of variables

such as the wind properties, temperature, and pressure. Note that we

run multiple SCALE model simulations at the same time (denoted by

Simulation 1 to n in the figure), which are called “ensemble” simulations

and are required for applying the LETKF data assimilation scheme.

†In its current implementation, a single modification to the source codes for each model is
required; we are implementing the version of middleware without modifications to the appli-
cation throughwrappingMPI initialization and finalization functions.
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FIGURE 1 The communication pattern of one cycle in the SCALE-LETKF system using (A) file I/O or (B) direct data transfer methods

Each ensemble member takes slightly different initial condition and

outputs different results so the total I/O amount is roughly equal to

the I/O amount of one member multiplied by the number of ensemble

members. After computation, the ensemblemodel of SCALE generates

a large amount of output data, written in netCDF format, which are

all requested by the subsequent assimilation step of the same cycle.

In brief, the output data generated by the simulation process will be

used by the corresponding assimilation process, which indicates that

I/O communication is performed between process pairs.

According to the our tests, I/O takes 15.9% of execution time when

5769computenodesareused, but it consumes37.8%ofexecution time

while there are 37 440 compute nodes.36 More compute nodes can

decrease the time needed for computation, but they cannot benefit to

the reductionof I/O time. In summary, the file I/O-basedmechanism for

data transfer between the data simulation and data assimilation steps

must place negative effects on real-time predicting for local severe

weather of guerrilla rainstorms.

To reduce the timeneeded fordata transfer,wehavebeendeveloping

a novel I/O middleware to allow direct parallel data transfer between

the 2 component models. Figure 1B illustrates the workflow of the

system when the I/O middleware is used. As a result, in each cycle,

the output data of simulation processes are directly forwarded to

the assimilation processes, as well as the analyzed results generated

by assimilation processes, which can be directly transferred to the

simulation processes in the next cycle. Specifically, the I/Omiddleware

connects the 2 kinds of processes by using MPI communication,29 and

consequently, it enables direct communication between the simulation

processes and the assimilation processes. The following section

describes the details of establishing a communication environment

between the 2 types of processes.

Note that our proposed I/Omiddleware is a general solution for cou-

pled Big Data processing applications although only the SCALE-LETKF

application is detailed in this paper. To handle a wide range of possible

I/Opatterns, themiddleware is customizable using configurations files.

Different configurations enable deployment for applications with dif-

ferent properties, such as different number of component models, or

different I/Ocommunicationpatterns. The roleof configuration filewill

be further described in Section 3.6.

3.2 High level architecture

Figure 2 shows the I/O stack of the I/O arbitrator middleware, which is

used to support direct parallel data transfer between simulation pro-

cesses (SIM in the figure) and data assimilation processes (DA in the

figure) in our case study. Except for the application layer itself, the

layer of netCDF, the layer of POSIX, and the layer of MPI have been

involved in the middleware for the purpose of sustaining direct paral-

lel data transfer. Briefly speaking, the newly proposed middleware is

built underneath the layer of the application; the mechanism of direct

parallel data transfer is therefore transparent to the applications.

Besides, as shown in the figure, the data communication will be

completed by using the MPI communication facility, and the following

subsection will discuss the details of constructing the communication

context between 2 kinds of processes.

3.3 Establishing communication

Because the simulation and data assimilation models are separately

developed applications and are executed as separate MPI jobs, they

do not share the same MPI communicator. To overcome this problem,

our prototype implementation currently uses the standard MPI inter-

communicator family of routines to establish a communication context

between the 2 types of jobs. Figure 3 demonstrates the details of this

approach. Note that the K computer, our target platform in this paper,

supports the creation of intercommunicators among jobs submitted by

the same user. However, we emphasize that our MPI-based implemen-

tation is merely a proof of concept and in the long run, we are planning

to leverage a low-level communication (LLC) framework,37 which is

currently being developed as part of the post-K project.

Nevertheless, we provide an overview of the current MPI-based

implementation. At initialization time, the server process, ie, an

Assimilation process opens a port using MPI_Open_port() and

then publishes it by calling the MPI_Publish_name() feature.

Subsequently, the connection thread of each individual Assimilation

process waits in MPI_Comm_accept(). The connection service is

expected to be already running by the time, when the client processes

attempt to build the connection. Client processes, ie, processes of
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FIGURE 2 Architectural overview of themiddleware

FIGURE 3 Establishing communication betweenworkflow
components

the Simulation component, can connect to the server processes with

MPI_Comm_connect() once they successfully obtained the service

name by using the MPI_lookup_name() function. As a result, pro-

cesses of both components can communicate with each other by using

standard MPI functions. For instance, the Simulation processes can

use the MPI_Send() function to forward the data, and the Simulation

processes are able to use MPI_Recv() to receive the data. After the

data transfer took place, the client processes proactively disconnect

and the server processes can unpublish their connection services with

MPI_Unpublish_name().

1. The Simulation process attempts towrite the output data to the file

system through calling the write() system call. We assume that

the Assimilation process will eventually read the contents of the

same file, but the Assimilation process is supposed to be blocked

until the requested data is satisfied in Step 6©.

2. The write() call can be eventually satisfied by the px_pgout()

function in the netCDF library, which is intercepted by library hook

offered by the middleware. Then the write contents are cached

in the designated memory buffer, instead of flushing them to the

global file system.

3. The buffered data is forwarded from the Simulation node to

the destination node, ie, the Assimilation process, by calling the

MPI_Send() routine.

4. The Assimilation process responds an ACK message, when it has

received the data sent by the corresponding Simulation process,

through calling MPI_Recv(). Consequently, the data is cached in

the designated memory buffer for satisfying potential future read

requests.

5. According to the parameters of the read() request (it goes to the

function of px_pgin in the netCDF library), which was blocked

because the required data were not yet available, the specified

piece of data will be picked up by library hook frommemory buffer.

6. TheAssimilation process resumes its execution after it received the

data from library hook.

3.4 Parallel direct data transfer

The parallel data transfer between the simulation processes and the

assimilation processes is conducted when the communication context

has been constructed. Figure 4 depicts the details of the parallel direct

data transfer in the I/O middleware, where the interaction between 2

kinds of processes can be described as follows:

Both Simulation and Assimilation processes are able to exchange

their data through direct data transfer. Specifically, all write()

requests will be fulfilled when the contents have been buffered in the

memory, and all cached data are eventually sent to the destination pro-

cess. On the other side, all read() requests will be satisfied with the

data buffered in the memory, which was initially received from the

source process.

We provide 2 kinds of direct data transfer schemes, ie, synchronous

andasynchronousdata transfer,whichhavebeen illustrated inFigure5.

In synchronous data transfer, all data are transferred when the out-

put data have been completely flushed in to thememory buffer (ie, the

output netCDF file is closed). On the other side, the idea of our asyn-

chronoustransferscheme is tosplit thecomputation intomultiplesteps

and then execute computation and data transfer in parallel. Explicitly,

the mechanism of asynchronous data transfer uses a communication

thread, ie, Comm. Thread in Figure 5B, to aperiodically send a part of

the flushed data (in the memory buffer) from one side to another side,

during the computation. Then, the computation and data transfers can

be processed in parallel. At last, only the dirty data, which have been

updated since the previous data transmission, are transferred again,
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FIGURE 4 Synchronized direct data transfer amongworkflow components

FIGURE 5 Synchronized and asynchronous data transfer (both of them are supported by the proposedmiddleware)

after the output netCDF file is closed. We call the time required for

sending the remaining data and the dirty data after all computation

tasks of the sender sides, as the observed communication time in this

paper (the last red arrow in Figure 5A,B).

3.5 Communication pattern support

The proposed middleware supports various communication patterns,

ie, data can be sent to the appropriate destination according to appli-

cation requirements. Similarly to the MPI library, the middleware

provides collective communication routines, including scatter/gather

and all-to-all patterns, to enable various patterns of data transfer in the

target applications.

Note that the selection of the actual communication routine is per-

formed by the middleware, and users only need to set the configura-

tion file to specify the communication pattern among the component

modules before running the application. A detailed description of the

configuration file will be provided in the following subsection.

3.6 Customizability via configuration file

To retain full application transparency, we propose a scheme of config-

urable transfer settings, which allow users to specify the components

involved in the application, along with the files that are denoted to be

transferred from a given component to another.

The configuration file offered by the framework requires specifying

the followings.Usersneed to indicateeach individualworkflowcompo-

nent (currently identified by executable names), information about the

connection between components (ie, the connection name), details of

the files that will bypass the parallel file system (denoted by file names

thatalso supportasterisk-basednamecompletion), and theactual com-

munication pattern (such as, one-to-one, one-to-many, etc).

Figure 6 demonstrates a simplified configuration example in

SCALE-LETKF. As seen, the component COMP0 outputs the file called

“history,” which in turn is required to be sent toCOMP1as an input file.

The name of the connection (used for establishing the MPI intercom-

municator connection) is called “scale-obs,” where the communication

pattern is indicated to be a one-to-one type of data transfer.

Given that an application links against our library, the configuration

setting is loaded during initialization, and the specified settings will

guide the direct data transfer mechanism during execution.

Although in the case study of SCALE-LETKF, only the one-to-one

(pair-based) communication pattern is leveraged, in which a particular

process sends data to exactly one corresponding process, it is also



LIAO ETAL. 7 of 12

FIGURE 6 A simplified configuration example of the direct I/Omiddleware

possible to set the configuration file to enable transferring the data

by following one-to-many or many-to-many mappings. Moreover, the

all-to-all communication functionality is also supported in the current

implementation of our middleware. As a result, complex communica-

tion patterns can be performed entirely by themiddleware incorporat-

ing data redistribution that would have to be done at application level

otherwise.

3.7 Implementation for SCALE-LETKF

For demonstrating the effectiveness of direct parallel data transfer

between the simulation and assimilation processes in SCALE-LETKF,

wehavedevelopedaproof-of-concept implementationof theproposed

I/O middleware. In addition, since data is exchanged between each

SCALE process and the corresponding LETKF process in netCDF for-

mat, we have made slight modifications to the netCDF library itself

(using ver. 4.2.2.1), so that it complies with the proposed I/O mid-

dleware to enable direct data transfer in an application transparent

fashion.

4 EVALUATION

This section first describes the experimental setup and experimen-

tal methodology for evaluating the proposed I/O middleware. It then

presents experimental results and provides the relevant discussion. At

last, we summarize the key points of our direct parallel data transfer

approach.

4.1 Experimental setup

Evaluation experiments to assess the advantages of the SCALE-LETKF

system equipped with our current prototype middleware were con-

ducted on the K computer.38 The K computer is Japan's flagship super-

computer sporting 88 128 compute nodes (8 CPU cores each), with

peak performance more than 10 petaFLOPS. The K computer took

the first place of TOP 500 in 2011, and as of June 2016, it is ranked

as the fifth fastest machine of the world.39 Table 1 gives an overview

specification of the K computer.

As for the input data used in our experiments, we use real-world

observations to test the efficiency of SCALE-LETKF when equipped

with the proposed I/O middleware. In all experiments, each MPI pro-

cess was allocated to one compute node, and we logged the results

related to I/O operations during the execution. Note that every MPI

process is allocated onto one computing node, and openMP is used to

explicitly direct multithreaded parallelism.

Figure 7 demonstrates the I/O workflow of one cycle in the applica-

tion. The LETKF component actually contains themodules of OBSOPE

and LETKF, both ofwhich need to obtain data fromSCALE. In one-cycle

of the execution, the SCALE module outputs 2 kinds of results, the

“history” data and the “restart” data, which are read by OBSOPE

and LETKF modules, respectively. In addition, the OBSOPE is respon-

sible for generating the analyzed data that is requested by the

LETKFmodule.

Three real-world test cases for regional weather analysis were

used. In each measurement, SCALE is composed of up to 100

ensemble instances. test case 1 and Test Case 2 have 4 processes

in each ensemble instance, but there are 48 processes in each

ensemble instance of test case 3. LETKF consists of only one

instance, but it contains the same number of processes as all SCALE

instances in total.

TABLE 1 Specification of the K computer

CPU SPARC64VIIIfx 2GHz

Node Performance 128GF (16 GF× 8 cores)

specification Memory 16 GB

Number of racks 864

Number of nodes 82, 944

Network Tofu 6DMesh/Torus

Link bandwidth 5GB/s × bidirectional

Peak performance 10.62 petaFLOPS

Total memory capacity 1.26 PB

Global file system Fujitsu Exabyte File System

Storage capacity 30 PB
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FIGURE 7 I/Oworkflow in SCALE-LETKF in one cycle: all transferred data are organized with netCDF format

• Test case 1: testcase_45km_4p_l36:

- Number of variables at one gird: 11

- Ensemble size: varying from 10 to 100

- Total variable number: 3.2 × 108

- Total I/O size: up to 34GB for the entire 100 ensemblemembers

• Test case 2: testcase_45km_4p_l72:

- Number of variables at one gird: 11

- Ensemble size: varying from 10 to 100

- Total variable number: 6.2 × 108

- Total I/O size: up to 67GB for the entire 100 ensemblemembers

• Test case 3: testcase_15km_48p_l36:

- Number of variables at one gird: 11

- Ensemble size: varying from 10 to 100

- Total variable number: 4.4 × 108

- Total I/O size: up to 530 GB for the entire 100 ensemble

members

Table 2 summarizes the size of transferred data for the cases hav-

ing different number of ensemble instances. Note that in our current

execution model, each application instance corresponds to a separate

MPI job.

4.2 Experimental results

The main limitation of our current proof-of-concept I/Omiddleware is

that we can run only one cycle of the SCALE-LETKF system, because

SCALE cannot run multiple cycles. In other words, each SCALE pro-

cess generates output data after simulation, which will be read by the

corresponding LETKF process as input for assimilation.

4.2.1 Inter-jobMPI bandwidth

As we mentioned before, our current prototype implementation uses

MPI communication for building connection between components,

as well as for enabling direct data transfer. Because high-end HPC

platforms do not necessary support communication between sep-

arate MPI jobs efficiently, we leveraged a modified version of the

TABLE2 Total amount of transferreddata in the case study

Ensemble size Test case 1 Test case 2 Test case 3

10 3468MB 6720MB 53 328MB

20 6936MB 13 440MB 106 656MB

40 13 872MB 26 880MB 213 312MB

60 20 808MB 40 320MB 319 968MB

80 27 744MB 53 760MB 426 624MB

100 34 680MB 67 200MB 533 280MB

FIGURE 8 Intra- and inter-jobMPI communication bandwidth

osu_bw microbenchmark from the MVAPICH suite40 to verify that

intra- and inter-job MPI communication on the K computer indeed

yields the same performance. The experiments were performed by

exchanging a number of ping-pong messages between the Simulation

and the Assimilation processes after the 2 components have been con-

nected by themiddleware.

Figure 8 demonstrates the experimental results of the network

bandwidth, where the horizontal axis represents message size and the

vertical axis indicates the bandwidth. As seen, the attained bandwidth

by 2 communication schemes do not appear to be noticeable different,

which indicates that the inter-job MPI communication scheme used

by the middleware does not place any negative effects in our target

environment.

4.2.2 Communication time

While running theselected3test cases,we firstmeasuredtheobserved

communication time for transferring data between SCALE and LETKF

after the computation of SCALE, as the function of increasing the num-

ber of ensemble instances from 10 to 100. Figure 9 shows the time

required for transferring the data from SCALE to LETKF by using 2

direct data transfer schemes. The horizontal axis represents the num-

ber of ensemble instances. As mentioned, every ensemble instance in

both test cases 1 and 2 has 4 processes, and each ensemble instance

in test case 3 has 48 processes. The vertical axis shows the time

required for data transmission. As the experimental results imply, the

communication time for transferring data between the 2 components

remains essentially unchanged, even with the growing number of
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FIGURE 9 Observed communication time needed for transferring data from SCALE to LETKF after computation of SCALE (both of them are
supported by the proposedmiddleware)

FIGURE 10 I/O time contrasting file I/O and direct data transfer having synchronous transfer and asynchronous transfer schemes

involved processes, which is due to the pair-wise communication pat-

tern of the SCALE-LETKF system.

Another interesting observation is that the asynchronous transfer

scheme requires less than one-third time for transferring the data

after the computation of data simulation, compared with synchronous

data transfer. Inotherwords, theLETKFprocesses canstart thecompu-

tation of data assimilation quite earlier, whenwe use the asynchronous

transfer scheme. This is because a major part of output data has been

concurrently transferredwith the computation in themain thread, and

the dirty data occupy a small proportion of all output data.

4.2.3 I/O acceleration

For comparison, we recorded the time required for I/O operations

between the SCALE and LETKF processes by using both actual file I/O

operations and the mechanism of direct data transfer. Figure 10A-C

indicates the time required for conducting I/O operations between

the 2 types of processes using file I/O and the proposed mechanism,

respectively. Note that the I/O time shown by the proposed mecha-

nisms includes the time needed for memory operations, and the time

required for transferring the data from SCALE to LETKF.

As the Figure depicts, the proposed mechanism can substantially

reduce the time needed for I/O operations between SCALE and LETKF

processes compared to the file I/O-based data transfer. For example,

when the size of ensemble instances is 100 using the case of test case

3, themechanismof direct data transfer can yield over 30× speedup on

I/O operations, which in turn implies that more time can be devoted to

perform simulation and data assimilation and that the total execution

time can be consequently decreased. Furthermore, the file-based data

transfermay require significantly increased I/O time due to contention

on the parallel file system. The case of test case 2 required 34.1%more

time for conducting file I/O operations, compared with the case of test

case1, because the sizeof transmissiondataneededby the former case

is 2 times of the size of transmission data of the latter one. In contrast,

direct data transfer does not increase the transfer time significantly

even for double size data.

We also report a breakdown analysis of the time required for I/O

operations among the component models in SCALE-LETKF. Figure 11

indicates the results in detail. To be precise, the LETKF model has 2

modules including OBSOPE and LETKF, both of which request input

data from SCALE (previously indicated by Figure 7). The experimental

results clearly show that all components consume less time for com-

pleting I/O operationswhile using the proposed I/Omiddleware, which

is the reasonwe could decrease execution time in total.

4.2.4 Data throughput

After verifying, the proposed mechanism can indeed reduce the time

needed for exchanging the data between SCALE and LETKF in our test

cases, this section aims to measure the I/O data throughput while exe-

cuting various test cases. Figure 12A-C shows the results about I/O

data throughput reported by performing the testswith varying ensem-

ble sizes, respectively. As seen, the proposed scheme of direct data

transfer outperforms the scheme of file I/O-based data transfer, and

it achieves from 758.3% to 2933.3% data rate improvements for the

selected test cases. Particularly, improvements are getting remarkable

while the ensemble size is getting larger that indicates more data are

required to be processed.

Another remarkable issue, implied by the figures, is the fact that the

larger the amount of data is to be exchanged, the higher the benefits

become by using the direct data transfer method. In addition, com-

pared with the scheme of Synchronous Data Transfer, the Asynchronous

Data Transfer scheme can achieve more attractive performance

improvements.
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FIGURE 11 I/O time breakdown comparing file I/O and direct data transfer having synchronous transfer and asynchronous transfer schemes

FIGURE 12 I/O data throughput using file I/O and direct data transfer having synchronous transfer and asynchronous transfer schemes

4.3 Summary

With respect to comparing direct data transfer and file I/O based data

transfer, we emphasize the following 2 key observations. First, with

increasing number of processes, direct data transfer yields better rel-

ative performance. Second, the more time reduction and higher data

throughput can be achievedwith the growing size of the involved data.

In brief, we conclude that the proposed file I/O middleware is able to

significantly reduce the time required by exchanging data between the

component models in the SCALE-LETKFworkflow system.

Furthermore, the implemented I/O middleware offers a general

framework for inter-component data exchange in workflow systems,

where individually developed applications are coupled together. By

accelerating the execution of such systems, we believe our newly pro-

posed middleware, facilitated with the direct data transfer functional-

ity, is particularly important for systemswith rigorous time constraints.

5 CONCLUDING REMARKS

This paper has proposed a general I/O middle for Big Data processing

coupled workflows that are comprised of multiple individually devel-

oped components. Most importantly, it enables direct parallel data

transfer among the component models for reducing the time required

for data exchange among them. We have applied this I/O middleware

to the SCALE-LETKF data assimilation based weather forecasting sys-

tem for allowing data transfer via inter-MPI communication between

simulation and data assimilation processes, to forecast local severe

weather of guerrilla rainstormswith acceptable prediction period.

In order to put this mechanism to work, we first build a com-

munication context among the different types of processes by using

the inter-MPI communication facility. Then a library hook built in the

netCDF library is responsible for intercepting all I/O (i.e., read/write)

requestsuntil theneededdatahasbeen transmitted to thecorrespond-

ingprocess.Consequently, comparedtothemechanismof file I/Obased

data exchange, the time required for I/O operations can be signifi-

cantly reduced, and the data throughput is greatly improved. Exper-

imental results have demonstrated that the proposed direct parallel

data transfer can reduce the time needed for I/Ooperations among the

SCALE and LETKF processes by between 65.6% and 92.3%. Our tests

also illustrate the direct parallel data transfer could increase the I/O

data throughput by between 758.3% and 2933.3%, in contrast to file

I/O-based transfer.

Especially, experimental results on the K computer using up to

4800 nodes have shown that the proposed mechanism can signifi-

cantly reduce the time spent on I/O operations among SCALE and

LETKF. This achievement is useful for real-time weather forecasting in

SCALE-LETKF or similar applications, because the I/O time does not

noticeably increase while the problem scale is getting larger. There-

fore, we conclude that themost attractive results yielded by the newly

proposed I/O middleware is that the benefits of larger data through-

put increase with the growing amount of data that are required to be

processed.

The current implementation of the middleware relies on the MPI

library for data transmission, but our long-term vision is to implement

data transfer on top of a LLC, which will enable us to establish connec-

tions among arbitraryMPI jobs. Low level communication is part of the

development plan of the post-K supercomputer (the next generation

flagship supercomputer in Japan). In addition, enabling asynchronous

data transfer so thatcommunicationandcomputationcanbeefficiently

overlapped is another important item on the list of our future work.

Furthermore, with asynchronous data transmission, we also intend to

explore the use of direct RDMAoperations between individual compo-

nents so that any unnecessary buffering can be eliminated during the

data exchange.
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