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Abstract 

Advancements in sequencing technologies have witnessed an exponential rise in the 

number of newly found enzymes. Enzymes are proteins that catalyze bio-chemical 

reactions and play an important role in metabolic pathways. Commonly, function of such 

enzymes is determined by experiments that can be time consuming and costly. Hence, a 

need for a computing method is felt that can distinguish protein enzyme sequences from 

those of non-enzymes and reliably predict the function of the former. To address this 

problem, approaches that cluster enzymes based on their sequence and structural 

similarity have been presented. But, these approaches are known to fail for proteins that 

perform the same function and are dissimilar in their sequence and structure. In this 

article, we present a supervised machine learning model to predict the function class and 

sub-class of enzymes based on a set of 73 sequence-derived features. The functional 

classes are as defined by International Union of Biochemistry and Molecular Biology. 

Using an efficient data mining algorithm called random forest, we construct a top-down 

three layer model where the top layer classifies a query protein sequence as an enzyme or 
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non-enzyme, the second layer predicts the main function class and bottom layer further 

predicts the sub-function class. The model reported overall classification accuracy of 

94.87% for the first level, 87.7% for the second, and 84.25% for the bottom level. Our 

results compare very well with existing methods, and in many cases report better 

performance. Using feature selection methods, we have shown the biological relevance of 

a few of the top rank attributes. 

 

1. Introduction 

Recent advancements in sequencing technologies have seen an exponential growth in 

protein sequences, thus bringing to light new metabolic pathways. For many such newly 

found protein sequences, it is of prime interest to biologists to identify their biological 

function. In a biology lab, scientists conduct expensive and time consuming experiments 

to decipher the function of the sequences. One of the questions they often strive to 

address is whether the query protein is an enzyme or non-enzyme. Enzymes, as we all 

know catalyze biochemical reactions, but they perform this function differently using 

mechanisms depending on their bio-chemical properties. This has lead to the genesis of 

an interesting problem in Bioinformatics, i.e., given a protein sequence, how well can we 

classify it as an enzyme and accurately predict its function? 

In light of the key biological role of enzyme proteins, the Enzyme Commission (EC) of 

the International Union of Biochemistry and Molecular Biology (NC-IUBMB) has 

created a hierarchical classification scheme based on the functional mechanism of 

enzymes [1]. Each enzyme is designated an EC number of the format X.Y.Z.W., where 

‘X’ at the top of this scheme represents one of the six main classes (one-six), each further 

sub-divided to three levels in the hierarchy (Y.Z.W). The six main classes are 
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Oxidoreductases (1), Transferases (2), Hydrolases (3), Lyases (4), Isomerases (5), and 

Ligases (6). Considering the costly experiments scientists conduct to know the enzyme 

mechanism, a need is felt for an automated method that can reliably predict the EC 

function class and thus significantly expedite experimental investigations on the query 

enzyme. 

Enzyme function classification has engaged bioinformaticians for a considerable time 

now resulting in different feature extraction methods to tackle this problem. There are 

three prominent approaches that have been widely experimented with: first, using 

sequence similarity between enzymes belonging to same functional class and second 

protein structure comparison [2, 3]. These methods have been considered inefficient since 

enzymes belonging to same functional class are not necessarily similar in sequence and 

structure [4, 5]. The third approach involves representing enzymes using their sequence 

and structure driven features that do not use similarity. 

Studies that propose methods from the third category of approaches can be found in [6–

10]. Features are chosen such that they capture the bio-chemical characteristics of a 

protein from its protein sequence and are represented in the form of vectors. References 

[6, 7] established that support vector machine (SVM) is useful for protein function 

classification showing accuracy in the range of 84–96%. This study classifies protein 

sequences into classes like RNA-binding, homodimer, drug absorption, drug delivery, 

etc., using feature vectors like amino acids composition, hydrophobicity, polarizability, 

and secondary structure. It thus became clear that classification using sequence features 

and machine learning algorithms can be useful to predict functions of proteins. Reference 

[9] uses 36 features drawn from enzyme protein sequences, and employs a C4.5 classifier 

to build the classification model. This study classified enzymes into one of the six main 

EC classes, achieving precision and recall in the range of 86–92%. Reference [10] uses 
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features to represent subtle distinctions in local regions of sequence along with features 

as used in [9]. It applies SVM to predict the main class and reports accuracy in the range 

of 66.02–90.78%. 

There have been efforts to predict the enzyme function to the sub-class level as well. 

Reference [8] uses amino acid compositions derived from sequence and employs the 

covariant discriminant algorithm to classify oxidoreductases (enzymes belonging to class 

1) into their sub-class. Although the results are promising, this study is limited only to the 

scope of oxidoreductases. Reference [11] introduces a technique that uses protein 

sequences to compute their functional domain and PSSM matrix. It proposes a three-layer 

predictor model built using the optimized evidence-theoretic k-nearest neighbor classifier, 

to predict enzyme main and sub-functional class. This study does not use sequence 

features and achieves an overall accuracy close to 90%. 

In this article, we present a new approach to predict enzyme function class and sub-class 

using random forest. Random forest is an ensemble-based classification and regression 

algorithm, considered unsurpassable in accuracy among current data mining algorithms 

[12]. Random forest algorithms have been applied extensively in different applications 

ranging from network intrusion detection [12], probability estimation [13], information 

retrieval, and until recently in bioinformatics [14]. Our method is based on a three-tier 

predicting model which when given a query protein sequence, first classifies it into an 

enzyme or non-enzyme, and if an enzyme it predicts the main EC function class and sub-

class. To the best of authors’ knowledge, this is the first article that explores the use of 

random forest to this particular problem. Using a unique set of sequence-driven features 

extracted with the aid of online tools, our model reports an overall accuracy of 94.87% 

for the first level, 87.7% for the second, and 84.25% for the bottom level. We also report 

results from a direct single-step model to predict EC sub-class, which obtained an overall 
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accuracy of 87%. The sequence features used in our study contain the dayhoffstat value 

for each of 20 amino acids, which is a unique aspect of this feature set. We find that the 

dayhoffstat features appear in the list of top ranked attributes thus suggesting that they are 

important to improving classification accuracy. We also provide an analysis of one of the 

top ranked features, composition of Cysteine in enzyme sequences. 

 

2. Materials and methods 

2.1. Random forest 

Random forest is a classification algorithm developed by Leo Breiman that uses an 

ensemble of classification trees [14]. Each of the classification trees is built using a 

bootstrap sample of the data. At every node of the tree, a candidate set of features 

selected from a random sub-set of the entire feature set is used to calculate the feature 

with the highest information gain. This strategy turns out to perform very well as 

compared to many other classifiers, including discriminant analysis, SVMs, and neural 

networks [14]. Thus, random forest uses both bagging (a successful approach for 

combining unstable learners) and random variable selection for tree building. Once the 

forest is formed, every tree classifies the instances by voting for a particular class. The 

class that gets maximum votes is chosen as the final classification. Random forest has 

several characteristics that make it well suited for enzyme function classification: (a) It 

runs efficiently on large datasets with many features and does not require for data to be 

normalized. (b) It can handle missing values. (c) Because many trees are built and each 

tree is effectively an independent model, the model tends not to over-fit to the training 

dataset. 



 - 6 - 

The error rate of a random forest depends on the correlation between any two trees and 

the strength of each tree in the forest [12]. The random variable selection procedure 

applied at every split of the classification trees contributes to the low correlation between 

the individual trees. The strength of the tree is determined by the error rate of the tree. 

Reducing the correlation between the trees and increasing the strength of each tree can 

decrease the overall error rate of the forest. The two parameters that can help achieve this 

are: mtry, size of random sub-set of features, and ntree, the number of trees in the forest. 

Random forest error is measured in terms of out-of-bag (OOB) estimate [15]. Increasing 

ntree reduces the OOB error rate of the forest as it decreases the correlation between 

individual trees and the possibilities of over-fitting. mtry should be a value much smaller 

than the total number of features. In most cases, an optimum value between ntree and 

mtry results in the lowest OOB error and higher accuracy. 

To improve the classification accuracy, we have optimized the parameter values at every 

level of the model. In this article, we also present results obtained using a direct single-

step model, in which a model built using random forest is trained on enzymes labeled 

with their sub-classes and tested on an independent set. The architecture of the two 

models is explained in the next section. 

 

2.2. Model description 

In this article, we focus on the three-tier top-down model to predict enzyme function till 

the sub-class level and also share results from a direct one-step approach to predict the 

same. The former model comprises of three layers: the first layer classifies enzymes and 

non-enzymes, the second predicts the main function class of the classified enzymes and 

the third layer predicts their sub-class. Each of the three layers is built using a random 
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forest classifier with parameter values optimized to achieve highest accuracy possible. 

Figure 1 illustrates the design of the model with optimized parameter values at each level. 

A diagram showing different components of the three-tier model. The first level classifies 

enzymes from non-enzymes. This model has been trained using a random forest with 

parameter values mtry = 25 and ntree = 200. Level 2 classifies enzymes into their main 

function class, while level three classifies the enzymes whose main class is predicted in 

level 2, into the sub-classes. There are six classifiers in level 3, each for the 

corresponding main class. The level three classifier is built using a random forest with 

parameter values identical to level 2, i.e., mtry = 7 and ntree = 200. 

The second of the two models is a direct one-step approach to predict the sub-class 

function level (see Figure 2). This model was built by training random forest using 

instances of enzymes labeled with their sub-class. Once, the parameter values were 

optimized, the model was tested on an independent test set. Later sections discuss the 

comparison of results from the two approaches discussed above. 

This model uses a query enzyme sequence and directly classifies into the sub-class. This 

model has been built using a random forest classifier with optimized parameter values, 

mtry = 7 and ntree = 200. These values correspond to the minimum OOB error rate 

obtained using this classifier. 

 

2.3. Sequence extraction 

We extracted protein sequences of enzymes from the enzyme repository of SWISS-

PROT database [16]. Research in machine learning has proved that imbalance in class 

size can be an obstacle in building an accurately predicting model [17]. Hence, the 

number of sequences extracted from every main class was kept well balanced. Since, 

each main class has many sub-classes, we randomly extracted sequences such that they 
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are well distributed over the latter. The next step was to remove identical sequences 

present in each main class. For this, we used CD-HIT, a program that removes redundant 

sequences, given a sequence identity threshold, which we set to 100% [18]. Table 1 

summarizes the distribution of sequences across all the main classes and sub-classes. We 

selected sequences from only those sub-classes that contained significant number of 

sequences (>200 sequences). The third column represents the sequences after removing 

all identical sequences. 

 

2.4. Feature representation 

To extract sequence-derived features, we used two online tools, EMBOSS-PEPSTAT: an 

online tool that generates a list of 61 feature values for a given sequence [19], and 

ProtParams: an online tool that computes values for 36 sequence features [20]. 

PEPSTATS generates values for features such as molecular weight, iso-electric point, 

amino acid composition, aliphatic amino acids, molar compositions of aromatic, polar, 

non-polar, charged, basic, and acidic amino acids. A unique aspect of this tool is that it 

provides the dayhoffstat value for every amino acid present in the sequence. As defined 

by EMBOSS, dayhoffstat is the amino acid’s molar percentage divided by the dayhoff 

statistic. The dayhoff statistic is the amino acid’s relative occurrence per 1000 amino 

acids normalized to 100 [19]. ProtParams, on the other hand, does not compute 

dayhoffstat values. However, it provides for feature values such as number of negatively 

or positively charged residues, number of carbon, hydrogen, nitrogen, oxygen and sulfur 

atoms, GRAVY, theoretical-pI, and aliphatic index. The use of these features is well 

reasoned and motivated in previous studies [21, 22]. From our experiments, we find that 

a union of the features of ProtParams and PEPSTATS delivers better accuracy in 

comparison to using only one of the two feature sets. Figure 3 presents a comparison of 
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the OOB error and accuracy for three cases obtained using a random forest classifier with 

default settings (mtry = 7, ntree = 10). Unique features from both tools such as 

dayhoffstat and number of carbon atoms play a significant role in enhancing the 

classification accuracy. This is corroborated by the fact that they appear in our analysis of 

the top predicting attributes (Figure 4). 

The classifier used is random forest with parameter values, i.e., ntree = 10, mtry = 7. 

PepStats, an online sequence analysis tool, computes values for 61 sequence features, 

while ProtParams computes for 36 features. The classification result obtained after taking 

a union of the features from the two tools is shown in the third bar. Some of the features 

that are unique to each tool help in improving the accuracy and reducing OOB error. 

 

2.5. Dataset preparation and tools used 

We selected a total of 2400 non-enzyme sequences and 4731 enzyme sequences. For 

level 1 experiment, we randomly selected 2400 enzyme sequences against an identical 

number of non-enzyme sequences. For levels 2 and 3 experiments, we divided the 4731 

enzymes equally into training and test data, each containing 2366 and 2365 instances, 

respectively. The distribution of sequences across different classes was kept equivalent in 

both test and train data, as can be seen from Table 1. We did not normalize the feature 

values. WEKA, a widely used open source tool in machine learning was used to carry out 

all experiments [23]. We used Rattle, to perform feature selection using variable 

importance method [24]. 
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3. Results 

3.1. Results from experiments using model 1 

First, experiments were carried out with different classifiers to identify the best classifier 

for our dataset. We carried out tenfold cross-validation experiments between LibSVM 

[25], NaiveBayes, C4.5 [26], and Random Forest, with default settings and parameters 

for all, as set by Weka. The experiment was performed at level-2, i.e., to predict the main 

class of the enzymes. Figure 5 illustrates the area under the ROC curve for the four 

different classifiers. Random forest out-performed all the remaining classifiers by 

recording the highest area under the curve. 

Figure 5 plots the area unde the ROC curve reported after running Weka on the different 

classifiers. The experiment was performed on enzyme sequences to predict their main 

class. Random forest recorded the highest area as compared to LibSVM, Naïve Bayes 

and C4.5. 

 

3.2. Level 1: enzyme | non-enzyme classification 

Level 1 of the model classifies enzyme protein sequences from non-enzyme protein 

sequences. We performed tenfold cross-validation experiments on a dataset containing 

values for all 73 features extracted from 2400 enzyme and non-enzyme protein 

sequences, a total of 4800 sequences. We first sought to optimize the two random forest 

parameters, ntree and mtry. Figure 6 provides OOB error estimates for varying values of 

ntree and mtry. 
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This graph shows OOB error obtained for different runs of the random forest classifier 

during its training phase. As the values of mtry and ntree are changed, the OOB error also 

varies. With increasing mtry and ntree, the error appears to decline till a certain value of 

mtry, i.e., 25 is reached. Hence, mtry = 25 and ntree = 200 are selected as values for the 

parameters for the level 1 classifier. 

 

The least OOB error is obtained when ntree = 200 and mtry = 25. We anchor these 

parameter values for level 1 classifier. Table 2 summarizes the results obtained from a 

tenfold cross-validation experiment. The overall accuracy obtained is 94.87%, with an 

OOB error of 0.056. This result compares quite favorably with other articles [11, 27] that 

report an overall accuracy of approximately 75% (using neural network) and 91.3%, 

respectively. 

 

3.3. Level 2: enzyme main function class classification 

Using a training and test data consisting of 2366 and 2365 instances, respectively, the 

second layer in the model classifies the test set of enzyme sequences into one of the six 

EC main function classes. We carried out several runs of the random forest classifier to 

obtain the optimal values of ntree and mtry, the results of which are shown as a graph in 

Figure 7. As can be seen in the figure, the lowest OOB error (approx. 0.117) is obtained 

when ntree = 200 and mtry = 7, respectively. Table 3 summarizes the classification 

results from level 2 classifier built using these parameter values. 



 - 12 - 

Figure 7 shows OOB error obtained from different runs during training phase of the level 

2 random forest classifier. The least value of OOB error is obtained when mtry = 7 and 

ntree = 200. Hence, these values are selected for the parameters for the level 2 classifier. 

The overall classification accuracy achieved was 87.7%, with 2074 enzymes being 

correctly classified into their main function class out of a total of 2365 instances. This 

accuracy has been attained by a combination of 73 sequence driven features (union of 

PepStats and ProtParams features) and random forest classifier with optimal parameter 

values. In comparison to [9] that applies features from ProtParams and [10] which uses 

those from PepStats, respectively, this is a significant improvement in accuracy. Further, 

the dataset used in this study comprises of a total of 4731 enzyme sequences spread over 

39 sub-classes. The dataset used in [9] contains 780 enzymes spread over 18 sub-classes. 

Random forest achieves a higher accuracy despite a wider distribution of enzyme 

proteins. These results substantiate the application of random forest to classification 

problems in bio-informatics. 

Using random forest, we also carried out tenfold cross-validation experiments on all of 

the 4731 sequences with mtry = 7 and ntree = 200. We found 4171 or 88.16% of the 

sequences to be correctly classified into their main enzyme class, with an overall root 

mean squared error of 0.1992. Table 4 summarizes the results from this experiment. 

The next step is to predict the sub-class for the enzymes. To do this, first we collected the 

enzymes classified into their respective main classes, into different files. For example, we 

took all enzymes classified as belonging to class 1, and used them as a test dataset for the 

level three classifier. We repeated this process for all six classes. The six level three 

classifiers were trained using corresponding main class instances from level two training 

data. As an illustration, the level three, sub-class 1 classifier was trained using main class 
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1 instances that were used for level two training, but are now labeled with their 

corresponding sub-class. 

 

3.4. Level 3: enzyme sub-class function classification 

In level three of the model, we classify enzymes whose main class has been predicted, 

into the sub-class that they might belong to. There are six random forest classifiers in this 

stage, each to predict the sub-class for enzymes under the corresponding main class. We 

used the same parameter values as used in level two for all six classifiers of level three, 

i.e., ntree = 200 and mtry = 7. This is because we did not see a big difference in OOB 

error even after varying values of mtry between 5 and 25. 

The level two classifier also generates false positives, as shown in Table 3. If we consider 

class 1 only, false positives here are the enzymes that are classified as class 1 but actually 

belong to other classes like 2 or 3. As a result, as an example enzymes might get wrongly 

assigned a sub-class label of 1.2, which in reality is 2.2. Hence, we need to account for 

false positives as errors while reporting the classification accuracy of level three. Table 4 

carries a column titled carry over false positives. These are the enzymes wrongly 

predicted as belonging to the respective main class. For class 1, there are 57 such 

enzymes that we need to account and distribute across the sub-classes of class 1. We 

factor the number of carry over false positives by the number of test sequences in each 

sub-class. For instance, sub-class 1.1 has 81 enzymes while 1.16 has 35 enzymes, hence 

number of carry over false positives to 1.1 is twice that for 1.16, i.e., 10 and 5, 

respectively. We calculate new values for precision by the addition f carry over false 

positives and false positives reported in the experiment. The formula we use is as 

follows: 
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vesalsePositiCarryOverFivesFalsePositesTruePositv

esTruePositv
Precision

++
=  

 

False negatives are instances of class 1, for example, that get wrongly classified as being 

in class 3, and hence the sub-class will also be wrongly identified, say 3.1 instead of 1.2. 

Just like precision, we calculate new values for recall that take into account the false 

negatives generated in level two. New recall values are calculated using the formula 

given below: 

 

vesalseNegatiCarryOverFivesFalseNegatesTruePositv

esTruePositv
Recall

++
=  

 

Table 5 and Figure 8 provide a quantitative estimate of the performance of random forest 

in predicting the sub-class of the enzymes. The overall precision and recall when we do 

not account for carry over false positives and false negatives is 95.67 and 95.34%, 

respectively, and after incorporating these errors, the overall precision and recall falls to 

83.01 and 82.67%, respectively. Precision and recall across all sub-classes ranges from 

74.07 to 91.19% and 57.5 to 100%, respectively. From the results, we can deduce that at 

level 2, if the classifier correctly predicts the main class, there is 95% probability that 

level three will correctly identify the sub-class. However, if it does not predict the main 

class correctly, this probability drops to 83%. This deduction is also established by the 

correlation between the ROC area for the main class and the corresponding sub-classes. 

From Table 3, we can see that the ROC Area is highest for class 6 and lowest for class 2. 

When we look at the ROC area for their corresponding sub-classes, in Table 5, we notice 

that the sub-classes of class 6 have higher ROC area as compared to sub-classes of class 

6. Summarizing the results, it is clear that the three layer model has achieved highly 
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promising results, with the capability to correctly predict till the sub-class level with 83% 

accuracy. 

Precision and recall for most sub-classes is around similar range, besides seven sub-

classes that have a higher recall. Minimum precision is 74.07% (sub-class 3.7) while 

minimum recall is 57.05% (sub-class 2.3). 

3.5. Results from experiments using model 2 

Model 2 (see Figure 2) is a direct single step approach to predicting the sub-class of 

enzymes. As in previous cases, we first sought to find optimal values of the random 

forest parameters. We carried out a tenfold cross-validation experiment. The random 

forest classifier reports the lowest OOB error when mtry = 5 and ntree = 200 (see 

Figure 9). Using these values, the results from the experiment are summarised in Table 6. 

Figure 9 shows OOB error obtained from different runs of the random forest classifier 

during training phase. The least value of OOB error is obtained when mtry = 5 and ntree 

= 200. 

The overall precision and recall obtained using Model 2 is 87.35 and 86.74%. Precision 

ranges from 60.94 to 95.24% while recall lies in the ranges 48.75–99.52%. We also 

tested model 2 by introducing 784 non-enzyme sequences into the dataset. For this, we 

conducted another tenfold cross-validation experiment using the same values for mtry 

and ntree, 5 and 200, respectively. Random forest correctly classified 86% of the 

sequences, where the precision and recall of the non-enzyme class was 87.4 and 86.6%, 

respectively. This is lower than the results from level-1 of model-1 which reported 

around 94% accuracy. 
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4. Discussion 

Although both models 1 and 2 report promising results, comparing favorably well with 

other published studies [8–11], the precision and recall obtained using model 2 (87.35 

and 86.74%, respectively) is higher in comparison to model 1. If we only look at the 

minimum precision and recall values, model 2 reports 60.94 and 48.75%, respectively, 

both for sub-class 2.3. Through model 1, the precision for the same class 2.3 is 85.2% 

while recall is 57.5%. Model 1 has the advantage that if we only consider the instances 

whose main class is predicted correctly, the precision for predicting the sub-class is very 

high, almost 95%. This result leads us to reliably conclude that the set of features 

extracted from enzyme protein sequences capture rich information about the functional 

mechanism of the enzyme, down to the sub-class level. Further, model 1 is designed with 

the objective of segregating enzymes from non-enzymes, and subsequently predicting 

main and sub-class of the enzymes. It can hence be applied to any generic sequence. This 

could be helpful to biologists for they would first want to know whether a query protein 

sequence is an enzyme or not. Model 2 on the other hand proves to be more effective to 

sequences that are already known to be enzymes. 

 

5. Ranking attributes 

In a classification problem, ranking the features is often of interest as it tells us which 

features are strong predictors. Reference [17] has indicated that it is possible not all 

features from a protein sequence are strong predictors and hence many might contribute 

to noise. In random forest, importance of features is computed using a method called 

variable importance [15]. This method provides two indices to quantify which features 

are most informative, i.e., exhibit strong characteristics associated with enzyme function 
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classes: mean decrease in accuracy and the gini index. Mean decrease in accuracy is 

considered more reliable and accurate than the gini index [12]. Hence, we used the 

former to report the strong predictors. Since WEKA does not provide the variable 

importance feature for random forest as yet, we used Rattle for this purpose, a data 

mining tool developed by Dr Graham Williams [24]. The experiment we performed was 

to compute the top predicting attributes for the enzyme main class by way of tenfold 

cross validation. Figure 4 lists the top features computed by the variable importance 

method. 

Figure 4 shows the top predicting attributes in decreasing order of accuracy. CMole 

represents the Cysteine percentage composition in the protein sequences. MoltWt is the 

molecular weight. HDayhoffStat is dayhoffstat value for Histidine in the enzyme protein 

sequences. 

From the figure we can see that Cysteine amino acid (CMole) has the highest prediction 

accuracy, followed by molecular weight and amino acid number. A box plot diagram in 

Figure 10 provides the relative distribution of cysteines in the six main function classes. 

Sequences that belong to class 3, i.e., hydrolases have the highest median composition of 

cysteines and highest upper quartile value. We verified this information with published 

studies and found that studies carried out in [28] report high conservation of cysteines in 

glycosyl hydrolase family, which are enzymes from class 3. Reference [29] has analyzed 

proteins from this family and also reports high cysteine conservation in glycoside 

hydrolases. Hence, results from this experiment might indicate that composition of 

cysteines is higher in hydrolases. This would however need to be validated and verified 

with biological experiments. 

Figure 10 showing class 3, i.e., Hydrolases to have the highest median and upper quartile 

percentage composition of Cysteines. 
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We also noted the top predicting attributes for enzyme versus non-enzyme classification 

and sub-class level classification. First, for the enzyme versus non-enzyme classification: 

CMole was not quite the top predicting attribute, although its Mean Decrease Accuracy 

figure was about the same (0.26). Molecular weight (MolWt.) was the top predicting 

attribute for this experiment, with a mean decrease accuracy of 0.36. Next, for the 

enzyme sub-class level classification: CMole, AminoAcidNumber and MolWt were 

amongst the top four predictors, with the mean decrease accuracy ranging between 0.32 

and 0.33. 

6. Conclusions 

Enzyme function classification is a challenging problem, and sequence features alone will 

not be enough to accurately predict enzymatic mechanisms. However, using a unique set 

of features extracted from sequence and an efficient classifier, random forest, we have 

demonstrated that sequence features do capture rich bio-chemical information about an 

enzyme and if coupled with structural characteristics, can contribute to a more robust and 

accurately predicting model. By using 73 different features extracted using EMBOSS 

PEPSTAT and ProtParams tool, we have tried to highlight how existing tools can be re-

used and extended to address interesting problems in Bioinformatics. The results from the 

experiments demonstrate the useful application of random forest for multi-class problems 

like enzyme function classification. The random forest classifier achieved a high 

accuracy on a widely distributed and reasonably large dataset. Further, our analysis of top 

rank features suggests that percentage composition of cysteines can be important in 

enzyme function classification. The datasets are available online for other groups to 

experiment and could prove to be useful for extracting interesting information about 

enzymes, especially with regard to the features that we have used. 
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Table 1. Distribution of sequences across different classes in training and test data 

combined together. 

Class Sub-classes Number of sequences 

1 Oxidoreductases 1.1, 1.2, 1.3, 1.4, 1.5, 1.10, 1.16 986 

2 Transferases 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 734 

3 Hydrolases 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.11 674 

4 Lyases 4.1, 4.2, 4.3, 4.4, 4.6, 4.99 828 

5 Isomerases 5.1, 5.2, 5.3, 5.4, 5.5 664 

6 Ligases 6.1, 6.2, 6.3, 6.4 845 

The sequences extracted from SWISS-PROT enzyme database are spread over a total of 

40 sub-classes. Sequences have been extracted from the sub-classes having the largest 

bank of sequences. The number of sequences shown represent sequences with 100% 

reduced identity. 
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Table 2. Tenfold cross-validation results obtained from experiment to classify 

enzyme and non-enzyme protein sequences 

Protein type Sequences Correctly predicted Precision Recall Accuracy 

Enzyme 2399 2287 94.50% 95.30% 95.33% 

Non – Enzyme 2399 2265 95.30% 94.40% 94.41% 

Overall 4798 4552 - - 94.87% 

 

Table 3. Classification results on test data for main enzyme class classification using 

level 2 classifier 

Class 

Total 

enzymes 

True 

positive 

False 

positive 

Precision 

(%) 

Recall 

(%) 

ROC 

area 

1 493 436 57 88.40 88.40 0.94 

2 367 302 49 86 82.30 0.92 

3 337 297 66 81.80 88.10 0.95 

4 414 371 53 87.50 89.60 0.95 

5 332 281 32 89.80 84.60 0.94 

6 422 387 34 91.90 91.70 0.96 

Overall 2365 2074 291 87.70 87.70 0.94 

 

Table 4. Results of tenfold cross-validation experiment performed using Model 1 to 

predict main enzyme class 

Class Total 

sequences 

True 

positive 

False positive Precision 

rate (%) 

Recall 

(%) 
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1 986 878 115 88.40 88.70 

2 734 602 95 86.40 84.10 

3 674 610 124 83.10 86.60 

4 828 737 81 90.10 89.60 

5 664 558 75 88.20 86 

6 845 786 70 91.80 92.40 

Overall 4731 4171 560 88.20 88.20 

 

Table 5. Level 3 classification results for sub-classes of all six main classes 

Class Size 

False 

positiv

es 

Carry 

over 

false 

positive

s 

Precisi

on 

New 

precisi

on 

Recal

l 

Carry 

over 

false 

negative

s 

New 

recall 

RO

C 

are

a 

1.1 81 4 10 95.06 84.61 95.1 15 80.20 

0.9

6 

1.2 81 5 10 93.98 83.87 96.3 10 85.71 

0.9

6 

1.3 81 7 10 91.76 82.11 96.3 7 88.63 

0.9

9 

1.4 81 2 10 97.44 86.36 93.8 6 87.35 

0.9

6 

1.5 34 3 5 91.18 79.48 91.2 14 64.58 

0.8

9 
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1.10 43 0 7 100 86 100 1 97.72 

0.9

8 

1.16 35 0 5 100 86.48 91.4 4 82.05 

0.9

8 

2.1 38 0 6 100 86 97.37 10 77.08 

0.9

6 

2.2 45 0 7 100 86.5 100 0 

100.0

0 

0.9

7 

2.3 23 0 4 100 85.2 100 17 57.50 

0.9

6 

2.4 44 1 7 97.73 84.3 97.72 6 86.00 

0.9

9 

2.5 43 4 7 91.49 79.6 100 6 87.75 

0.9

8 

2.6 36 3 6 91.89 79.1 94.44 13 69.38 

0.9

5 

2.7 36 1 6 96.77 81.1 83.33 3 76.92 

0.9

4 

2.8 37 4 6 89.47 77.3 91.89 8 75.55 

0.8

9 

3.1 35 1 8 96.97 78.05 91.43 8 74.41 

0.9

7 

3.2 45 2 10 95.74 78.95 100  

100.0

0 

0.9

5 

3.3 34 1 8 96.97 78.05 94.18 11 71.11 0.9
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4 

3.4 46 2 10 95.56 78.18 93.48 3 87.75 

0.9

3 

3.5 42 0 10 100 79.17 90.48 4 82.60 

0.9

7 

3.6 44 3 10 93.62 77.2 100 2 95.65 

0.9

7 

3.7 20 3 4 86.96 74.07 100 6 76.92 

0.9

2 

3.8 13 1 2 92.31 80 92.3 5 66.66 

0.9

0 

3.11 18 1 4 94.44 77.27 94.45   94.44 

0.9

7 

4.1 76 4 11 94.87 83.15 97.37 12 84.09 

0.9

9 

4.2 78 4 11 95 83.51 97.44 15 81.72 

0.9

8 

4.3 90 4 13 95.7 83.97 98.89 1 97.80 

0.9

7 

4.4 41 1 6 97.37 84.09 90.24 5 80.43 

0.9

7 

4.6 42 2 6 94.87 82.22 88.1 7 75.51 

0.9

6 

4.99 43 2 6 95.24 83.33 93.02 3 86.95 

0.9

7 
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5.1 83 2 10 97.59 87.1 97.6 8 89.01 

0.9

8 

5.2 39 1 4 97.5 88.63 100 9 81.25 

0.9

9 

5.3 78 1 8 98.73 89.65 100 16 82.97 

1.0

0 

5.4 40 2 5 94.87 84.1 92.5 9 75.51 

0.9

7 

5.5 40 0 5 100 88.63 97.5 9 79.59 

0.9

8 

6.1 207 2 18 99.04 91.19 100 1 99.51 

1.0

0 

6.2 73 1 6 98.61 91.02 97.26 19 77.17 

0.9

8 

6.3 72 3 6 95.65 88 91.67 13 77.64 

0.9

5 

6.4 35 5 3 86.49 80 91.43 1 88.88 

0.9

4 

Overa

ll 

207

2 

82 290 95.67 83.01 95.34 287 

82.67

0 

0.9

6 

Carry over false positives and negatives from level two classifier experiments are taken 

into account while calculating precision and recall in level three. The distribution of the 

carry over false positives is factored by the number of test sequences in the respective 

sub-classes, in order to conserve the sequence distribution 
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Table 6. Performance of random forest classifier using Model 2, direct sub-class 

classification approach 

Class label Instances True positive Precision (%) Recall (%) 

1.1 192 157 83.51 81.77 

1.10 88 87 93.55 98.86 

1.16 74 65 89.04 87.84 

1.2 179 169 88.02 94.41 

1.3 176 162 94.74 92.05 

1.4 175 162 94.74 92.57 

1.5 97 78 81.25 80.41 

2.1 96 80 95.24 83.33 

2.2 91 90 70.87 98.9 

2.3 80 39 60.94 48.75 

2.4 98 83 91.21 84.69 

2.5 97 86 88.66 88.66 

2.6 96 82 82.83 85.42 

2.7 110 68 93.15 61.82 

2.8 93 74 94.87 79.57 

3.1 87 71 77.17 81.61 

3.11 36 33 80.49 91.67 

3.2 89 85 86.73 95.51 

3.3 87 76 87.36 87.36 

3.4 95 86 94.51 90.53 

3.5 91 85 91.4 93.41 

3.6 92 88 92.63 95.65 
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3.7 55 43 91.49 78.18 

3.8 36 31 79.49 86.11 

4.1 172 159 90.34 92.44 

4.2 185 147 89.63 79.46 

4.3 183 180 91.84 98.36 

4.4 91 77 91.67 84.62 

4.6 97 85 91.4 87.63 

4.99 93 87 92.55 93.55 

5.1 179 168 85.28 93.85 

5.2 96 86 83.5 89.58 

5.3 188 154 84.15 81.91 

5.4 98 77 92.77 78.57 

5.5 99 84 85.71 84.85 

6.1 418 416 93.91 99.52 

6.2 183 156 81.68 85.25 

6.3 170 151 87.79 88.82 

6.4 82 70 80.46 85.37 

Overall 4748 4190 87.35 86.74 

 

Figure 1. A flowchart diagram of the three-tier top down model (Model 1). 

Figure 2. A flowchart diagram of direct sub-class level prediction model (Model 2). 

Figure 3. Accuracy and OOB error obtained using features from PepStats, 

ProtParams and combined features from the two tools. 
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Figure 4. Mean decrease accuracy of top attributes for predicting main class of 

enzymes, computed using variable importance.Model 2 random forest classifier 

OOB error for different ntree and mtry values. 

Figure 5. Area under the ROC curve for different classifiers to predict enzyme main 

class. 

Figure 6. Level 1 OOB error for different values of mtry and ntree. 

Figure 7. Level 2 OOB error for different values of mtry and ntree. 

Figure 8. Graph showing precision and recall for all sub-classes obtained using level 

3 random forest classifier. 

Figure 9. Model 2 random forest classifier OOB error for different ntree and mtry 

values. 

Figure 10. Box plot diagram showing distribution of cysteines across the six main 

enzyme function classes. 



Figure 1 Î A flowchart diagram of the three-tier top down model (Model 1). 
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