
A Loop Transformation Algorithm Based on

Explicit Data Layout Representation for
Optimizing Locality�

M. Kandemir1, J. Ramanujam2, A. Choudhary1, and P. Banerjee1

1 ECE Dept., Northwestern University,
Evanston, IL 60208, USA

{mtk,choudhar,banerjee}@ece.nwu.edu
2 ECE Dept., Louisiana State University,

Baton Rouge, LA 70803, USA
jxr@ee.lsu.edu

Abstract. We present a cache locality optimization technique that can
optimize a loop nest even if the arrays referenced have different layouts
in memory. Such a capability is required for a global locality optimiza-
tion framework that applies both loop and data transformations to a
sequence of loop nests for optimizing locality. Our method finds a non-
singular iteration-space transformation matrix such that in a given loop
nest spatial locality is exploited in the innermost loops where it is most
useful. The method builds inverse of a non-singular transformation ma-
trix column-by-column starting from the rightmost column. In addition,
our approach can work in those cases where the data layouts of a subset of
the referenced arrays is unknown. Experimental results on an 8-processor
SGI Origin 2000 show that our technique reduces execution times by up
to 72%.

1 Introduction

As the disparity between processor and memory speeds increases, it is increas-
ingly important to restructure programs so that the time spent in accessing or
waiting for memory will be minimized. Previous research has shown that impres-
sive speedups can be obtained if the programs are restructured to take advantage
of the memory hierarchy by satisfying as many data references as possible from
the cache instead of the main memory. Along these lines, several restructuring
techniques have been offered including loop (iteration space) as well as array
layout (data space) transformations [9,8,13]. The basic idea is to modify the ac-
cess pattern of the program such that the data brought into cache is reused as
much as possible before being discarded from the cache.
� M. Kandemir and A. Choudhary were supported by NSF Young Investigator Award
CCR-9357840, NSF grant CCR-9509143 and Air Force contract F30602-97-C-0026.
J. Ramanujam was supported by NSF Young Investigator Award CCR-9457768.
P. Banerjee was supported by NSF grant CCR-9526325 and by DARPA contract
DABT-63-97-C-0035.

S. Chatterjee (Ed.): LCPC’98, LNCS 1656, pp. 34–50, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Loop Transformation Algorithm 35

do i = 1, N
do j = 1, N
U[i+j,j] = U[j,j] + U[j,i+j]

+ V[i,i+j]
end do
end do

do i = 1, N
do j = 1, N
U[i,i-j] = V[i,i-j] + 1

end do
end do

(a)

do u = 1, N
do v = 1, N
U[u+v,v] = U[v,v] + U[v,u+v]

+ V[u,u+v]
end do

end do

do u = 1-N, N+1
do v = max(1,1-u), min(N,N-u)
U[u+v,v] = V[u,u+v] + 1

end do
end do

(b)

Fig. 1. (a) Original program. (b) Transformed program.
The transformed program exhibits good spatial locality provided that array U
has diagonal memory layout and array V is row-major.

Loop transformations Consider an array reference U [i, j] in a two-deep loop
nest where the outermost loop is i and the inner loop is j. Assuming that the
array U is stored in memory in column-major order and that the trip counts N of
the enclosing loops are very large, successive iterations of the j-loop will touch
different columns of array U which will very likely get mapped onto different
cache lines. Let us focus on a specific cache line that holds the initial part of a
given column. Before that column is accessed again, the j-loop sweeps through
N different values; so, it is very likely that this cache line will be discarded
from the cache. Consequently, in the worst case, every memory access to array
U may involve a data transfer between the cache and memory resulting in high
latencies. A solution to this problem is to interchange the loops i and j, making
the i-loop innermost. As a result, a cache line brought into memory will be
reused in a number of successive iterations of the i-loop, provided that the cache
line is large enough to hold a number of array elements. Previous research on
optimizing compilers [13,8,9,14] has proposed algorithms to detect and perform
this loop interchange transformation automatically.

Data transformations Alternately, the same problem can be tackled by a
technique called data transformation or array restructuring. It is easy to see that
if the memory layout of array U mentioned above is changed from column-major
to row-major, the successive iterations of the j-loop can reuse the data in the
cache. Recently, several authors [10,2,7,5] have proposed data transformation
techniques. Although these are promising because they are not affected by data
dependences, the effect of a layout transformation is global, meaning that it
effects the cache behavior of all loop nests that access the array assuming a
fixed layout for each array. In this paper, we consider the possibility of different
arrays with different layouts. Therefore, in a general case, given a loop nest, the
compiler is faced with finding an appropriate loop transformation assuming that

36 M. Kandemir et al.

the arrays in the nest may have different—perhaps unspecified—layouts; current
techniques are unable to handle this.

Combined data and loop transformations Consider the code fragment in
Fig. 1(a), assuming that the arrays U and V are column-major by default. In
this fragment, there are two disjoint loop nests with different access patterns.
The first loop nest accesses array U diagonally and array V as row-major. The
second loop nest accesses both arrays as row-major. Due to data dependence
and conflicting access patterns of the arrays, the first loop nest cannot be opti-
mized for locality of both arrays using the iteration space transformations alone.
Using data layout transformations [4], we can determine that array U should
be diagonally stored in memory and array V should be row-major. Now having
optimized the first loop nest, we focus on the second loop nest. A simple analy-
sis shows that for the best locality either the loops should be interchanged and
the arrays should be stored diagonally in memory, or both the arrays should
have row-major layout without any loop transformation. We note that neither
of these solutions is satisfactory. The reason is that the layout of U is fixed as
diagonal and that of array V as row-major in the first loop nest. Since we do
not consider layout changes, accesses to one of the arrays in the second loop nest
remain unoptimized in either case. One suggestion may be to use loop skewing
[14] in the second loop nest, but this results in poor locality for array V. What
we need for this second loop nest is a loop transformation which optimizes both
the references under the assumption that the memory layout of the associated
arrays are distinct: one of them is diagonal and the other one is row-major, as
found in the first nest. This paper shows that such a transformation is possi-
ble. The resulting code is shown in Fig. 1(b). Notice that this program exhibits
very good locality assuming that array U has diagonal layout and array V is
row-major. Notice also that this optimized code requires the derived layouts for
arrays U and V. The transformation that implements the desired layouts for
arrays is rather mechanical; the associated details are beyond the scope of this
paper and can be found elsewhere [7,4,10].

We present a framework which, given a loop nest, derives a transformation
matrix for the case where the distinct arrays accessed in the nest may have
different memory layouts. In addition, our solution works in the presence of
undetermined layouts for a subset of the arrays referenced; this is of particular
interest in enhancing locality beyond a single nest. The framework subsumes pre-
vious iteration space based linear locality enhancing transformation techniques
which assume a fixed canonical memory layout for all arrays.

Outline After a brief review of the necessary terminology in Section 2, we
summarize a framework to represent memory layout information mathematically
in Section 3. In Section 4, we present a loop transformation framework assuming
that the memory layout for all arrays is column-major. In Section 5, we generalize
our approach to attack the problem of optimizing a loop nest assuming that
the arrays referenced may have distinct memory layouts. Then in Section 6 we
show how to utilize the partial layout information. We give our experimental

A Loop Transformation Algorithm 37

results obtained on an 8-processor SGI Origin 2000 distributed-shared-memory
multiprocessor in Section 7. We review the related work on data locality in
Section 8 and conclude the paper in Section 9.

2 Terminology

In this paper we consider nested loops. An iteration in an n-nested loop is de-
noted by the iteration vector Ī = [ı1, ı2, ..., ın]T . We assume that the array sub-
script expressions and loop bounds are affine functions of enclosing loop indices
and symbolic constants. In such a loop nest, each reference to an array U can be
modeled by an access (or reference) matrix L of size m×n and an m-dimensional
offset vector ō [8,13,14]. For example, a reference U [i1 + i2, i2 + 1] in a loop nest

of depth two can be represented by LĪ + ō where L =
[

1 1
0 1

]
and ō = [0, 1]T .

We focus on iteration space transformations that can be represented by integer
non-singular square matrices. Such a transformation matrix is invertible and is
of size n × n for an n-dimensional loop nest. The effect of such a transforma-
tion T is that each iteration vector Ī in the original loop nest is transformed
to T Ī. Therefore, loop bounds and subscript expressions should be modified
accordingly. Let Ī ′ = T Ī. Since T is invertible, the transformed reference can
be written as LĪ + ō = LT −1Ī ′ + ō. The computation of new loop bounds is
done using Fourier-Motzkin elimination [12]. An iteration space transformation
is legal if it preserves all data dependences in the original loop nest [14]. A lin-
ear transformation represented by T is legal if, after the transformation, T d̄ is
lexicographically non-negative for each dependence d̄ in the original nest.

3 Memory layout representation using hyperplanes

In this section, we briefly review the concepts [4] relating to the representation
of memory layouts using hyperplanes. A hyperplane defines a set of elements
(1, · · · , m) that satisfies

g11 + g22 + · · · + gmm = c (1)

for a constant c. Here, g1, · · · , gm are rational numbers called hyperplane coeffi-
cients and c is a rational number called hyperplane constant [11]. The hyperplane
coefficients can be written collectively as a hyperplane vector ḡ = [g1, · · · , gm]T .
Where there is no confusion, we omit the transpose. A hyperplane family is a set
of hyperplanes defined by ḡ for different values of c. It can be used to partially
represent the memory layout of an array. We assume that the array elements on a
specific hyperplane are stored in consecutive memory locations. Thus, for an ar-
ray whose memory layout is column-major, each column represents a hyperplane
whose elements are stored in memory consecutively. Given a large array, the rel-
ative order of hyperplanes with respect to each other may not be important.
The relative storage order of columns (although well defined by column-major

38 M. Kandemir et al.

layout) is not important for the purposes of this paper. The hyperplane vec-
tor (1, 0) denotes a row-major layout, (0, 1) denotes column-major layout, and
(1,−1) defines a diagonal layout. Two array elements J̄ and J̄ ′ belong to the
same hyperplane ḡ if

ḡT J̄ = ḡT J̄ ′. (2)

As an example, in a two-dimensional array stored as column-major (hyperplane
vector [0, 1]), array elements [4, 5] and [9, 5] belong to the same hyperplane
(i.e., the same column) but elements [4, 5] and [4, 6] do not. We say that two
array elements which belong to the same hyperplane have spatial locality. Al-
though this definition of spatial locality is somewhat coarse and does not hold
at the array boundaries, it is suitable for our locality optimization strategy.

In a two-dimensional array space, a single hyperplane family is sufficient to
partially define a memory layout. In higher dimensions, however, we may need
to use more hyperplane families. Let us concentrate on a three-dimensional ar-
ray U whose layout is column-major. Such a layout can be represented using
two hyperplanes: ḡ = [0, 0, 1]T and h̄ = [0, 1, 0]T . We can write these two hy-
perplanes collectively as a layout constraint matrix or simply a layout matrix

LU =
[
ḡT

h̄T

]
=

[
0 0 1
0 1 0

]
. In that case, two data elements J̄ and J̄ ′ have spatial

locality if

ḡT J̄ = ḡT J̄ ′ and h̄T J̄ = h̄T J̄ ′. (3)

The elements that have spatial locality should be stored in consecutive mem-
ory locations. The idea can easily be generalized to higher dimensions [4]. In
this paper, unless stated otherwise, we assume column-major memory layout
for all arrays. In Section 5, we show how to generalize our technique to opti-
mize a given loop nest where a number of arrays with distinct memory lay-
outs are accessed. Our optimization technique can work with any memory lay-
out which can be represented by hyperplanes. The layout matrices that we
use for column-major storage (starting from two-dimensional case) are as fol-

lows: [0, 1]︸︷︷︸
2D

,

[
0 0 1
0 1 0

]
︸ ︷︷ ︸

3D

,


0 0 0 1

0 0 1 0
0 1 0 0




︸ ︷︷ ︸
4D

, · · ·. In general, the column-major layout for an

m-dimensional array can be represented by an (m−1)×m matrix L = [lij] such
that li(m−i+1) = 1 for 1 ≤ i ≤ (m − 1) and lij = 0 for the remaining elements.
Notice that each row of the layout constraint matrix represents a constraint on
the elements that have spatial locality with respect to the associated layout. In
some cases, the order of the rows in a layout constraint matrix may be impor-
tant. But, for the purposes of this paper, we assume they are not. Thus, any row
permutation of the layout matrices mentioned before is also considered a legal
layout constraint matrix.

A Loop Transformation Algorithm 39

do i = 1, N
do j = 1, N
do k = 1, N
C[i,j] +=

A[i,k] * B[k,j]
end do

end do
end do

(a)

do u = 1, N
do v = 1, N
do w = 1, N
C[w,v] +=
A[w,u] * B[u,v]

end do
end do

end do

(b)

do u = 1, N
do v = 1, N
do w = 1, N
C[w,u] +=

A[w,v] * B[v,u]
end do
end do

end do

(c)

Fig. 2. Matrix multiplication code. (a) Original loop nest. (b)-(c) Transformed
loop nests.

4 Transformation for optimizing spatial locality

Our objective is to transform a loop nest such that spatial locality will be ex-
ploited in the inner loops in the transformed nest. That is, when we transform
a loop nest, we want two consecutive iterations of the innermost loop to access
array elements that have spatial locality (i.e., reside on the same column by our
definition of spatial locality). In particular, if possible, we want the accessed
array elements to be next to each other so that they can be on the same cache
line (or neighboring cache lines). This can be achieved if, in the transformed
loop nest, the elements accessed by consecutive iterations of the innermost loop
satisfy Equation (2) for two-dimensional arrays and the relation in Equation (3)
for three-dimensional arrays and so on.

Assume Q = T −1 for convenience. Ignoring the offset vector, after trans-
formation T , new iteration vector Ī accesses (through L) the array element
LQĪ. We first focus on two-dimensional arrays. For such an array U , the layout
constraint matrix for the column-major layout is LU = [0, 1]. Two consecu-
tive iteration vectors can be written as Ī = [ı1, · · · , ın−1, ın]T and Īnext =
[ı1, · · · , ın−1, 1 + ın]T . The data elements accessed by Ī and Īnext through a ref-
erence represented by access matrix L will have spatial locality (see equation (2))
if [0, 1]LQĪ = [0, 1]LQĪnext or [0, 1]LQ[0, 0, · · · , 0, 1]T = 0; i.e., ¯lmq̄n = 0 ⇒
q̄n ∈ Ker

{ ¯lm
}
, where ¯lm and q̄n are the last row of matrix L and last column

of matrix Q, respectively. Since ¯lm is known, we can always choose q̄n from its
null set (Ker set). Note that here m is 2.

Consider the matrix-multiplication loop nest shown in Fig. 2(a). The access

matrices are LC =
[

1 0 0
0 1 0

]
,LA =

[
1 0 0
0 0 1

]
, and LB =

[
0 0 1
0 1 0

]
.

For array C : q̄3 ∈ Ker {[0, 1, 0]} ⇒ q̄3 = [×, 0,×]T

For array A : q̄3 ∈ Ker {[0, 0, 1]} ⇒ q̄3 = [×,×, 0]T

For array B : q̄3 ∈ Ker {[0, 1, 0]} ⇒ q̄3 = [×, 0,×]T .

40 M. Kandemir et al.

Thus Q =


× × ×
× × 0
× × 0


 . Therefore, Q1 =


0 0 1

0 1 0
1 0 0


 and Q2 =


0 0 1

1 0 0
0 1 0


 are the

only suitable permutation matrices. Fig. 2(b) and (c) give the transformed nests
obtained using T1 = Q−1

1 and T2 = Q−1
2 respectively. Notice that although the

spatial locality is good for both transformed versions, the one in Fig. 2(c) is
expected to perform better (see [8]). Next, we will explain why and how the loop
nest in Fig. 2(c) is preferred over the one in Fig. 2(b).

Notice that our approach as explained so far determines only (possibly part
of) the last column of the matrix Q. The remaining elements can be filled in any
way as long as the resulting Q is non-singular and its inverse (T) observes all
data dependences. We will focus on how to complete a partially filled Q matrix
later. For now, to see why the last column of Q is so important for locality,
consider a reference to an m-dimensional array in an n-dimensional loop nest.
Assume that L = [l̄1, l̄2, · · · , ¯lm]T and Q =

[
q̄1 q̄2 · · · q̄n

]
, where l̄i is the ith row

of L and q̄j is the jth column of Q. Assuming i1, i2, ..., in are the loops in the nest
after the transformation, omitting the offset vector, the new reference matrix is
of the form LQ[i1, · · · , in]T = [l̄1q̄1i1 + · · · + l̄1q̄nin, · · · , ¯lmq̄1i1 + · · · + ¯lmq̄nin].
Since the spatial behavior of a reference is mainly determined by the innermost
loop (in our case in) and all l̄j are known, q̄n is the sole factor determining the
spatial locality. Our objective is to select q̄n such that l̄j q̄nin will be 0 for each
2 ≤ j ≤ n, and l̄1q̄nin will be (preferably) 1 or a small integer constant.1 In two-
dimensional case, since m = 2, selecting q̄n from Ker

{ ¯lm
}

achieves precisely
this goal.

Using a similar reasoning, we can see that in higher-dimensional cases, for
good spatial locality in the innermost loop, the following relations should be
satisfied

q̄n ∈ Ker
{
l̄2

}
, q̄n ∈ Ker

{
l̄3

}
, · · · , q̄n ∈ Ker

{ ¯lm
}
.

So far, we have only concentrated on determining the elements of the last col-
umn of Q. While, for most cases, this is sufficient to improve locality, in situ-
ations where the trip count of the innermost loop is small and some references
exhibit temporal locality in the innermost loop, we may need to pay atten-
tion to the spatial locality carried by the outer loops as well. Let us consider
the matrix-multiplication code of Fig. 2(a) again. In this example, one of the
references exhibits temporal locality in the innermost loop. Consequently, it
might be wise to take the second innermost loop into account as well. Recall
that for this example previously we ended up with two possible permutation

matrices. In fact, the partly filled Q matrix was Q =


× × ×
× × 0
× × 0


 . Now, we fo-

cus on the spatial locality in the second innermost loop. This corresponds to
determining the elements of the second rightmost column of Q. Let us define
1 In the case where l̄1q̄nin is also 0, we have temporal locality in the innermost loop. We
do not consider exploiting temporal locality explicitly in this paper. Our approach
can be modified to take temporal locality into account as well.

A Loop Transformation Algorithm 41

Īk = [ı1, · · · , ık−1, ık, ık+1, · · · , ın]T and Ī ′k = [ı1, · · · , ık−1, 1 + ık, ık+1, · · · , ın]T .
This means that iteration vectors Īk and Ī ′k have exactly the same values for
all loop index positions except the kth index where they differ by one. In this
case, we say that Īk and Ī ′k are consecutive in kth loop. Notice that previously
we have considered only the consecutive iterations in the innermost loop. From
our experience, we can say that for majority of the loop nests which appear
in scientific codes, this is sufficient. For most of the remaining loop nests, it
should be enough to consider the spatial locality in the second innermost loop.
For two-dimensional column-major arrays, we can formalize the idea as follows:
[0, 1]LQĪn−1 = [0, 1]LQĪ ′n−1, or [0, 1]LQ[0, 0, · · · , 0, 1, 0]T = 0; this implies that
¯lm ¯qn−1 = 0, i.e., ¯qn−1 ∈ Ker

{ ¯lm
}
. For the matrix-multiplication example, we

proceed as follows:

For array C : q̄2 ∈ Ker {[0, 1, 0]} ⇒ q̄2 = [×, 0,×]T

For array A : q̄2 ∈ Ker {[0, 0, 1]} ⇒ q̄2 = [×,×, 0]T

For array B : q̄2 ∈ Ker {[0, 1, 0]} ⇒ q̄2 = [×, 0,×]T .

Combining these equations with those obtained on q̄3, we have to ignore one
equation. Since the equations on C and B are the same, we favor that equation.

Thus, we choose Q as


× × ×
× 0 0
× × 0


 . The only suitable permutation matrix is Q =


0 0 1

1 0 0
0 1 0


 . The resulting code obtained using T = Q−1 is shown in Fig. 2(c). This

code exploits spatial locality for arrays C and A in the innermost loop. Array
B, on the other hand, has temporal locality in the innermost loop and spatial
locality in the second innermost loop.

5 Algorithm to find the loop transformation for the
general case

In this section, we present the formulation of the problem for the most general
case where a number of arrays with possibly different memory layouts are ref-
erenced in a given loop nest. Our objective is to find a transformation matrix
T such that the spatial locality will be good for as many references as possible.
To resolve the conflicts between different references, we assume that prior to our
analysis the references are ordered according to their importance. We use the
following notation:

ν is the number of distinct references
Rσ is the reference σ where 1 ≤ σ ≤ ν.
Lσ = [lσij] is the layout constraint matrix for the array associated with
Rσ (It is an (m− 1) ×m matrix for an m-dimensional array)
Lσ = [aσ

ij] is the access matrix for Rσ (It is an m × n matrix for a
reference to an m-dimensional array in an n-dimensional loop nest)

42 M. Kandemir et al.

Without loss of generality, we also assume that the references are ordered as
R1,...Rν , where R1 is the most important reference and Rν is the least important.
Ideally, the references should be ordered according to their access frequencies.
Currently, we use profile information for this purpose.

Let us now focus on a single reference Rσ. Assuming Ī and Īnext are two
consecutive iteration vectors, after the transformation T = Q−1, the two data
elements accessed by these iteration vectors through Rσ will have spatial lo-
cality if LLQĪ = LLQĪnext or LLq̄n = 0̄, where q̄n is the last column of Q.
On expanding, we derive the relation


lσ11 lσ12 · · · lσ1m

lσ21 lσ22 · · · lσ2m
...

...
. . .

...
lσ(m−1)1 l

σ
(m−1)2 · · · lσ(m−1)m






aσ
11 aσ

12 · · · aσ
1n

aσ
21 aσ

22 · · · aσ
2n

...
...

. . .
...

aσ
m1 a

σ
m2 · · · aσ

mn






q1n

q2n

...
qnn


 =




0
0
...
0


 .

Setting bσij =
∑m

k=1 l
σ
ika

σ
kj (1 ≤ i ≤ m− 1, 1 ≤ j ≤ n), we rewrite this relation as

Bσ q̄n = 0̄ where Bσ = [bσij]. Then, the determination of the last column of Q can
be expressed as the problem of finding a vector from the solution space of this
homogeneous system. Notice that this solution takes care of the reference Rσ

only. In order to obtain a transformation which satisfies all ν references we have
to set up and solve the following system B1q̄n = 0̄, B2q̄n = 0̄, · · · , Bν q̄n = 0̄.
Additionally, as in matrix multiplication code, we might want to add the con-
straints on ¯qn−1 to exploit the spatial reuse in the second innermost loop. Given a
large number of references, this homogeneous system may not have a solution. In
that case, we drop some equations from consideration starting from those of Bν

and repeat the process. The complete algorithm is given in Fig. 3 on page 43. A
solution to this homogeneous system is of the form q̄n = δ1x̄1 +δ2x̄2 + · · ·+δpx̄p.
We fill out Q of the form

Q =




1 0 · · · 0 q1n

0 1 · · · 0 q2n

...
...

. . .
...

...
0 0 · · · 1 q(n−1)n

0 0 · · · 0 qnn


 . Then T = Q−1 =




1 0 · · · 0 − q1n

qnn

0 1 · · · 0 − q2n

qnn

...
...

. . .
...

...
0 0 · · · 1 − q(n−1)n

qnn

0 0 · · · 0 1
qnn



. (4)

Notice that assuming qnn �= 0 such a transformation matrix is non-singular.
Moreover, we can set δ1, · · · , δp such that for each d̄ ∈ D, T d̄ ≥ 0 where q̄n =
[q1n, · · · , qnn]T = δ1x̄1 + δ2x̄2 + · · ·+ δpx̄p and D is the original dependence ma-
trix. Let d̄ ∈ D be a dependence vector as follows d̄ = [d1, · · · , dn−1, dn]T . After
the transformation T , we have T d̄ = [d1−dnq1n/qnn, d2−dnq2n/qnn, · · · , dn−1−
dnq(n−1)n/qnn, dn/qnn]T . We note that if dn is equal to zero, then this resulting
dependence vector is always legal provided that d̄ is legal to begin with. Oth-
erwise, the parameters δ1, · · · , δp can be chosen so that T d̄ is lexicographically
non-negative.

As an application of this algorithm, we consider the matrix-multiplication
code given in Fig. 2(a) once more. This time we assume that arrays A and C

A Loop Transformation Algorithm 43

Input A loop nest with a number of references, layout matrices for each reference and
the data dependence matrix.
Output A non-singular loop transformation matrix which observes all data depen-
dences.

Step 1. Form the following homogeneous system
{
B1q̄n = 0̄, · · · , Bν q̄n = 0̄

}
≡

Bq̄n = 0̄ where Bσ = LσLσ. Eliminate the redundant equations and let τ be
the number of the remaining rows in B

Step 2. Solve the system by row-echelon reduction. This is achieved by transforming
the augmented matrix [B|0] of the system to a matrix [C|0] in reduced row echelon
form [14].
After the reduction, let r be the number of non-zero rows in C, where 1 ≤ r ≤ τ .

Step 3. If r ≥ n the solution space has no basis. In that case, delete the last row of
B and repeat Step 2 until a r < n is found.

Step 4. Write the solution x̄ as a linear combination of vectors x̄1, x̄2, ..., x̄p with the
corresponding coefficients δ1, δ2, ..., δp:

x̄ = δ1x̄1 + δ2x̄2 + ... + δpx̄p

Step 5. Choose δ1, δ2, · · · , δp such that Q is of the form in Equation 4, and for each
d̄ ∈ D, T d̄ ≥ 0 where q̄n = [q1n, q2n, · · · , qnn]

T = δ1x̄1 + δ2x̄2 + ... + δpx̄p and D is
the original dependence matrix.

Step 6. Return T = Q−1.

Fig. 3. Algorithm for determining the transformation matrix (it is assumed that
qnn �= 0).

are row-major whereas array B is column-major. The equations in our homo-
geneous system are [1, 0, 0][q13, q23, q33]T = 0; [1, 0, 0][q13, q23, q33]T = 0; and
[0, 1, 0][q13, q23, q33]T = 0 corresponding to references to arrays C, A and B re-

spectively. The partially filled matrix is Q =


× × 0
× × 0
× × 1


 , which can be completed

as


1 0 0

0 1 0
0 0 1


 and T =


1 0 0

0 1 0
0 0 1


 .

What this implies is that under the mentioned memory layouts, the original
loop order i-j-k is the best loop order from the locality point of view. Table 1
shows the best loop orders for the matrix multiplication nest under all possible
(permutation-based) layout combinations. The middle column gives the best or-
der for the sequential execution whereas the rightmost column gives that for the
parallel execution. Determining the suitability of a locality-optimized sequential
program for a parallel architecture is definitely an important issue that needs
to be visited in the future. It should be emphasized that in deriving these best
orders we have considered the second column of Q as well.

44 M. Kandemir et al.

Table 1. Best loop orders for different layout combinations in the matrix-
multiplication code.
A triple x-y-z in the first column refers to memory layouts for arrays C, A, and
B respectively, where c means column-major and r means row-major.

C-A-B best (seq.) best (par.)

c-c-c j-k-i j-k-i

c-c-r k-j-i j-k-i

c-r-c j-i-k j-i-k

c-r-r j-k-i j-k-i

r-c-c i-k-j i-k-j

r-c-r k-i-j i-k-j

r-r-c i-j-k i-j-k

r-r-r i-k-j i-k-j

6 Utilizing partial layout information

A direct generalization of the approach presented in the previous section is opti-
mizing a loop nest assuming some of the arrays have fixed but possibly different
layouts whereas the remaining arrays have not been assigned memory layouts
yet. In the following we summarize our strategy; the details can be found else-
where [3]. We handle this problem in two steps:

(1) find a loop transformation which satisfies the references to the arrays whose
layouts have already been determined, and

(2) taking into account this loop transformation, determine optimal layouts for
the remaining arrays referenced in the nest.

The first step is handled as shown in the previous section. The second step
is an array restructuring problem and is fully explained in [4]. To illustrate
the process, consider the example shown in Fig. 4(a) on page 45. Assuming
a two-dimensional array layout represented by hyperplane vector [g1, g2] and
a reference represented by access matrix L, the spatial locality will be ex-
ploited if [g1, g2]L[q1n, · · · , qnn]T = 0, where [q1n, q2n, · · · , qnn]T is the last col-
umn of the inverse of the loop transformation matrix. Since both [g1, g2] and
[q1n, q2n, · · · , qnn]T are unknown, this formulation is non-linear. However, if ei-
ther of them is known, the other can easily be found using the relations:

[g1, g2] ∈ Ker
{
L[q1k, · · · , qkk]T

}
(5)

[q1k, q2k, · · · , qkk]T ∈ Ker {[g1, g2]L} . (6)

Usually Ker sets may contain multiple vectors in which case we choose the one
such that the gcd of its elements is minimum. Let us consider the example in

Fig. 4(a), the access matrices for the first nest are as follows: LU =
[

1 0
0 1

]
,

A Loop Transformation Algorithm 45

do i = 1, N
do j = 1, N

U[i,j] = V[i+j,j]
end do

end do

do i = 1, N
do j = 1, N

W[j,i] = V[i,j] * V[j,i]
end do

end do
(a)

do u = 1, N
do v = 1, N
U[u,v] = V[u+v,v]

end do
end do

do u = 1-N, N-1
do v = max(1,1-u), min(N-u,N)
W[v,u+v] = V[u+v,v] * V[v,u+v]

end do
end do

(b)

Fig. 4. (a) Original loop nest. (b) Transformed loop nest.

and LV =
[

1 1
0 1

]
. For the second nest: LV1 =

[
1 0
0 1

]
,LV2 =

[
0 1
1 0

]
, and LW =[

0 1
1 0

]
. Let us assume for the first nest we apply only data transformations using

the technique in [4]; that is, [q12, q22]T = [0, 1] (Q is identity matrix). Using (5),
for array U ,

[g1, g2] ∈ Ker
{
LU [0, 1]T

}
=⇒ [g1, g2] ∈ Ker

{
[0, 1]T

}
.

A solution is [g1, g2] = [1, 0] meaning that array U should be row-major. For
array V ,

[g1, g2] ∈ Ker
{
LV [0, 1]T

}
=⇒ [g1, g2] ∈ Ker

{
[1, 1]T

}
.

Selecting [g1, g2] = [1,−1] results in diagonal layout for array V .
Having fixed the layouts for two arrays, we proceed with the second nest

whose optimization is the topic of this section. Assuming again that Q is the
inverse of the loop transformation matrix for this nest, using (6), we find the
loop transformation which satisfies the both references to array V :

[q12, q22]T ∈ Ker {[1,−1]LV1} =⇒ [q12, q22]T ∈ Ker {[1,−1]}
and [q12, q22]T ∈ Ker {[1,−1]LV2} =⇒ [q12, q22]T ∈ Ker {[−1, 1]}

[q12, q22]T = [1, 1]T satisfies both the equations, and for this, Q =
[

1 1
0 1

]
. The

process so far is exactly what we have done in the previous section. The next task
is to determine the optimal memory layout for array W which is referenced only
in the second nest. By taking into account the last column ofQ and using (5) once
more (now for array W), [g1, g2] ∈ Ker

{
LW [1, 1]T

}
=⇒ [g1, g2] ∈ Ker

{
[1, 1]T

}
which means that array W should have a diagonal layout. The transformed
program is shown in Fig. 4(b).

7 Experimental Results

In this section, we illustrate how our iteration space transformation technique
improves performance on an 8-processor SGI Origin 2000 distributed-shared-

46 M. Kandemir et al.

1 2 3 4 5 6 7 8
processors

10

20

30

40

50

60

70

80

tim
e

(s
ec

.)

ADI

1 2 3 4 5 6 7 8
processors

25

50

75

100

125

150

175

200

225

250

tim
e

(s
ec

.)

matmult

1 2 3 4 5 6 7 8
processors

5

10

15

20

25

tim
e

(s
ec

.)

cholesky

unopt

prev

opt

1 2 3 4 5 6 7 8
processors

10

20

30

40

50

60

tim
e

(s
ec

.)

vpenta

1 2 3 4 5 6 7 8
processors

25

50

75

100

125

150

175

200

225

tim
e

(s
ec

.)
btrix

1 2 3 4 5 6 7 8
processors

2

4

6

8

10

12

tim
e

(s
ec

.)

cholsky

1 2 3 4 5 6 7 8
processors

25
50
75

100
125
150
175
200
225
250
275

tim
e

(s
ec

.)

syr2k

1 2 3 4 5 6 7 8
processors

5

10

15

20

tim
e

(s
ec

.)

fnorm

1 2 3 4 5 6 7 8
processors

5

10

15

tim
e

(s
ec

.)

bnorm

Fig. 5. Execution times on an SGI Origin. [The problem sizes are (in doubles)
as follows. ADI: 1000× 1000× 3 arrays; matmult: 1200× 1200 arrays; cholesky:
1024 × 1024 arrays; vpenta: 4 × 720 × 720 3D arrays and 720 × 720 2D arrays;
btrix: size parameter is 150; cholsky: size parameter is 2500; syr2k: 1024×1024
arrays with b = 400; fnorm and bnorm: 6144× 6144 arrays. The programs from
Spec92, the ADI code, and matmult have outer timing loops. The unopt version
refers to the original program, the prev version refers to the approach offered
by previous work, and the opt version is the code generated by our technique].

memory machine. This machine uses 195MHz R10000 processors, 32KB L1 data
cache and 4MB L2 unified cache. The cache line size is 128 bytes and page size
is 16KB. Our presentation is in two parts. First, we evaluate the effectiveness of
our approach using a set of nine programs assuming a fixed memory layout for
all arrays. Then, we focus on two programs, and measure the improvements in
execution time with different layout combinations.

For the first part, we experiment with the following programs: ADI from
Livermore kernels; matmult, a matrix-multiplication routine; cholesky from [8];
vpenta, btrix, and cholsky2 from Spec92/NASA benchmark suite; syr2k from
BLAS; and finally fnorm and bnorm from ODEPACK, a collection of solvers for
the initial value problem for ordinary differential equation systems. We use the
2 Different from cholesky; uses two three-dimensional arrays.

A Loop Transformation Algorithm 47

C versions of these programs and the hand–optimized programs are compiled by
the native compiler using the -O2 option (expect for syr2k).

Fig. 5 shows the performance results for our benchmark programs. For each
program, the unopt version refers to the original program, the prev version
refers to the approach offered by [8], and finally the opt version is the code gen-
erated by our technique. We note that except for cholsky, we have improvements
in all programs against the unoptimized versions over all processor sizes. The
cholsky code consists of a number of imperfectly nested loops; thus, is difficult
to optimize by linear loop transformations. However, loop distribution [14] can
substantially improve the performance by enabling linear loop transformations
as explained in the second part of our experimental results. In syr2k, fnorm and
bnorm the optimized programs do not scale well mostly due to employment of
static scheduling for non-rectangular loop bounds. Apart from those, the results
reveal that our approach is quite successful in optimizing locality in the Ori-
gin 2000. It should be noted that the sizes that we use for the programs from
Spec92/NASA are larger than the usual sizes; so the results should not be com-
pared with the previous works. It should also be noted that except for syr2k
our approach and the approach offered in [8] result in the same programs. In the
syr2k code the access pattern is quite complicated and we perform better than
Li’s approach with the -O1 compiler option. If the -O2 option is used, however,
the two approaches perform very similar. In general, for a fixed permutation-
based memory layout for all arrays, we expect that unless the access pattern is
complicated both optimization approach will result in either the same or very
similar codes. For the case where all the arrays have a uniform diagonal layout,
it is not clear to us how Li’s approach can be modified. Finally, the fourth bar
in performance results of matmult shows the execution time of the best possible
layout combination and the associated loop order. In this case, the best time
has been obtained with the i-j-k loop order assuming that the arrays C and
A have row-major memory layout whereas array B is column-major. We note
that given this layout combination our approach can derive the i-j-k loop order
automatically.

In the second part, we evaluate the effectiveness of our approach in optimizing
loop nests assuming that the memory layouts of the arrays might be different.
We focus on two programs: matmult and cholsky. Table 2(a) shows the sin-
gle processor execution times for all permutation-based layout combinations of
matmult. The legend x-y-z means that the memory layouts for C, A and B are
x, y and z respectively, where c means column-major and r means row-major.
For each combination, we experiment with all possible loop permutations. The
boldfaced figures in each row denotes the minimum times (in seconds) under the
corresponding memory layout combinations. The preferred loop order detected
for each layout combination by our algorithm is marked with a

√
. The best loop

order using only loop transformations that work with fixed layouts namely all
row-major or all column-major for all arrays (referred to as prev) is denoted by
a †. When we compare these results with the best sequential loop orders given in
Table 1, it is easy to see that, except for two cases, our technique is able to find

48 M. Kandemir et al.

Table 2. Execution times (in sec.) of matmult under all permutation-based
memory layouts and loop orders on SGI origin. [Minimum times for each layout
combination are in boldface].

(a) Number of processors = 1

C-A-B i-j-k i-k-j j-i-k j-k-i k-i-j k-j-i

c-c-c 238.749 478.383 237.730 66.921 † √ 491.833 102.540

c-c-r 417.405 292.398 415.886 68.121 315.801 68.062
√

c-r-c 64.798 490.661 64.435
√

257.849 513.729 271.467

c-r-r 246.884 286.199 237.370 258.202
√

331.914 270.457

r-c-c 238.227 245.415
√

238.672 291.760 264.998 315.432

r-c-r 416.795 68.123 415.484 292.377 67.992
√

315.216

r-r-c 64.006
√

246.316 64.088 474.004 267.269 498.209

r-r-r 236.539 66.932 † √ 231.907 478.359 102.558 492.604

(b) Number of processors = 8

C-A-B i-j-k i-k-j j-i-k j-k-i k-i-j k-j-i

c-c-c 37.353 65.910 33.571 16.803
√

116.271 58.403

c-c-r 56.988 43.322 55.972 17.511
√

157.846 72.857

c-r-c 17.433 68.369 15.390
√

38.722 261.163 76.908

c-r-r 39.549 42.305 34.700 39.406
√

342.488 73.710

r-c-c 35.547 34.831
√

34.703 42.235 73.034 130.526

r-c-r 56.227 17.591
√

56.042 44.031 74.433 150.590

r-r-c 15.347
√

34.907 18.502 64.313 74.986 106.485

r-r-r 32.968 16.369
√

35.738 65.271 59.420 99.661

the optimal loop orders in every layout combination. In those two cases men-
tioned our technique results in an execution time which is close to the minimum
time. Notice also that a loop transformation approach based on fixed memory
layouts can only optimize two cases: c-c-c and r-r-r.

Table 2(b), on the other hand, shows the execution times in eight processors.
Except for the two cases, the results are again consistent with those given in
the last column of Table 1. Since prev does not offer an optimal layout for the
multiprocessor case, it is not shown.

Next, we focus on the cholsky program from Spec92 benchmarks. This pro-
gram accesses two three-dimensional arrays. First, we applied loop distribution
to obtain as many perfectly nested loops as possible. Then we conducted exper-
iments with all four permutation-based layout combinations. The performance
results given in Table 3 show that our technique is able to optimize the program
for all layout combinations we experiment with. The improvements are between
51% and 72%.

A Loop Transformation Algorithm 49

Table 3. Execution times in seconds of the optimized and unoptimized versions
of cholsky and % improvements [p is the number of processors].

c-c c-r r-c r-r

version p=1 p=8 p=1 p=8 p=1 p=8 p=1 p=8

unopt 6.146 3.834 7.010 2.915 8.312 1.391 18.311 2.471

opt 2.904 1.907 2.139 1.359 2.292 0.680 6.352 1.103

imprv. 53% 51% 69% 53% 72% 51% 65% 55%

8 Related work

Early work on automating locality enhancing optimizations was done by Abu-
Sufah et al. [1]. More recently the interest was on loop restructuring for opti-
mizing cache locality. McKinley et al. [9] present a loop reordering technique to
optimize locality and parallelism. Their approach also employs loop distribution
and loop fusion. Li [8] and Wolf and Lam [13] developed frameworks where the
data reuse information is represented explicitly using reuse vectors. Our tech-
nique is different from those mentioned here in the sense that we can optimize a
loop nest for locality assuming different arrays referenced in the nest may have
distinct memory layouts which include row-major, column-major, higher dimen-
sion equivalents of row- and column-major as well as any type of skewed layout
that can be expressed by hyperplanes. Extending the approaches presented in
[13] and [8] to work with general layouts is non-trivial.

More recently, there is an interest in optimizing locality using data layout
transformations. In this context, Leung and Zahorjan [7] and O’Boyle and Kni-
jnenburg [10] present array restructuring algorithms for optimizing locality. Al-
though these techniques may be effective for some cases where locality enhancing
loop transformations fail, the question of how to mitigate the global effect of a
layout transformation remains to be solved. Leung and Zahorjan [7] and Kan-
demir et al. [4] propose solutions to handle multiple loop nests. A major problem
with the approaches based on pure data transformations is that they cannot op-
timize temporal locality.

There have been a few attempts at a unified framework for locality opti-
mizations. Cierniak and Li [2] and Kandemir et al. [5] propose algorithms for
optimizing cache locality using a blend of loop and data transformations, albeit
drawn from a restricted set. In contrast, the technique presented in this paper
can work with any type of memory layout that can be expressed by hyperplanes,
and can derive general non-singular [14] iteration space transformation matrices.
Recently Kodukula et al. [6] have proposed data shackling, in which data is first
blocked and based on the data blocks that are accessed together, iteration space
tiling is derived. But, the data is stored in memory using the default layouts.

50 M. Kandemir et al.

9 Conclusions

We have presented a technique to improve data locality in loop nests. Our tech-
nique uses explicit layout information available to our analysis as layout con-
straint matrices. This information allows our technique to optimize loop nests
in which each array may have a distinct memory layout. We believe that such a
capability is needed by a global locality optimization algorithm which optimizes
the loop nests in a program by applying an appropriate combination of loop and
data transformations.

References

1. A. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the performance enhance-
ment of paging systems through program analysis and transformations. IEEE
Trans. Comp., C-30(5):341–356, 1981. 49

2. M. Cierniak and W. Li. Unifying data and control transformations for distributed
shared memory machines. Proc. SIGPLAN Conf. Prog. Lang. Des. & Imp., June
1995. 35, 49

3. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A Matrix-Based Ap-
proach to the Global Locality Optimization Problem In Proc. 1998 Int. Conf. Par-
allel Architectures & Compilation Techniques (PACT 98), October 1998. 44

4. M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam. A hy-
perplane based approach for optimizing spatial locality in loop nests. In Proc. 12th
ACM Int. Conf. Supercomputing, July 1998. 36, 37, 38, 44, 45, 49

5. M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler algorithm for op-
timizing locality in loop nests. In Proc. 11th ACM Int. Conf. Supercomputing,
pp. 269–276, July 1997. 35, 49

6. I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In
Proc. SIGPLAN Conf. Prog. Lang. Des. & Imp., June 1997. 49

7. S.-T. Leung and J. Zahorjan. Optimizing data locality by array restructuring.
Technical Report TR 95-09-01, CSE Dept., University of Washington, Sep. 1995.
35, 36, 49

8. W. Li. Compiling for NUMA parallel machines. Ph.D. Thesis, Cornell University,
1993. 34, 35, 37, 40, 46, 47, 49

9. K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with loop transfor-
mations. ACM Transactions on Programming Languages and Systems, 1996. 34,
35, 49

10. M. O’Boyle and P. Knijnenburg. Non-singular data transformations: Definition, va-
lidity, applications. In Proc. 6th Workshop on Compilers for Par. Comp., pp. 287–
297, Germany, 1996. 35, 36, 49

11. J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution
in distributed memory machines. In IEEE Trans. Par. & Dist. Sys., 2(4):472–482,
Oct. 1991. 37

12. A. Schrijver. Theory of linear and integer programming, John Wiley, 1986. 37
13. M. Wolf and M. Lam. A data locality optimizing algorithm. In Proc. ACM SIG-

PLAN 91 Conf. Programming Language Design and Implementation, pp. 30–44,
June 1991. 34, 35, 37, 49

14. M. Wolfe. High performance compilers for parallel computing, Addison Wesley,
1996. 35, 36, 37, 43, 47, 49

	A Loop Transformation Algorithm Based on Explicit Data Layout Representation for Optimizing Locality
	Introduction
	Terminology
	Memory layout representation using hyperplanes
	Transformation for optimizing spatial locality
	Algorithm to find the loop transformation for the general case
	Utilizing partial layout information
	Experimental Results
	Related work
	Conclusions

