
Pruned Search: A Machine Learning Based
Meta-Heuristic Approach for Constrained

Continuous Optimization
Ruoqian Liu, Ankit Agrawal, Wei-keng Liao, Alok Choudhary

EECS Department
Northwestern University

Evanston, IL USA
{rll943,ankitag,wkliao,choudhar}@eecs.northwestern.edu

Zhengzhang Chen
NEC Laboratories America, Inc.

Princeton, NJ USA
zchen@nec-labs.com

Abstract—Searching for solutions that optimize a continuous
function can be difficult due to the infinite search space, and can
be further complicated by the high dimensionality in the number
of variables and complexity in the structure of constraints. Both
deterministic and stochastic methods have been presented in the
literature with a purpose of exploiting the search space and
avoiding local optima as much as possible. In this research, we
develop a machine learning framework aiming to ‘prune’ the
search effort of both types of optimization techniques by devel-
oping meta-heuristics, attempting to knowledgeably reorder the
search space and reduce the search region. Numerical examples
demonstrate that this approach can effectively find the global
optimal solutions and significantly reduce the computational time
for seven benchmark problems with variable dimensions of 100,
500 and 1000, compared to Genetic Algorithms.

Keywords-constrained optimization; complexity reduction; ma-
chine learning; meta-heuristics

I. INTRODUCTION

Searching for suitable solutions that optimize an objective
function, and/or satisfy a set of constraints, is a general
technique and ubiquitous solution to applications in various
engineering areas. Search problems are established around
three components: variables, constraints, and the objective
function, and searches are performed in the domain of each
variable which can be either continuous or discrete. Discrete
optimization, or combinatorial optimization, has a finite set of
solutions and is usually represented by graph structures and
approached with heuristic search (e.g. A*) and dynamic pro-
gramming. Continuous optimization, however, involves search
spaces that are infinite, and the challenge of search escalates
when high dimensionality in the number of variables and great
complexity in the structure of constraints are acknowledged.
A d-dimensional continuous optimization problem can be
expressed as:

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . , n.

Here x = (x1, . . . , xd) is the vector of variables, the
function f0 : Rd → R is the objective function, and functions
fi : Rd → R, i = 1, . . . , n, with constants b1, . . . , bn, are the
constraints. In computational geometry, such a problem has a
problem domain (if feasible) as a polyhedra in Rd, defined by
the n halfspaces from the n constraints.

Excluding brute-force methods where making exhaustive
enumeration of solutions is insurmountable for continuous
problems (unless some discretization is performed), classical
algorithmic optimization techniques can be divided into two
main groups. The first group of methods are searches typi-
cally based on deterministic numerical rules realized through
the differential calculus, such as Gradient Search, Linear
Programming, Quadratic Programming, etc. They are deter-
ministic in that given the same initial values, repeated runs
will always produce the same result. In practice, this quality
renders overcoming local optima a serious problem. As an
alternative, the other group of methods introduces stochastic
elements. Examples including Simulated Annealing, Genetic
Algorithms [1] and Particle Swarm Optimization are less likely
to get stuck in local optima are and more flexible towards
discovering new solution spaces.

Our work in [2] has proposed the concept of search space
preprocessing to narrow down the search space which could
then be used by traditional searches, in order to ease the
curse of dimensionality. The framework consisting of dataset
construction, search order reduction and search domain re-
duction was proposed, employing data mining and dimension
reduction techniques to gain informative insights about the
problem space, so as to direct the search quest into more
promising areas. In this paper, we implement the proposed
idea into ’Pruned Search’, a Machine Learning (ML) based
meta-heuristic developed for fast and accurate optimization
search for constrained and continuous problems.

Given an optimization problem with a large amount of
variables as well as constraints, we first collect a set of repre-
sentative variable-objective data instances using the proposed
data distillation technique based on vertex enumeration and
Lagrangian relaxation. Then, by employing feature selection
and classification techniques, we refine the search path and
search region. Finally, a simple line search-like algorithm is
proposed to enhance the optimization. The rest of the paper
is organized as follows. Section II goes into the methodology
of the proposed framework, with a subsection dedicated to
each of our three key processes. In Section III we present
experiments conducted on: (1) a simple problem to validate
path refinement, (2) a number of canonical test problems, and

(3) a synthetic problem. Section IV lists related works, and
Section V concludes the paper.

II. METHODOLOGY

A. Overview

Following the philosophy stated in [2] we consider develop-
ing meta-heuristics with ML to enhance the search process in
optimization. The attempt is to have the search force focused
in a more promising path and prune the irrelevant effort. In
an optimization problem, variables cannot be fumbled freely
with dimension reduction methods such as PCA, but we can
still assume that one of the following statements will hold.

• Assumption 1: The desired (optimal) value of the func-
tion depends only on a reduced, albeit unknown, set of
variables.

• Assumption 2: The impact of each variable to the function
is different. Hence, there exists an optimal order in terms
of searching priority.

The first assumption imposes an additional parameter—the
size of the subset of “active” variables. Both assumptions are
commonly seen in many industrial processes, during the design
of which, variables are included as many as possible but not all
of them are equally important. The two assumptions together
complete the scene of intrinsic variable priority on which our
proposed method is based.

In this setting we can apply feature selection in data mining
to analyze variable relations. The framework contains three
major components, as shown in Fig. 1. The functionalities of
each component are introduced below, and further explained
and illustrated with an example in the following sections.
Data distillation. For ML to work, it needs to have access

to a set of data that contain values of the variables and
the corresponding function value. The data has to be
distinguishably significant in that it contains instances
with the most wanted (highest or lowest corresponding
to maximization or minimization) function values. We
obtain such a distilled significant data set by firstly trans-
forming the problem into the computational geometry
regime to form a polyhedra representing the feasible
space, and then extracting the vertices of the polyhedra.
Lagrangian relaxation is used to handle complicated
constraining conditions.

Complexity reduction. With a proper collection of variable-
objective value instances, ML can learn to extract infor-
mation of variables to produce two functionalities: 1) the
creation of an ordered list of variables based on their
influence and impact towards the function, and 2) the
reduction of the feasible region in variable searching.
The former is achieved through feature selection methods
where a ranking is guaranteed. The latter is realized
through examining a rule-based classifier and looking for
the critical thresholds.

Enhanced optimization. Optimization becomes a much
promising endeavor when the search is “pruned”, in
that the space is reduced and a pre-planned searching

path is deployed. A simple line search-like algorithm is
employed. We specify a prefixed searching order, and
replace the original constraints with the pruned ones.

We will use an example problem throughout Section II-B
to Section II-D to illustrate each step. The example problem,
G1, is taken from [3]. It is formulated as follows.

G1 Problem:
Min: f(x) = 5

∑4
i=1 xi − 5

∑4
i=1 x

2
i −

∑13
i=5 xi

s.t.: g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4(x) = −8x1 + x10 ≤ 0,
g5(x) = −8x2 + x11 ≤ 0,
g6(x) = −8x3 + x12 ≤ 0,
g7(x) = −2x4 − x5 + x10 ≤ 0,
g8(x) = −2x6 − x7 + x11 ≤ 0,
g9(x) = −2x8 − x9 + x12 ≤ 0,
xi ≥ 0, i = 1, . . . , 13,
xi ≤ 1, i = 1, . . . , 9, 13,
xi ≤ 100, i = 10, 11, 12.

The G1 problem has 13 variables, 9 complex linear com-
binational constraints and 2 boundary constraints on each of
the variable, in total 35. The true global minima is known as
x∗ = (1, 1, . . . , 1, 3, 3, 3, 1), f(x∗) = −15. G1 is not chosen
to prove the robustness of our methodology to high dimensions
(which will be exhibited in Section III with problems up to
1,000 dimensions), but rather to help illustrate each step.

B. Data Distillation with Vertex Enumeration

Given an optimization problem, the simplest way of data
collection would be feeding in random combinations of valid
variable values to the function and collecting its outputs.
Number-theoretic methods (NTM’s) are a class of techniques
by which representative points of the uniform distribution on
the unit cube can be generated [4]. One example of NTM is
the quasi-Monte Carlo model.

However, while a uniformly randomized set could be rep-
resentative for numerical analysis of functions, it does not
necessarily serve as representative when it comes to machine
learning purposes. Just as we only need to show a child red and
green cards if what we want him/her to learn is to distinguish
red and green, we claim a representative and significant set
for analyzing variable relations is the collection of instances
that produce very high and very low function values. One
set is the “target”, and the other is included as an opposing
force. Depending on what feature selection method is used,
the opposing set can sometimes be omitted.

To collect such a data set, we follow the idea of vertex
enumeration in computational geometry. The set of linear
inequalities Ax ≤ b defines a polyhedron in Rd. Each of the
n inequalities represents a bounding hyperplane that together
constitutes the polyhedra. An intersect of any d inequalities
forms a vertex. The objective function f(x) also represents
a hyperplane in Rd, and the optimum answer is one of the
vertices on this plane. In fact, all the vertices of the polyhedra
are extreme values to the function. Therefore, to obtain a set

Data Distillation Complexity Reduction Enhanced Optimization

Variable ranking Refined
searching path

Region reduction
Concentrated
searching area

Vertex enumeration

An optimization
problem

Lagrangian relaxation

Significant data
An optimum

solution

Fig. 1: Overview of the proposed ML approach for optimization. The framework is composed of three key processes. Data
Distillation collects a significant and representative data set from an objective function. Complexity Reduction ranks the
importance and prunes the search space for each variable. Finally, the Enhanced Optimization conducts a search within the
reduced space and seeks for the optimal solution.

of extreme values is to enumerate the vertices. These critical
points contains rich information about the global optimum.

For a bounded feasible region, the number of vertices is at
most combinatorial Cd

n, n being the number of constraints and
d the number of variables. By solving any d equations out of
n simultaneously, we would obtain a basic solution (if exists).
By validating this basic solution with the rest n−d equations,
we can check for feasibility of this basic solution. If feasible,
this solution is a valid vertex of the search space.

The higher the number of constraints n, the more vertices
exist, and building an entire polyhedra becomes a difficult
practice. We use Lagrangian relaxation to relax a part of the
constraints and result in a loosened polyhedra to draw data
points from. Lagrangian relaxation is a common procedure to
generate variable bounds during optimization with complex
constraints, assuming that a solution to a relaxed problem is
an approximate solution to the original problem. Therefore it
is safe to claim that a critical point of the relaxed problem is
an approximate critical point of the original problem.

We use linear constraints Ax ≤ b, A ∈ Rn×d to illustrate
Lagrangian relaxation. During the relaxation, it splits the
constraints A such that A1 ∈ Rn1×d, A2 ∈ Rn2×d and
n1 + n2 = n. Then one introduces part of the constraints
into the objective. The problem is converted to a relaxed one:

Min: f0(x) + λT (b2 −A2x)
s.t.: A1x ≤ b1

We let λ = (λ1, . . . , λn2
) be nonnegative weights so that

we are penalized if the relaxed constraints are violated.
In the example of G1, with Lagrangian relaxation we first

split the constraint set into two, by randomly selecting 22 out
of the 35 inequalities and formulating them as A2x ≤ b2.
Then, the 22 inequalities are removed from the constraint set
and the part (b2−A2x) is plugged into the objective function.
The new reduced constraint set then contains exactly 13
inequalities, the same number as that of the variables. Vertex
enumeration is performed by trying to solve these remaining
13 equations simultaneously to obtain a basic solution (if

exists). This solution is a vertex of the feasible region of the
relaxed problem and an approximation of the original problem.
This process is repeated 1,000 times, each time with a different
random draw of the inequalities. λ is set to be a random vector
with values between 0.5 and 1 each time. A higher value of λ
suggests a tighter relaxation and a longer time to obtain data.

C. Complexity Reduction with Machine Learning

The centerpiece of our method is reducing the complexity
of problem, in two-fold. Firstly, the d variables form an order
by feature ranking techniques. Secondly, the searchable region
of each variable can be reduced (or formed if that variable is
unbounded) by classification schemes.

1) Path Refinement: Feature selection methods in data
mining study the variable relations towards the target, either
through calculating a metric, or building a classifier. With the
exemplar problem G1, we take the data set generated and
label the very high values as “H” and low values as “L” (for
example, sort the instances based on the function value and
take the top and bottom 15%). Then we run six feature selec-
tion methods: 1) Information gain, InfoGain(Class,Attribute) =
H(Class) - H(Class | Attribute) where H specifies the entropy,
2) Chi-square, χ2 =

∑
(O−E)2/E, where O is the observed

frequency and E is the expected frequency, 3) Symmetrical
uncertainty, SU(Class, Attribute) = 2(H(Class) -H(Class |
Attribute)) / H(Class) + H(Attribute), where H specifies the
entropy, 4) SVM, by using Support Vector Machine as a
classifier to evaluate a feature’s worth, 5)OneR, by using
OneR [5] as a classifier to evaluate a feature’s worth, and 6)
RELIEF [6], which evaluates a feature by repeatedly sampling
an instance and considering the value of the given feature
for the nearest instance of the same and different class. The
rationale of choosing these feature selection methods is to
have a diverse setting that contains both numeric metrics
and classifier-based evaluators. An ensemble vote of their
outcomes gives a fairly trustworthy result.

2) Region Reduction: In this subroutine, we use the dis-
tilled data set to build a rule-based classifier. As in the path re-
finement activity, the data instances with relatively high values
is represented by the symbol “H” and the contradictory class is
labeled as “L”. This creates a two-class classification problem.
We use rule-based classifiers because they are easily traversed
and thresholds are clearly attained, as we will show later. Here,
we illustrate the example with a random tree. After a tree is
constructed, we look for the leaf nodes with “L” since our
purpose is to minimize in the G1 example. We traverse from
the root to each of the “L” leaf nodes and write down the rules
generated along the path. The number of samples covered by
the rule and the accuracy of the rule should also be considered.
For the G1 example the most supported rule is: IF x7 ≥ 0.42
AND x12 ≥ 1.13 AND x9 ≥ 0.25 AND x11 ≥ 0.43 THEN
“L”. Therefore, the searching regions for these variables are
modified to x7 ∈ [0.42, 1], x12 ∈ [1.13, 100], x9 ∈ [0.25, 1],
and x11 ∈ [0.43, 1]. The searching effort is thus reduced
to a more concentrated area on these variables. Note that
the satisfaction of the original constraints/boundary conditions
must be considered simultaneously. Compared to the original
regions, x7, x9 ∈ [0, 1], x11, x12 ∈ [0, 100], relatively 42%,
1.13%, 25%, 43% of the search region has been reduced.

D. Enhanced Optimization with Reduced Complexity

Our proposed searching strategy adopts the spirit of greedy
algorithms, whose purpose is to find a locally optimal solution
at every step. In our case, we find the value that optimizes the
function for one variable at a time, following the ranked list
of variables. The searching strategy on each variable is the
line search, a well established optimization technique. This
strategy is designed to be easy to implement and robust in
handling high-dimensional problems.

Multi-start strategies are incorporated so that on each run,
the algorithm starts from a randomly generated initial solution
of dimension d in the search space. Then the algorithm iterates
until a stopping criterion, that is, convergence, is reached. At
each iteration, line search is applied from the top variable in
the ranked list proceeding downwards.

III. EXPERIMENTS AND RESULTS

In this section, we conduct numerical experiments on a
suite of test problems. Firstly we validate the effectiveness of
two steps, data distillation and feature selection, by comparing
with benchmark methods. Secondly, the entire framework is
validated with 7 scalable benchmark problems, whose num-
ber of variables can be determined by users. In all sets of
experiments, our method is compared with genetic algorithms
(GA). The comparison is based on the value of the solution
found (if the true optimum is unknown, as in the synthetic
cases) or error between solution found and the true optimum
(if known, as in the standard problems). Time is also recorded.
Experiments are setup on a Linux Red Hat 4.4.7 system with
32 GB memory and Intel Xeon CPU 2.20 GHz.

A. Validation of Data Distillation

The experiments here is to test the effectiveness of our
data distillation procedure. To compare with our vertex based
method, the quasi-Monte Carlo NTM model proposed in [7]
is used to collect a set of uniformly distributed data. Also, a
simple randomization of variables on their feasible regions is
used. The evaluation is made on the collected data only and
does not extend to further optimization. Certain properties of
the data are considered: maximum objective value collected,
minimum objective value collected, total number of instances
collected within a fixed time (100 seconds). Two more
problems from [3], G2 and G7, are added to the test suite.
They are selected because of their relatively large dimension,
as well as their constraint set being fairly complex. At
n = 20, the best known for G2 is f(x∗) = 0.803619. The
best known for G7 is f(x∗) = 24.3062091. The comparison
on all three problems is seen in Table I. As we can see, in
almost every scenario our vertex based data collection method
is able to produce more polarized data, that is, data with a
higher maximum value and lower minimum value. What’s
more, the number of instances produced within a same period
by the vertex enumeration method is much larger, mainly due
to the relaxation of constraints in the process.

G2 Problem:
Max: f(x) = |

∑n
i=1 cos4(xi)−2

∏n
i=1 cos2(xi)√∑n

i=1 ix2
i

|
s.t.: g1(x) = −

∏n
i=1 xi + 0.75 ≤ 0,

g2(x) =
∑n

i=1 xi − 7.5n ≤ 0,
0 ≤ xi ≤ 10, i = 1, 2, . . . , n.

G7 Problem:
Min: f(x) = x21 + x22 + x1x2 − 14x1 − 16x2+

(x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2+
2(x6 − 1)2 + 5x27 + 7(x8 − 11)2+
2(x9 − 10)2 + (x10− 7)2 + 45)

s.t.: g1(x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0,
g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3(x) = −8x1 + 2x2 + 5x9 − 2x10− 12
≤ 0,
g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23−
7x4 − 120 ≤ 0,
g5(x) = 5x21 + 8x2 + (x3 − 6)2 − 2x4
−40 ≤ 0,
g6(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25−
x6 − 30 ≤ 0,
g7(x) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5−
6x6 ≤ 0,
g8(x) = −3x1 + 6x2 + 12(x9 − 8)2−
7x10 ≤ 0.
−10 ≤ xi ≤ 10, i = 1, 2, . . . , 10.

B. Validation of Feature Ranking

To demonstrate the effectiveness of feature selection in
producing an importance ranking of the variables and hence a
refined searching path, we compared with random searching
paths, and evaluate the error between the actual optimum and

G1 Max Min Total cases
Vertex 2.3128 -9.77 8656
NTM 2.1134 -3.05 1843

Random 0.9887 -3.32 1457
G2 (n=20)

Vertex 0.7664 -12.112 166
NTM 0.3555 -16.455 28

Random / / 0
G7

Vertex 198.3321 29.332 9656
NTM 201.4456 36..654 63

Random 200.3432 98.4804 17

TABLE I: Validation of data distillation. Comparing our vertex
based method to NTM and randomization.

best answer found, as well as the time taken. The refined
path is obtained using our method, and the random path is
the best one out of 50 runs. The error e = f0(x)− f0(x∗) is
presented as the difference between the best solution found by
our algorithm and the test function’s actual global optimum.
The comparison can be seen in Table II. We can see our refined
path is more effective in finding the minimum of G1, and more
efficient in terms of time consumption.

TABLE II: Validation of feature ranking.

G1 Err. Mean Err. Var. Time (s)
Refined path 3.65E-02 5.09E-04 24.55
Random path 4.23E+00 2.10E-02 264.76

C. Standard Test Problems with Scalable Dimension

There is a variety of standardized numerical test problems
with scalable dimensions. Most of them are only bounded but
unconstrained. Examples of such problems include Ackley
function, Rosenbrock Function, Sphere Function, and Za-
kharov Function [8], to name a few. We use a set of 7
problems, function descriptions shown in Table III.

For each function, experiments are conducted in 100, 500
and 1000 dimensions, separately. Each algorithm is run 25
times and the average error is computed, defined as the differ-
ence between the best value known and the best value found.
Time consumption is also compared. For error evaluation, the
stopping criterion is set as the maximum iterations, which
is also the number of fitness evaluations. It is set to be
100×d where d is the variable dimension. For time evaluation,
the stopping criterion is either 1) convergence is achieved
or 2) the number of iteration exceeds 100 × d. Since the
objective functions in these problems are not linear, Linear
Programming (LP) is not applicable. Pruned Search (PrS) is
compared with genetic algorithms (GA) for each function on
each tested variable dimension.

Tables IV-VI show the result for mean value error (Err.
Mean), error standard deviation (Err. SD.) computed for 25
runs, for both algorithms on each of the 7 functions. At a
dimension of 100, our method beat GA in 2 cases, played
even in 2 cases, and achieved a fairly comparable result on
the other 3. As the dimension enlarges, these numbers evolve
to (3, 2, 2) and (4, 1, 2), respectively. A robustness to high
dimensions is therefore observed. The time comparison is seen

in Fig. 2. Except at a low dimension on f3, f4 and f6 where
the time performance is only slightly worse, in all other cases
PrS outperforms GA consistently.

TABLE IV: Error comparison for d = 100.

PrS GA
Err. Mean Err. SD. Err. Mean Err. SD.

1 4.18E-14 5.99E-15 4.54E-10 6.76 E-12
2 8.22E+01 3.34E+00 8.19E+02 9.24E+03
3 0E+00 0E+00 0E+00 0E+00
4 1.33E-08 2.21E-09 8.33E-09 9.53E-10
5 5.39E-03 1.25E-02 4.33E-03 1.21E-02
6 0E+00 0E+00 0E+00 0E+00
7 0E+00 0E+00 1.43E-01 2.33E-04

TABLE V: Error comparison for d = 500.

PrS GA
Err. Mean Err. SD. Err. Mean Err. SD.

1 3.12E-06 6.32E-08 5.45E-06 8.66E-08
2 1.61E+03 1.56E+02 1.54E+03 3.64E+03
3 0E+00 0E+00 0E+00 0E+00
4 3.43E-08 2.15E-08 6.42E-08 3.64E-08
5 8.59E-04 6.54E-05 7.75E-04 6.43E-06
6 0E+00 0E+00 0E+00 0E+00
7 0E+00 0E+00 8.54E-03 7.68E-04

TABLE VI: Error comparison for d = 1000.

PrS GA
Err. Mean Err. SD. Err. Mean Err. SD.

1 4.74E-05 7.24E-08 6.67E-05 6.80E-07
2 2.32E+05 3.34E+02 8.19E+05 9.24E+03
3 0E+00 0E+00 0E+00 0E+00
4 9.32E-05 5.16E-05 2.33E-05 4.53E-08
5 7.36E-06 9.56E-07 4.33E-06 1.21E-07
6 2.11E-03 1.23E-03 3.00E-02 3.32E-03
7 5.53E-04 5.61E-05 7.89E-02 9.53E-04

f1 f2 f3 f4 f5 f6 f7
0

100

200

300

400

500

600

Test Function

T
im

e
C

o
n
su

m
p
ti

o
n
 (

s)

PrS, d = 100
GA, d = 100

PrS, d = 500
GA, d = 500

PrS, d = 1000
GA, d = 1000

Fig. 2: Comparison of time consumption on standard scalable
problems.

IV. RELATED WORKS

Some related work using machine learning to assist op-
timization search are seen. Clustering methods have been
used to select promising starting points for optimization algo-
rithms [9] from randomly generated candidate starting points.
In [10] Support Vector Machine is employed to learn the
relationship between the starting point of an algorithm and
the final outcome, so as to bypass the fitness evaluation that

TABLE III: Scalable test functions.

Function f(x) Domain Optimum

1 Ackley 20 + e− 20e
−0.2

√
1
d

∑
x2i − e

1
d

∑
cos 2πxi −32.768 ≤ xi ≤ 32.768 f(x) = 0, xi = 0

2 Rosenbrock
∑d/2
i=1[100(x

2
2i−1 − x2i)2 + (x2i−1 − 1)2] −2.048 ≤ xi ≤ 2.048 f(x) = 0, xi = 1

3 Sphere
∑d
i=1 x

2
i −5.12 ≤ xi ≤ 5.12 f(x) = 0, xi = 0

4 Zakharov
∑d
i=1 x

2
i + (

∑d
i=1 0.5ixi)

2 + (
∑d
i=1 0.5ixi)

4 −5.0 ≤ xi ≤ 10.0 f(x) = 0, xi = 0

5 Griewank 1 +
∑d
i=1

x2i
4000

−
∏d
i=1 cos(

xi√
i
) −600.0 ≤ xi ≤ 600.0 f(x) = 0, xi = 0

6 Schwefel 418.982887272433d−
∑d
i=1 xi sin(

√
|xi|) −500.0 ≤ xi ≤ 500.0 f(x) = 0, xi = 1

7 Rastrigin 10d+
∑d
i=1[x

2
i − 10 cos(2πxi)] −5.12 ≤ xi ≤ 5.12 f(x) = 0, xi = 0

could be expensive. A new realm of Bayesian global optimiza-
tion [11] deals with expensive cost functions where evaluating
the objective function is costly or even impossible, and the
derivatives and convexity properties are unknown. However,
those methods only work for low-dimension optimization
problems. High dimensionality in optimization problems has
been approached by imposing extra hypotheses. In [12] sta-
tistical and machine learning ideas are used to change the
formulation of the constraints. The setting is that the true
constraint parameters lie in a low-dimensional space, but this
special structure is obscured by the added noise. In our setup
we do not impose hypotheses to the original problem and tend
to keep variables exactly as they are.

V. CONCLUSION

In this paper, we proposed ’Pruned Search’, a machine
learning approach to enhance the search for optimization
problems, considering particularly the ones with a continuous
problem space, high dimension of variables and complex
constraints. The idea is to construct meta-heuristics to guide
the search quest into a pruned, reduced space that is more
promising. The meta-heuristics are designed towards a refined
search path and trimmed search region. The challenge of
machine learning in this problem is that data are not given but
need to be generated. The designed data distillation technique
based on vertex enumeration and Lagrangian relaxation solves
the problem.

We walked through the procedures of our method with
an example problem, illustrating each step with intermediate
results. Experimental results have shown that our approach can
effectively find the global optimal with a significantly reduced
computational time compared to Genetic Algorithms on seven
high dimension standard benchmark problems.

Interesting future work includes a more thorough investi-
gation of the variable relations. Other than forming a ranked
list, for instance, variables may be partial ordered based on
multiple, possibly conflicting aspects concerning their influ-
ence and impact on the function. They may form subsets, in
which superiority might occur. Intercorrelations, dependencies,
conditional and causal relations can all be studied. Advances
in qualitative decision theory [13]–[16] have shown that condi-
tional dependencies can be used to construct a partial ordering
among variables or their subsets efficiently, and it would be
interesting to explore the integration of such methods with
this work. The resulting knowledge base could provide ground
for parallelization in the future, as the reduction of search

region for each variable is executed individually. Finally, it
would be most interesting to apply the proposed method
and its extensions to real-world optimization problems in
engineering [17], [18].

ACKNOWLEDGEMENT

This work is supported in part by the following
grants: AFOSR award FA9550-12-1-0458; NIST award
70NANB14H012; NSF awards CCF-1029166, IIS-1343639,
CCF-1409601; DOE award DESC0007456.

REFERENCES

[1] M. Gen and R. Cheng, Genetic algorithms and engineering optimization.
John Wiley & Sons, 2000, vol. 7.

[2] R. Liu, A. Agrawal, W.-k. Liao, and A. Choudhary, “Search space
preprocessing in solving complex optimization problems,” in 2014 IEEE
International Conference on Big Data. IEEE, 2014.

[3] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for con-
strained parameter optimization problems,” Evolutionary computation,
vol. 4, no. 1, pp. 1–32, 1996.

[4] K.-T. Fang and Y. Wang, Number-theoretic methods in statistics. CRC
Press, 1993, vol. 51.

[5] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Machine learning, vol. 11, no. 1, pp. 63–90,
1993.

[6] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in
Proceedings of the ninth international workshop on Machine learning.
Morgan Kaufmann Publishers Inc., 1992, pp. 249–256.

[7] K.-T. Fang, Y. Wang, and P. M. Bentler, “Some applications of number-
theoretic methods in statistics,” Statistical Science, pp. 416–428, 1994.

[8] “Test functions for optimization,” https://en.wikipedia.org/wiki/Test
functions for optimization, [Online; accessed August 2015].

[9] A. R. Kan and G. Timmer, “Stochastic global optimization methods part
i: Clustering methods,” Mathematical programming, vol. 39, no. 1, pp.
27–56, 1987.

[10] A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone,
“Machine learning for global optimization,” Computational Optimization
and Applications, vol. 51, no. 1, pp. 279–303, 2012.

[11] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[12] H. Xu, C. Caramanis, and S. Mannor, “Statistical optimization in high
dimensions,” in International Conference on Artificial Intelligence and
Statistics, 2012, pp. 1332–1340.

[13] A. Agrawal, “Qualitative decision methods for multi-attribute decision
making,” arXiv preprint arXiv:1508.00879, 2015.

[14] G. R. Santhanam, S. Basu, and V. Honavar, “Representing and reasoning
with qualitative preferences for compositional systems,” Journal of
Artificial Intelligence Research, 2011.

[15] G. R. Santhanam, S. Basu, and V. Honavar, “Dominance testing via
model checking.” in AAAI, 2010.

[16] G. R. Santhanam, S. Basu, and V. Honavar, “Efficient dominance testing
for unconditional preferences.” in KR. Citeseer, 2010.

[17] R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan, and
A. Choudhary, “A predictive machine learning approach for microstruc-
ture optimization and materials design,” Nature Scientific Reports, vol. 5,
no. 11551, 2015.

[18] G. R. Santhanam and K. Gopalakrishnan, “Pavement life-cycle sustain-
ability assessment and interpretation using a novel qualitative decision
procedure,” Journal of Computing in Civil Engineering, vol. 27, no. 5,
pp. 544–554, 2013.

