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Abstract—This paper explores the idea of modeling a large
image data collection of polycrystal electron patterns, in order
to detect insights in understanding materials discovery. There
is an emerging interest in applying big data processing,
management and modeling methods to scientific images, which
often come in a form and with patterns only interpretable
to domain experts. While large-scale machine learning ap-
proaches have demonstrated certain superiority in analyzing,
summarizing, and providing an understandable route to data
types like natural images, speeches and texts, scientific images
is still a relatively unexplored area. Deep convolutional neu-
ral networks, despite their recent triumph in natural image
understanding, are still rarely seen adapted to experimental
microscopic images, especially in a large scale. To the best
of our knowledge, we present the first deep learning solution
towards a scientific image indexing problem using a collection
of over 300K microscopic images. The result obtained is 54%
better than a dictionary lookup method which is state-of-the-
art in the materials science society.
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I. INTRODUCTION

With the rapid development of computer and information

technology in the last several decades, a prominent trend

now seen in various fundamental science researches is the

increase of the use of data to drive discoveries. Almost

every field in science and engineering has been or is be-

ing transformed from data-poor to increasingly data-rich.

Enormous amounts of data in science and engineering has

been, are being, and will continuously be generated and

collected in massive scale, in the order of tera- to peta-

bytes. Moreover, a great amount of the data has been curated,

labeled, and made publicly available via the Internet. The

trend of data shareing, data openness, collaborative data

curation is showing a growing popularity.
This leads to a paradigm change in science, coined the

fourth paradigm of scientific discovery by Hey et al. [1],

and further discussed in the materials discovery context by

Agrawal and Choudhary [2]. Generally, scientific discover-

ies had previously been driven by empirical experiments,

theoretical foundations, computer simulations and now, au-

tomated or semi-automated data modeling and analyzing

tools. Among those tools, the board application of Machine

Learning (ML) and Data Mining (DM) methods have been

essential. Recent revolution in Artificial Intelligence (AI),

concretized by the success of deep neural networks com-

bined with large scale data and high performance computing

technology, has stimulated the adoption of such methodol-

ogy in various application domains.

In the meantime, the necessity of such a paradigm tran-

sition has been most significant in the field of materials

science. A number of notable government initiatives and

high-profile documents [3], [4] have specifically urged the

accelerated materials discovery, to transform the process of

identifying and/or synthesizing new materials from a slow-

paced, physics-based process to a potentially much faster,

informatics-based and data-intensive one. However, despite

the growing interests and mounting demand, the use of

advanced machine learning methods in understanding the

synthesis and/or processing routes of materials has been

largely limited. A very recent work by Raccuglia et.al [5]

has successfully utilized data from failed experiments, with

the classifier being support vector machine (SVM). The

demonstration of accurate reading of large-scale materials

images with deep neural networks are almost never seen.

To the best of our knowledge, this paper presents the first

deep learning solution to large-scale, automatic assessment

of electron images, as a step towards developing general

purpose learning models without much guidance from the

domain experts. This is in tune with the theme of Artificial

General Intelligence [6].

At the risk of oversimplification, there are two quantities

of a material (including, e.g., metals, alloys, composites,

ceramics, polymers) to be analyzed in the computational

materials science: (a) its internal structure, and (b) its phys-

ical/chemical properties and/or engineering performance

characteristics (which is closely related to properties). In

addition to understanding each of these two quantities,

what’s more valuable is building the linkage between them.

The so-called structure-property relationship, if accurately

modeled, provides key information to the discovery of new,

alternative material types [7]. While quantity (b) is often
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probed by some measurement in experiments or simulation,

quantity (a), most of the time, exists in the form of images

produced by various materials characterization tools.

This reduces materials data management and analysis

mostly to image analysis. Scientific images like X-Ray and

electron microscopy pose great challenges to general com-

puter vision techniques. Learning from scientific images are

very different from the recognizing objects in natural images.

While we are aiming at beating average human performance

on tasks like object recognition in natural images, the bar is

even higher on scientific images, as only professionals with

strong domain expertise can probably untangle the visual

complexity and reveal the underlying meaning.

In this work, we demonstrate the generalization capability

of deep neural networks in the application field of materials

discovery. More specifically, we use deep Convolutional

Neural Networks (CNNs) to index electron microscopy

images, presented in grey scale, with crystalline orientations,

represented by three angles. A special loss function is

particularly designed to handle the angular periodicity. We

also visualize what is learned out of the first convolutional

layer to justify the effectiveness of a learned model. The

emphasis of the technique is two-fold: (a) the use of a large

size of data in building a deep neural network, and (b) the

end-to-end modeling with raw pixels of images.

The rest of paper is organized as follows. In Section II, we

review the related work on the recent success of deep neural

networks in understanding natural images, as well as the use

of neural networks in materials problems. In Section III,

we present the problem of Electron backscatter diffraction

(EBSD) indexing, which involves reading electron images

to determine orientation of surfaces of polycrystals. In

Section IV the proposed deep learning solution is discussed.

And in Section V the data, implementation and experimental

results are presented. We finally conclude the paper and

discuss future work in Section VI.

II. BACKGROUND

The past few years have witnessed a renewed interest in

neural networks and backpropagation as a learning frame-

work [8]. With the availability of large scale data and fast

computational tools, the practice of training deep neural

networks has been favored. Most significantly, convolutional

neural networks (CNNs), a class of deep learning models

designed to simulate the visual signal processing in central

nervous systems, have gained much attentinon in the field

of image understanding. These models usually consist of

alternating combination of convolutional layers with train-

able filters and local pooling layers, resulting in a complex

hierarchical representations of inputs. When trained end-to-

end from raw pixel values to classifier outputs, with millions

of labeled images, they have achieved superior performance

on many image-related tasks including object recognition,

segmentation, detection and retrieval [9]–[11].

Deep learning [12] has undergone a fast development.

Almost every a new extension to the conventional algorithm

emerges (e.g. on arxiv.org) and a new application field

becomes interested. Recent examples include the field of

drug discovery making use of a multitask deep learning

framework [13]. Similarly to drug discovery, the problem of

materials discovery is about deciding on certain composition,

formulation, and processing steps of materials with a desired

target property [14]–[17].

Neural networks as a tool have been used in materials

science applications such as spectroscopy classification and

structural identification [18], characterizing constitutive re-

lationship for alloys [19], the evaluation of descriptors [20],

etc. However, neither the size of data or complexity of

networks in these works have gone large enough.

CNNs used on scientific images from other fields have

been seen. In the work of brain image segmentation [9],

CNNs are used on electron microscopy image as a pixel

classifier, outputting for each pixel, the probability of it

being a membrane. A number of 10-layer CNNs are trained

on a set of 30 512 × 512 images, and the final system

is an ensemble of them. Ranzato et al. [21] studied the

recognition of biological particles from microscopy images.

The dataset contains 27 classes each with 500 images, each

with a dimension of 52× 52 pixels. Both works have CNN

used for classification. However our work involves making

regression inferences, posing more challenges to the deep

network.

Another body of work targets at improving the inter-

pretability of networks. The easiest way to probe what’s

learned by a network is to visualize the weights, activation,

gradients from different parts of the network and at different

times. More advanced tools are developed for visualizing

the activations produced on each layer of a trained CNN,

in a live streaming fashion, as well as features extracted at

different layers throughout the network [22].

To this date, the actual collaboration of deep learning and

materials discovery has been scarce, mainly due to three

reasons:

• The lack of big materials data. More specifically, the

lack of large-scale, high quality, cleaned and labeled

data. Materials data simply were never big enough.

Failed experimental data got tossed away easily, and

those that were saved were not properly curated for

future use. The collection of large-scale materials data

and the popularization of accessible database projects

have just started to play an impact, with couple of

example sites including the Materials Project [23]1, and

Open Quantum Materials Database (OQMD) [24]2.

• The nontransparency of neural networks. The dif-

ficulty of understanding the millions of weights that

1https://www.materialsproject.org
2http://www.oqmd.org



2263

a normal-sized network can have prevents people in

scientific discovery domain from adopting it.

• The proper induction of domain knowledge. ML by

itself is largely agnostic. The supervised modeling from

input to output often takes only the sheer closeness of

predictions towards targets as the objective and attempts

to achieve a lower and lower loss by optimization

(e.g. stochastic gradient descent). This practice largely

ignores the problem fundamentals and hence easily

produces overfitted results.

The objective of this work is to bridge the gap between

the two fields, by taking a first effort at addressing these

impediments. Firstly, to the best of our knowledge, this

work establishes the first microscopic image regressional

modeling utilizing a dataset as large as 300K. Secondly,

in addition to demonstrating the prediction accuracy, we

make a first effort to visualize the process and result of

learning. Thirdly, we attempt to induce domain knowledge

into the loss function and regularization of learning, making

the prediction result less prone to overfitting.

III. PROBLEM: EBSD INDEXING

The problem involves the study of a ubiquitous materials

type: polycrystals. Common examples including commercial

metals, alloys and ceramic, polycrystals are solids composed

of small crystallites forming an aggregate that appears homo-

geneous at the macroscopic scale (millimeter length scale).

However, at the microscale (millimeter to a nanometer

scale, observed using microscopy techniques), a polycrystal

exhibits various structural characteristics, including grain

orientations, local textures, phase distributions, etc. The

study of those microstructures is essential to understand

properties of a polycrystal.

Electron backscatter diffraction (EBSD) is a standard

technique detecting certain microstrcture characteristics on

the surfaces of polycrystals. An example of EBSD experi-

ment setup is depicted in Fig. 1(a). A carefully calculated

volume of high-energy, high-speed electrons are discharged

from a stationary beam towards a specimen. Due to the

backscattering nature, the electrons would be reflected by the

surface (more specifically, at a range of different depths be-

low the surface) of a crystalline material and travel towards

a phosphor screen detector. A diffracting scattering pattern

is then captured from the screen. It is often exhibited as a

collection of parallel and intersecting bright bands. Figure. 2

displays several examples of such pattern.

If we change the tilting or rotation of specimen and hence

the orientation of the crystal lattice, the arrangement patterns

would also change. In another word, each EBSD image

is produced by a particular crystal orientation, commonly

described by three Euler angles, denoted as (ϕ1,Φ, ϕ2).
Their definition is illustrated in Fig. 1(b). They together

represent how the specimen is tilted with respect to the

three dimensional axes. The inverse problem that determines

Electron 
beam

Tilted 
specimen

Diffraction 
plane

Screen 
detector

X

Y

Z
Z’ 

Y’ 

X’ 

ϕ 

φ1 φ2 

(a) 

(b) 

ϕ 

Figure 1: (a) Simplified schematic of EBSD generation: a beam of
electrons gets reflected by the diffraction plane in the specimen, and
captured on a screen. (b) Definition of Euler angles (ϕ1,Φ, ϕ2).
Specimen is tilted so that the original axes (X,Y, Z) become
(X ′, Y ′, Z′).

the orientation angles from examining an image, is called

automatic EBSD indexing. Such an indexing is key to per-

form quantitative microstructure analysis for polycrystalline

materials.

Traditional approach to EBSD indexing is pattern match-

ing. It requires precomputing a database of (pattern, orienta-

tion) pairs, which stores the idealized patterns generated by

distinct orientations. When a test pattern is observed, it is

compared to each member in the database and the orientation

of its 1-Nearest Neighbor (1-NN) is returned. The compar-

ison between two patterns can be made either directly, that

is, pixel-by-pixel, or after certain image processing proce-

dures, for example, Hough transform, butterfly convolution,

Gaussian filtering, binning, peak detection, etc. [25]. The

preprocessing of EBSD images may be complicated but

traditional indexing is just based on the idea of nearest

neighbor lookup, or instance-based learning.

A well-known drawback of 1-NN is its high compu-

tational cost at prediction time, for distance calculation

between the test sample and every training sample. Besides,

inductive bias is easily introduced if similar images are

assumed to exhibit similar crystalline orientations, without
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(214.45, 58.86, 124.45) 

(222.43, 44.23, 182.46) 46) (197.23, 50.39, 127.96) 

5) (214.94, 59.17, 124.94) 

Figure 2: Examples of four EBSD patterns, each denoted with its
corresponding Euler angles (ϕ1,Φ, ϕ2), used as regression target
in deep net training. The upper left and upper right patterns are
very similar, and also have a small difference in target angles.

proper regards to the uncertainty introduced by the quality

of image, visibility of bands, lighting conditions, and so on.

Moreover, in light of a lightweight, straightforward learn-

ing algorithm as the 1-NN, the key to success relies largely

on the extraction of features that describe the unique ge-

ometry of each EBSD pattern. Much effort is seen invested

in devising templates [26] and other key descriptors for use

in the matching of patterns. They often tend to examine the

number, positions and widths of certain bands in the pattern,

and create attributes that relate to known physics of electron

scattering phenomena in the image formation process [27].

In contrast, we attempt to make use of deep learning

models to address the problem of EBSD image indexing in

an end-to-end fashion. We are interested in building learning

models that do not require domain-specific knowledge or

much image processing steps. That said, we feed raw pixel

values as the input to a deep CNN architecture and design a

special loss function to attend to the peculiar characteristic

of orientation angles.

IV. DEEP LEARNING SOLUTION

Our solution is to construct a deep CNN that takes EBSD

images as input, and produce three real-valued angles as

output, through multiple convolutional layers that are used

to take into consideration the spatial dependencies among

image pixels, and fully connected layers for multi-layer

regression.

The data is a set of grey scale images with input pixel

values between 0 (black) and 255 (white). Each image is

associated with three target values. The problem setup at a

glance is quite similar to the MNIST digit classification [28].

The MNIST handwritten digits classification has been well-

studied and used as a benchmark for the CNN develop-

ment [29], [30]. The database contains 70,000 28×28 pixel

images divided into training and test sets. The similarity

of our problem with MNIST is that it also processes grey

scale images with one channel of input, whose pixel values

are between 0 (black) and 255 (white), and associates each

image with a one-valued target. However there are a number

of aspects that make this problem distinctive, and much more

difficult:

• The image size is much larger than MNIST, at 60× 60
(vs. MNIST of 28× 28).

• The data volume is much larger, of 300K (vs. MNIST

of 70K).

• The digit patterns in MNIST have a roughly bilevel

representation - white being the digits, black the back-

ground. The grey scaled values can be binarized without

much loss of information. However, a backscatter pat-

tern is the regular arrangement of parallel bright bands

on a steep continuous background, leading to a much

larger variation of inputs.

• The target is a real number (actually, three real num-

bers, but we choose to model them one at a time),

making it a regression problem.

• The target variable is an angle; the periodicity of

angular data has to be addressed.

A. Loss function

We separately model each Euler angle, resulting in three

tasks. For each task, we use the same training and testing

inputs but different target outputs. A special loss function

is designed to account for the periodicity of angular data

(the fact that 0◦ is close to 359◦) when measuring the

difference between predicted outputs and the ground truth.

The definition is as follows.

Suppose a training set of m samples is given as

{Xi, y
j
i }mi=1, where Xi ∈ Rn denotes the i-th training

sample, and yji denotes the j-th output, j = 1, 2, 3, of the

same training sample. For j = 1, 3 the output yj is and

orientation angle between 0◦ to 360◦. For j = 2, yj is

bounded by a smaller range between 0◦ to 60◦.

To quantitatively measure the difference between the

predicted angle ŷi and ground truth yi, while taking care of

the periodicity of angular expressions, the loss function is

designed in the following form. The j index in y is omitted

as we use the same form across all three tasks. For each

training sample i, the loss Li given the predicted angle ŷi
and ground truth yi is:

Li(yi, ŷi) = arccos(cos(‖yi − ŷi‖)) (1)
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Such a loss function converts any angular difference

between [−360◦, 360◦] to [0◦, 180◦], or [0, π] in radians. In

CNN training, this customized loss function is used instead

of the cross-entropy in classification.

B. Architecture

Convolutional layer. A convolutional layer is

parametrized by the number of channels, kernel size,

stride factor, border mode, and the connection table. Each

layer has M channels of equal size (Mx,My). A kernel

of size (Kx,Ky) is shifted over the effective region of

the input image. The effective region is determined by the

border mode factor: at “full” mode, at least one pixel row

or column of the kernel has to be inside the image, and

while outside the image is padded with 0s; at “valid” mode,

the kernel has to be completely inside the image. The stride

factors Sx and Sy define how many pixels the kernel skips

in x- and y-direction between subsequent convolutions.

This factor is normally 1 unless noted otherwise. The size

of the output channel at layer l, indicated at the superscript,

is then determined as:

full: M l
∗ =

M l−1
∗ +Kl

∗
Sl∗

− 1

valid: M l
∗ =

M l−1
∗ −Kl

∗
Sl∗

+ 1

(2)

The subscript ∗ can be either x or y. Kernels of a given

channel share their weights.

Max-pooling layer. Max-pooling has shown to lead to

faster convergence, a selection of superior invariant features,

better generalization, and enable position invariance [31].

The output of the max-pooling layer is given by the maxi-

mum activation over non-overlapping rectangular regions of

size (Px, Py), so that the image is down sampled by a factor

of Px and Py along each direction.

Regression layer. It is common to use multiple fully-

connected (FC) layers after several rounds of convolution.

The resulting structure of the last convolutional layer is

flattened before connecting to the following FC layer. For a

regression network, the last layer is always fully connected,

with one output unit for the regression target.

C. Network configuration

Out of many network configurations that we experi-

mented, we present the best one that is a 7-layer CNN,

with 4 convolutional layers and 3 fully connected layers

(including the last output layer). Table I lists the detailed

configurations for each layer. Conv stands for convolutional

layer and FC for fully-connected layer. Two Conv layers

with the same number of channels are placed together, one

with “full” mode and the other with “valid”, so that after

the pair of layers the image size remains unchanged. Then

a pooling is added and the size is halved.

Table I: Details of each layer in our CNN for EBSD indexing.

Layer Type Channel Feature Kernel Pooling
0 Input 1 60× 60 N/A N/A
1 Conv 32 68× 68 9× 9 N/A
2 Conv 32 60× 60 9× 9 2× 2
3 Conv 64 30× 30 9× 9 N/A
4 Conv 64 30× 30 9× 9 2× 2
5 FC N/A 512 1× 1 N/A
6 FC N/A 256 1× 1 N/A
7 Output N/A 1 1× 1 N/A

We also insert 4 Dropout [32] modules at the following

places to regularize: (1) between layer 2 and layer 3, with a

dropout probability of 0.25; (2) between layer 4 and layer 5,

probability 0.25; (2) between layer 5 and layer 6, probability

0.5; (2) between layer 6 and layer 7, probability 0.5.

In convolutional layers, kernels all convolute with a

stride 1. Pooling layers are all max-pooling and are non-

overlapping. The weights are initialized using a Gaussian

distribution, with 0 mean and standard deviation depending

on the number of inputs and outputs of its layer, a concept

from [33]. In particular, in a layer where its number of inputs

is fin and number of outputs fout, the standard deviation of

the Gaussian is:
√

2
fin+fout

.

All layers use ReLu [34] as the activation function,

except the output layer uses linear, for regression purposes.

The optimization algorithm used for CNN training is the

stochastic gradient descent (SGD), with a minibatch of size

30, using momentum [35] of 0.9 and initial step size 0.001
which is halved every 30 epochs for about 10 times. Each

epoch takes a fixed number of random training samples

uniformly sampled across classes.

V. EXPERIMENT RESULTS

The data are generated by a forward model that simulate

the physical EBSD experiment, as described in [36], from

Carnegie Mellon University. It is roughly the same data used

as the “dictionary” in [37]. Each image contains 60 × 60
pixels, and the total number of images in the dictionary is

333,227. A random 300,000 samples are used for training,

and 30,000 for testing. The three target orientation angles are

in a range of [0,360), [0,60], and [0,360). To the best of our

knowledge, the work conducted here is the first deep learning

solution towards EBSD indexing using a dataset this large.

Experiments are implemented using Theano, carried out on

a single NVIDIA TITAN X GPU with 12GB of memory.

There are over 8 million free parameters in our CNN. The

training takes about a week for 300 epochs.

A. Prediction results

The best network trained for the first angle has a normal-

ized error rate of 0.007 on test data, after 300 epochs. That

is a Mean Absolute Error (MAE) of 2.5◦ when predicting

an angle between 0 and 360◦. For the second angle the
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difference is 1.8◦, and for the third 4.8◦. The three curves of

test error movement over training epochs is shown in Fig. 3.

Prediction of First Angle 

Prediction of Second Angle 

Prediction of Third Angle 

Benchmark: 5.7o 

Our method: 2.5o 

Benchmark: 5.7o 

Our method: 1.8o 

Benchmark: 7.7o 

Our method: 4.8o 

Figure 3: EBSD application: test MAE (unit: degrees) over training
epochs, for each of the orientation angles in prediction.

The result can be compared with the state-of-the-art

benchmark of a 1-NN method presented in [37]. We replicate

the method using the same split of training and test as used

in deep net training, and obtained MAEs of 5.7◦, 5.7◦, and

7.7◦, respectively for each angle. On an average we are 54%
better than the benchmark method.

B. Weight and activation visualization

In addition to their superior classification and regression

performance, the interpretability of deep networks are be-

coming an appealing feature. Visualizing first-layer weights

of a trained network has been a widely adopted practice to

understand what has been learned by the network. Figure 4

shows the filters learned by the first Conv layer, which is

directly looking at raw pixels.

The cleanness of features learned by the first Conv layer is

an important indication of how well the network is trained.

We can see all of the 32 filters in Fig. 4 are able to portray a

clean feature. For example the first filter is clearly trying to

capture a diagonal beam from upper left to lower right. The

second filter is capturing a similar beam but of a opposite

direction and a lower placement in the filter.

Another commonly practiced visualization technique is

plotting and viewing activations of the network during the

Figure 4: Filters learned by the first Conv layer in our CNN from
EBSD images. A total of 32 square filters are shown due to the
32 channel size in Layer 1. We can see that different filters are
capturing different features of the image. For example, in the first
row, filter 1-3 are all displaying an edge with different angles and
at different positions; filter 6 displays a centered knot.

forward pass for some given images. Figure 5 displays 16

original images with their first Conv layer activations. We

can see how the first layer acts like a filter, removing most

noisy information and extracting some part of the beams

in image. Once beams are detected, later layers can use

the information to figure out the calculation of orientation

angles. Deeper layer activations can be visualized as well.

Generally a deeper layer would produce a sparser activation

pattern.

VI. CONCLUSION

In this paper we demonstrate the use of deep learning as

a step towards automated and accelerated materials discov-

ery. Deep convolutional neural networks are used for the

characterization of microstructures in electron microscope

images, utilizing a dataset as large as 300,000 and generating

crystalline orientations with a higher prediction accuracy

than present state-of-the-art. We further visualize the weights

and activations learned by the network, as a way to break the

nontransparency that exists in most ML models, impeding

domain scientists from widely adopting them.

The efforts made towards bridging the gap between

materials science society and deep learning society are

demonstrated in three-fold: (1) making use of big data that

exist in image form; (2) incorporate domain knowledge

into neural network loss function during modeling; and (3)

visualizing various network characteristics as a first step

towards probing the interpretability of the million scale

weight space. We address the big data problem both in the
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Figure 5: 16 EBSD images (top) with their activations (bottom)
after the first Conv layer of our trained CNN. For better visibility
the activation plotted are 10 times the actual value.

notion of making use of a large collection of image data,

and the visualization of a large scale weight space.

As popular as deep learning has become these days, there

is no free lunch. A single universal architecture, parameter

set, loss function, training method or initialization cannot

work for all kinds of problems. It can hardly be used as an

off-the-shelf classifier. We managed to treat the application

problems from an agnostic point of view, but there is still

extensive data-driven exploration conducted to adapt the

learning model to each given problem.

As databases containing various type of materials data

are growing, being refined and becoming available, The

application of machine learning techniques begins to gain

great expectation for faster and smarter materials discovery.

Similar development has been successful in biological sci-

ence, drug discovery and healthcare, and is yet to be seen in

the materials domain. Our demonstration in this work could

play a role in encouraging the use of large datasets, efficient

analytics, and advanced computational models for all kinds

of applications in this field.

A more fundamental challenge persists, though, in the

next step after an accurate model construction: how to distill

information from learned model and extract crucial insights

that relate structure to property; how to not only build robust

predictive, quantitative models, but also interpret them with

domain knowledge, and systematically integrate them in the

discovery, engineering process of materials.

As a future work, learning concepts such as transfer

learning can be introduced. The idea is to transfer knowledge

from other learning tasks, either from a different materials

domain or from entirely outside of scientific images. The

power of transfer learning lies in the ability of adopting

knowledge acquired from other tasks, either closely related

or loosely related, or even unrelated, with a lot of training

samples. More and bigger data from diverse fields can

therefore be joined to regularized the learning space of a

given problem, and thus improve the performance.
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