
Compiler Algorithms for Optimizing Locality and Parallelism on Shared and
Distributed Memory Machines�

M. Kandemiry J. Ramanujamz A. Choudharyx

Abstract

Distributed memory message passing machines can deliver scal-
able performance but are difficult to program. Shared memory
machines, on the other hand, are easier to program but obtain-
ing scalable performance with large number of processors is dif-
ficult. Recently, some scalable architectures based on logically-
shared physically-distributed memory have been designed and im-
plemented. While some of the performance issues like parallelism
and locality are common to the different parallel architectures, is-
sues such as data decomposition are unique to specific types of ar-
chitectures. One of the most important challenges compiler writers
face is to design compilation techniques that can work on a variety
of architectures. In this paper, we propose an algorithm that can
be employed by optimizing compilers for different types of paral-
lel architectures. Our optimization algorithm does the following:
(1) transforms loop nests such that, where possible, the outermost
loops can be run in parallel across processors; (2) decomposes each
array across processors; (3) optimizes interprocessor communica-
tion by vectorizing it whenever possible; and (4) optimizes local-
ity (cache performance) by assigning appropriate storage layout for
each array. Depending on the underlying hardware system, some or
all of these steps can be applied in a unified framework. We present
simulation results for cache miss rates, and empirical results on
SUN SPARCstation 5, IBM SP-2, SGI Challenge and Convex Ex-
emplar to validate the effectiveness of our approach on different
architectures.

1 Introduction

Optimizing for parallelism and locality in a unified framework is
important for UMA architectures (e.g. SGI Challenge), shared-
memory NUMA architectures (e.g. Convex Exemplar, Stanford
DASH and KSR-1) and distributed memory multicomputers (e.g.
Intel Paragon, IBM SP-2 and Thinking Machines CM-5). Optimiz-
ing parallelism leads to tasks of larger granularity with lower syn-
chronization and communication costs and is beneficial for parallel
machines. Since individual nodes of contemporary parallel ma-
chines have some form of cache hierarchy, optimizing cache local-
ity of scientific codes on these machines results in high speedups.
Additionally, as distribution of data is an important issue for dis-
tributed memory multicomputers and some shared-memory NUMA
machines, optimizing data decomposition has a large impact on the
overall performance of these machines.

�This work is supported in part by NSF Young Investigator Award CCR-9357840,
NSF CCR-9509143. The work of J. Ramanujam is supported in part by an NSF Young
Investigator Award CCR-9457768 and by NSF grant CCR-9210422.

yEECS Dept., Syracuse University, Syracuse, NY 13244.mtk@ece.nwu.edu
zDepartment of Electrical and Computer Engineering, Louisiana State University,

Baton Rouge, LA 70803.jxr@ee.lsu.edu
xDepartment of Electrical and Computer Engineering, Northwestern University,

Evanston, IL, 60208.choudhar@ece.nwu.edu

Recent years have witnessed a tremendous increase in proces-
sor speeds. Unfortunately, the performance gap between processors
and memory has widened. Although caches are capable of reducing
the average memory access time and optimizing compilers are able
to detect significant parallelism, the performance of scientific pro-
grams on both uniprocessors and parallel machines can be rather
poor due to not exploiting locality suitably in these programs [26].
Among the issues that challenge compiler writers is maximizing
parallelism, minimizing communication via loop level optimiza-
tions and block transfers and optimizing locality. Since these issues
are interrelated, they should be handled in a unified framework. For
example, given a loop nest where a number of arrays are accessed,
the locality optimizations may imply a preferred order for the loops
whereas the parallelism optimizations may suggest another. In this
paper, we present an automatized strategy by which a compiler can
optimize programs for both locality and parallelism. Specifically
our optimizations perform the following:

� Maximizing the granularity of parallelism by transforming
the loop nest such that the outermost loops can run parallel
on a number of processors.

� Vectorizing communication,i.e.,performing communication
in large chunks of data in order to amortize the high startup
cost.

� Reorganizing data layouts in memory to match loop order:
we believe that matching loop order to individual array lay-
outs on memory is key to obtaining high performance in sci-
entific codes.

A recent study shows that a group of highly parallelized benchmark
programs spend as much as39% of their cycles stalled waiting for
memory accesses [24]. In order to eliminate the memory bottle-
neck, cache locality should be exploited as much as possible. One
way of achieving this is to transform the loop nest such that the
innermost loop exhibits unit-stride accesses for as many array ref-
erences as possible. While this approach produces satisfactory re-
sults for several cases, we show in this paper that there is still room
for significant improvement, if the compiler is allowed to choose
layouts for multidimensional arrays.

The remainder of this paper is organized as follows. In Sec-
tion 2, the mathematical framework used throughout the paper is
presented, and in Section 3 the related work is summarized. A
locality optimization algorithm is introduced in Section 4. An al-
gorithm that maximizes granularity of parallelism is revised in Sec-
tion 5. In Section 6, a unified compiler algorithm that can be used
on different architectures is presented. The unified algorithm is
generalized to handle multiple nests in Section 7. Our preliminary
results are given in Section 8, and finally the conclusions are pre-
sented in Section 9.

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

2 Preliminaries

In this section we briefly mention about memory layouts and loop
transformation theory. The memory layout for anh-dimensional
array can be in one of theh! forms, each of which corresponding
to layout of data on memory linearly by a nested traversal of the
axes in some predetermined order. The innermost axis is called the
fastest changing dimension. As an example, for row-major memory
layout the second dimension is the fastest changing dimension. We
focus on loop nests where both array subscripts and loop bounds are
affine functions of enclosing loop indices. A reference to an array
X is represented byX(L~I +~b) whereL is a linear transformation
matrix calledarray reference matrix, ~b is offset vector and~I is
a column vector representing the loop indicesi1, i2,...,in starting
from the outermost loop.

Linear mappings between iteration spaces of loop nests can
be modeled by non-singular transformation matrices [16]. If~I is
the original iteration vector, after applying linear transformation
T , the new iteration vector is~J = T ~I. Similarly if ~d is the dis-
tance/direction vector, after the transformation,T ~d is the new dis-
tance/direction vector. A transformation islegal if and only ifT ~d is
lexicographically positive for every~d [29]. On the other hand, since
L~I = LT�1 ~J , after the transformation,LT�1 is the new array ref-
erence matrix. We denoteT�1 byQ. For the rest of the paper, the
reference matrix for arrayX will be denoted byLX whereas the

ith row of the reference matrix for arrayX will be denoted by~̀i
X

.

3 Related Work

Loop transformations have been used for optimizing cache local-
ity in several papers [16, 28]. Results have shown that on several
architectures the speedups achieved by loop transformations alone
can be quite large.

McKinley et al. [18] offer an optimization technique consisting
of loop permutation, loop fusion and loop distribution.

Li [16] describes a data reuse model and a compiler algorithm
calledheight reductionto improve cache locality. He introduces the
concept of adata reuse vectorand defines itsheightas the num-
ber of dimensions from the first non-zero entry to the last entry.
The non-zero entries of a reuse vector indicate that there are reuses
carried by the corresponding loops. The individual reuse vectors
constitute reuse matrices which in turn constitute the global reuse
matrix. The algorithm assigns priorities to reuse vectors depending
on the number of times they occur, and tries to reduce the height
of the global reuse matrix starting from the reuse vector of highest
priority. The height reduction algorithm both reduces the sensi-
tivity of tiling to the tile size, and places the loops carrying reuse
into innermost positions. In comparison, our algorithm (Section 6)
more aggressively exploits spatial locality by considering different
memory layouts for different arrays. Since Li’s approach is rep-
resentative of a class of algorithms that use loop transformations
alone to exploit locality [28, 18, 16], in the rest of the paper we
compare our algorithm to Li’s algorithm (denotedW-Opt).

Data transformations, on the other hand, deal with data layout
and array accesses rather than iteration space re-ordering. Only a
few works have considered data and loop transformations together
to optimize locality. Ju and Dietz [11] present a systematic ap-
proach that integrates data layout optimizations and loop transfor-
mations to reduce cache coherence overhead. Andersonet al. [1]
offer a simple algorithm to transform the data layout to make the
region accessed by each processor contiguous.

Cierniak and Li [4] present a unified approach like ours to op-

timize locality that employs both data and control transformations.
The notion of astride vectoris introduced and an optimization
strategy is developed for obtaining the desired mapping vectors and
transformation matrix. As will be explained later, our approach is
more accurate, as it does not restrict the search space of possible
loop transformations. Our approach does not depend on any new
reuse abstraction such as stride vector. Our extension to multiple
nests (global optimization) is also different from the one offered by
Cierniak and Li [4] for global optimization.

In a different approach, the data space is transformed using
linear non-singular transformation matrices; but the transformed
space for each array is stored on memory in a fixed storage or-
der such as column-major or row-major. O’Boyle and Knijnenburg
[19] have applied this technique to improve locality of programs.
Let Y be a linear non-singular data transformation matrix. Omit-
ting the shift-type transformations, the data transformation denoted
by Y is applied in two steps: (1) The original reference matrixA
is transformed toYA, and (2) The data layout on memory is also
transformed by usingY, and the array declaration statements are
changed accordingly. Since we assign different layouts (such as
row-major or column-major) for different arrays, we do not need to
transform the reference matrices or change array declarations.

Previous work on parallelism has concentrated, among other
topics, on compilation techniques for multicomputers [3, 30, 9],
automatic discovery of parallelism [27, 20]. The loop-level op-
timization techniques to improve locality and communication are
offered in several papers [18, 27].

4 Algorithm for Optimizing Locality

In this section, we present an algorithm which automatically trans-
forms a given loop nest to exploit spatial locality and assigns ap-
propriate memory layouts for arrays in a unified framework. This
algorithm can be used for optimizing locality in uniprocessors and
shared-memory multiprocessors. It can also be employed as part of
a unified technique for optimizing locality and parallelism in dis-
tributed memory machines.

4.1 Explanation

The algorithm is shown in Figure 1. In the algorithm,C is the
array reference on the LHS whereasA represents an array reference
from the RHS. The symbol� denotes thedon’t carecondition. Let
i1,i2,...,in be the loop indices of the original nest andj1,j2,...,jn be
the loop indices of the transformed nest, starting from outermost
position. The following is a brief explanation of our algorithm.

� Our transformation matrix should be such that the LHS array
of the transformed loop should have the innermost index as the
only element in one of the array dimensions and that index should
not appear in any other dimension for this array. In other words,
after the transformation, the LHS arrayC should be of the form
C(�; :::; �; jn; �; :::; �) wherejn (the new innermost loop index)
is in therth dimension and� indicates a term independent ofjn.
This means that rowr of the transformed reference matrix forC
is (0; :::; 0; 1) and all entries of the last column, except the one
in rth row, are zero. After that, the LHS array can be stored in
memory such that dimensionr is the fastest changing dimension.
This approach helps to exploit the spatial locality for this reference.

� Then the algorithm works on one reference from the RHS
at a time. If a rows in the data reference matrix is identical to
rth row of the original reference matrix of the LHS array, then the
algorithm attempts to store this RHS array in memory such that the
sth dimension will be the fastest changing dimension. We note that
having such a rows does not guarantee that the array will be stored

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

Step 1 Initialize i = 1.

Step 2 Set ~̀i
C
:Q = (0; 0; :::; 0; 1) and ~̀

k
C
:Q = (�;�; :::;�; 0) for each

k 6= i.

Step 3 Set memory layout forC such thatith index position will be the fastest chang-
ing dimension.

Step 4 For each array referenceA on the RHS that has~̀l
A

= ~̀
i
C

for somel, try
to set memory layout forA such that thelth dimension will be the fastest
changing dimension.

Step 5 Choose an array referenceA for which the equality inStep 4does not hold.
Initialize j = 1.

Step 6 Set ~̀j
A
:Q = (0; 0; :::; 1; 0) and ~̀k

A
:Q = (�;�; :::;�; 0; 0) for each

k 6= j. If this step is consistent with the previous steps go toStep 7, otherwise
incrementj and go to the beginning of this step. If there exist inconsistencies

for all j values, then initializej = 1, and set~̀j
A
:Q = (0; 0; :::; 1; 0; 0)

and ~̀k
A
:Q = (�;�; :::;�; 0; 0; 0) for eachk 6= j, and repeatStep 6and

so on. If noT�1 is found then fill the remaining entries arbitrarily observing
thedependencesandnon-singularity.

Step 7 RepeatStep 6for all reference matrices of a particularA (Of course, all ref-
erence matrices for a particularA should have the same memory layout).

Step 8 RepeatStep 6for all distinct array references.

Step 9 Record the obtained transformation matrix. Also record, for each array, the
loop index position which appears in the fastest changing position for that
array.

Step 10 Incrementi and go toStep 2(try a different memory layout for the LHS array
C).

Step 11 Compare all the recorded transformation matrices and their associated layouts,
and choose the best alternative.

Figure 1: Compiler algorithm for optimizing locality.

on memory such that thesth dimension will be the fastest changing
dimension.

� If the condition above fails for RHS arrayA, then the algo-
rithm tries to transform the reference toA(�,...,�,F(jn�1),�,...,�),
whereF(jn�1) is an affine function ofjn�1 and other indices ex-
ceptjn, and� indicates a term independent of bothjn�1 andjn.
This helps to exploit the spatial locality at the second innermost
loop. If no such transformation is possible, thejn�2 is tried and so
on. If all loop indices are tried unsuccessfully, then the remaining
entries ofQ are set arbitrarily, observing the data dependences and
non-singularity.

� After a transformation and corresponding memory layouts are
found, they are recorded and the next alternative memory layout for
the LHS is tried and so on. Among all feasible solutions, the one
that exploits more spatial locality in the innermost loop, is chosen.

The details of this algorithm can be found in [12]. Note that
the algorithm considers all possible memory layouts, of which the
row-major and column-major layouts are only two alternatives. Al-
though the algorithm makes a kind of exhaustive search; in practice,
number of loops, number of array references inside the nest and
number of array dimensions are small values; and the approach is
reasonably efficient. It should also be noted that since transforma-
tion matrices resulting from the algorithm are not necessarily uni-
modular, we need more general non-singular transformation theory
such as [16] or [21]. And finally, it should be noted that theSteps
2 and6 involve solving matrix equations. We can use the method
given in [16] with appropriate modifications for completing a par-
tial matrix.

4.2 Example

In this subsection, we illustrate how the locality optimization al-
gorithm works by giving an example. We do not show the steps

or parts of steps which lead to unsuccessful trials. Figure 2:A
shows thei-j-k matrix multiplication routine. The reference ma-
trices for the arrays are as follows:LC =

�
1 0 0
0 1 0

�
, LA =�

1 0 0
0 0 1

�
andLB =

�
0 0 1
0 1 0

�
.

The algorithm works as follows: First, it considers column-major
layout forC.
LC :Q =

�
0 0 1
� � 0

�
. Thereforeq11 = q12 = q23 = 0 and

q13 = 1.
LA:Q =

�
0 0 1
� � 0

�
. Thereforeq23 = 0:

LB :Q =
�

� 1 0
� 0 0

�
. Thereforeq22 = 0 andq32 = 1.

At this pointT�1 = Q =
�

0 0 1
q21 0 0
q31 1 0

�
. By settingq21 = 1 and

q31 = 0, T�1 = Q =
�

0 0 1
1 0 0
0 1 0

�
. All arrays are column-major

and the resulting code is shown in Figure 2:B.
Next the compiler tries the other alternative memory layout, namely
row-major, forC.
LC :Q =

�
� � 0
0 0 1

�
. Thereforeq13 = q21 = q22 = 0 and

q23 = 1.
LB :Q =

�
� � 0
0 0 1

�
. Thereforeq33 = 0:

LA:Q =
�

� 0 0
� 1 0

�
. Thereforeq12 = 0 andq32 = 1.

At this pointT�1 = Q =
�

q11 0 0
0 0 1

q31 1 0

�
. By settingq11 = 1

andq31 = 0, T�1 = Q =
�

1 0 0
0 0 1
0 1 0

�
. All arrays are row-major

and the resulting code is shown in Figure 2:C. Notice that our first
optimized nest is the same nest obtained by earlier works [18, 16].
Our other optimized nest is the same nest used in Lamet al. [15]
for row-major layouts.

5 Algorithm for Maximizing P arallelismand Minimizing
Communication

In this section, we present a technique which considers loop trans-
formations to optimize parallelism and communication in message-
passing machines. Specifically, the algorithm presented here trans-
forms a loop nest such that (1) the outermost transformed loops
is distributed over the processors; (2) data decomposition across
processors is determined for each array; and (3) communication is
performed in large chunks, and it is optimized such that all non-
local data are transferred to respective local memories before the
execution of the innermost loop. Notice that the algorithm can also
be used for the shared-memory UMA and NUMA architectures.
For the NUMA case, the algorithm performs the functions (1) and
(2) listed above; whereas for the UMA case, it performs only the
function (1).

5.1 Explanation

As before, leti1, i2,...,in be the loop indices of the original loop and
j1, j2,...,jn be the loop indices of transformed loop. The following
is the explanation of the algorithm.

� Our transformation matrix should be such that the LHS array
of the transformed loop should have the outermost index as the only
element in one of array dimensions. In other words, the LHS array
C should be of the formC(�; �; :::; j1; :::; �; �) wherej1 (the new
outermost loop index) is in therth dimension. This means that the
rth row of the transformed reference matrix forC is (1; 0; :::; 0; 0).
Then the LHS array can be distributed along the dimensionr across
processors without any communication occurring.

� Then the algorithm works on one reference from RHS at a
time. If a row s of data reference matrix for a RHS arrayA is
identical to a row in the reference matrix for the LHS array, then

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

DO i = 1, n DO u = 1, n DO u = 1, n
DO j = 1, n DO v = 1, n DO v = 1, n
DO k = 1, n DO w = 1, n DO w = 1, n
C(i,j)+=A(i,k)*B(k,j) C(w,u)+=A(w,v)*B(v,u) C(u,w)+=A(u,v)*B(v,w)

ENDDO k ENDDO w ENDDO w
ENDDO j ENDDO v ENDDO v

ENDDO i ENDDO u ENDDO u
(A) (B) (C)

DO u = 1, n/p DO u = 1, n/p DO u = 1, n/p
DO v = 1, n/p DO v = 1, n DO v = 1, n/p
receiveB(*,v) receiveA(*,v) receiveB(v,*)
DO w = 1, n DO w = 1, n/p DO w = 1, n
C(u,v)+=A(u,w)*B(w,v) C(w,u)+=A(w,v)*B(v,u) C(u,w)+=A(u,v)*B(v,w)

ENDDO w ENDDO w ENDDO w
ENDDO v ENDDO v ENDDO v

ENDDO u ENDDO u ENDDO u
(D) (E) (F)

Figure 2: (A) Matrix multiplication nest. (B)-(C) Locality optimized versions of (A). (D)-(E) Parallelism optimized versions of (A). (E)-(F)
Versions obtained by the unified algorithm.

Step 1 Initialize i = 1.

Step 2 Set ~̀Ci :Q = (1; 0; :::; 0; 0) i.e. distribute LHS array across processors
along dimensioni.

Step 3 For all array referencesA on the RHS that have~̀Al = ~̀C
i for somel, dis-

tribute arrayA along the dimensionl.

Step 4 Choose an array referenceA for which the equality inStep 3does not hold.
Initialize j = 1.

Step 5 Set~̀Aj :Q = (0; 0; :::; 0; 1) and~̀Ak :Q = (�;�; :::;�; 0) for eachk 6=
j. If a validQ is found, check the determinant of it. If non-zero block transfers
are possible for that RHS array, go toStep 6. If there are no validQ or the
determinant ofQ is zero for allj, block transfers are not possible on that array
with the given distribution of the LHS array; incrementj and go toStep 5.

Step 6 RepeatStep 5for all reference matrices of a particularA.

Step 7 RepeatStep 5for all distinct array references.

Step 8 Record the obtained transformation matrix. Also record the number of arrays
for which there is no communication and the number of arrays for which block
transfers are possible.

Step 9 Incrementi and go toStep 2(try a different distribution for the LHS array).

Step 10 Compare all alternatives and choose the best one.

Figure 3: Compiler algorithm for data decomposition and paral-
lelism.

it is always possible to distribute that array alongsth dimension
across processors without any communication.

� If the condition above does not hold for a RHS reference for
an arrayA, then the entries forQ should be chosen such that some
dimension of that reference consists only of the innermost loop in-
dex, and the other dimensions are independent of the innermost
loop index. That is, the RHS transformed reference should be of
the formA(�; �; :::; jn; :::; �; �) where� indicates a term indepen-
dent ofjn. If this condition is satisfied, the communication arising
from that RHS reference can be moved out of the innermost loop.

� Then (if desired) the previous step is repeated, this time at-
tempting to move the communication out of the second innermost
loop. This process terminates when a loop is encountered outside
of which the communication cannot be moved to.

The algorithm is presented in Figure 3. The details of this algo-
rithm can be found elsewhere [20].

5.2 Example

To illustrate the technique we consider again the naive matrix mul-
tiplication nest shown in Figure 2:A.
The algorithm works as follows:
LC :Q =

�
1 0 0
� � �

�
. Thereforeq11 = 1, q12 = 0 andq13 = 0.

Since~̀A1 = ~̀C
1 , A can be distributed along the first dimension as

well.
LB :Q =

�
0 0 1
� � 0

�
. Thereforeq31 = q32 = q23 = 0 and

q33 = 1.

At this pointQ =
�

1 0 0
q21 q22 0

0 0 1

�
. The remaining entries should

be selected such that the rank ofQ should be3, and no dependence
is violated. In this case the compiler can setq21 = 0 andq22 = 1.
This results in the identity matrix meaning that no transformation is
needed.A andC are distributed by rows, andB by columns. The
resulting program with the data transfer call is shown in Figure 2:D.
Note that the communication is performed outside the innermost
loop.
Next the compiler tries to distributeC in the second dimension.
LC :Q =

�
� � �

1 0 0

�
. Thereforeq21 = 1, q22 = 0 andq23 = 0.

Since~̀B2 = ~̀C
2 , B can be distributed along the second dimension

as well.
LA:Q =

�
0 0 1
� � 0

�
. Thereforeq11 = q12 = q33 = 0 and

q13 = 1.

At this pointQ =
�

0 0 1
1 0 0

q31 q32 0

�
. The remaining entries should

be selected such that the rank ofQ should be3, and no dependence
is violated. The compiler setsq31 = 0 andq32 = 1. This results

in Q =
�

0 0 1
1 0 0
0 1 0

�
. All arrays are distributed by columns. The

resulting program is shown in Figure 2:E. We note that the perfor-
mance of the loop is similar in both the cases.

6 Uni�ed Algorithm

This section presents a unified greedy algorithm which combines
the characteristics of the two algorithms presented in the previ-
ous two sections (Sections 4 and 5). Specifically the unified al-
gorithm (1) transforms the nest such that the outermost loop can
be run in parallel across the processors; (2) decomposes each array

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

across the processors; (3) optimizes interprocessor communication
by vectorizing it whenever possible; (4) optimizes locality (cache
performance) by assigning appropriate storage layout for each ar-
ray, and by transforming the iteration space. For the distributed-
memory multicomputers, all four steps can be applied. For the
shared-memory NUMA case, the functions (1), (2) and (4) are at-
tempted; and for the UMA case, on the other hand, only the func-
tions (1) and (4) can be performed.

6.1 Explanation

In this subsection we give the details of the unified algorithm. We
assume that there is a single reference per array in the loop nest. An
array is said to beoptimized for parallelismif it can be distributed
along an array dimension where onlyj1 (new outermost loop in-
dex) appears without any communication. An array is said to be
degree� optimized for communicationif it cannot be optimized for
parallelism, but communication for it can be performed before the
�th loop, where1 � � � n. An array optimized for parallelism
is said to be degree0 optimized for communication (essentially
meaning that it needs no communication (non-local access)). An
array is said to bedegree� optimized for localityif it contains the
loop indexjn��+1 in an array dimension and it can be stored on
memory such that this array dimension will be the fastest changing
array dimension (1 � � � n).

We associate a pair(�; �) for each array reference where�
and � denote the degree of communication and locality respec-
tively. It can be seen that the pair(0; 1) is thebest possible pair
for an array reference. Our algorithm tries to achieve this best pos-
sible pair for as many references as possible. If the best pair is not
possible, the selection of the next pair to be considered depends
on whether parallelism is favored over locality or vice versa. In
our case, for example for a3-deep nest in which2-dimensional
arrays are accessed, we took a modest approach and followed the
sequence(0; 1), (0; 2), (3; 1); that is, if an array reference cannot
be optimized for parallelism, we checked only for the case where
the communication can be taken out of the innermost transformed
loop. If (3; 1) is tried unsuccessfully, we chose to apply pure com-
munication or pure locality optimization.

Theoretically, if there are enough loop indices and array di-
mensions, an array referenceC can be transformed to the form
C(�; �; ::; �; j1; �; ::; �; jn; �; ::; �; �) where� denotes a subscript
independent ofjn. If such a transformation is possible, thenC can
be distributed across processors along the dimension wherej1 oc-
curs alone, and at the same time local portions of it can be stored on
memory such that the dimension wherejn occurs will be the fastest
changing dimension. The problem is that in most of the cases, num-
ber of loops and number of array dimensions are small values, and
consequently, the number of entries inT�1 is small (e.g. 4, 9 etc.).
Once the above form is obtained for a reference, since most of the
entries ofT�1 are already determined, the chances of optimizing
the other references would be low. Because of this fact, our algo-
rithm should consider other degrees of communication and locality
as well.

Each degree of communication and locality suggest a number
of possible transformed reference matrices. For a reference, opti-
mization for pair(�; �) can be formulated as problem of finding
a transformed reference matrix which is suitable for both� de-
gree communication and� degree locality. For example, Table 1
presents a few transformed reference matrices for several (�,�)
pairs for a three-deep nest in which two-dimensional arrays are ac-
cessed. The unified algorithm is given in Figure 4.Li denotes the
original reference matrix for theith array in the nest,i = 1 corre-
sponding to the LHS array. Thejth possible transformed reference

Table 1: Array reference matrices for commonly used (�; �) pairs
for a two-dimensional array enclosed in a three-deep loop nest.

(0,1) (0,2) (3,1)�
0 0 1
1 0 0

� �
1 0 0
� 1 0

� �
0 0 1
� � 0

�
�

1 0 0
0 0 1

� �
� 1 0
1 0 0

� �
� � 0
0 0 1

�

Step 1 Initialize i = 1. Initialize (�; �) (0; 1) (try the best possible optimiza-
tion).

Step 2 Initialize j = 1. (try the first transformed reference matrix for this(�; �)
pair).

Step 3 SetLi:Q = Rj
(�;�) .

If there is no inconsistency, then go toStep 4; else incrementj (try the next
possible transformed reference matrix for this(�; �) pair) and repeat this
step.

If there are inconsistencies for every value ofj, then increment(�; �) pair
(try the next pair on the trial sequence) and repeat this step.

If there are inconsistencies for all(�; �) pairs, then apply pure communica-
tion or pure locality optimization for this reference.

Step 4 Incrementi and go toStep 2(optimize the next array reference).

Step 5 When aQ is found, record it. Also record the associated(�; �) pairs for each
array reference.

Step 6 When all solutions are obtained, choose the best alternative by comparing
(�; �) values.

Figure 4: Unified compiler algorithm for optimizing locality, par-
allelism and communication.

matrix for an(�; �) pair is denoted byRj
(�;�).

6.2 Example

We consider the original matrix multiplication nest of Figure 2:A
once again. As before we only show the successful trials.
LC :Q =

�
0 0 1
1 0 0

�
with (�; �) = (0; 1). Thus, q11 = 0,

q12 = 0, q13 = 1, q21 = 1, q22 = 0 andq23 = 0.
LA:Q =

�
0 0 1
� � 0

�
with (�; �) = (3; 1). Thereforeq33 = 0.

LB :Q =
�

� 1 0
1 0 0

�
with (�; �) = (0; 2). Thereforeq32 = 1.

At this pointT�1 = Q =
�

0 0 1
1 0 0

q31 1 0

�
. By settingq31 = 0,

T�1 = Q =
�

0 0 1
1 0 0
0 1 0

�
. The resulting program is shown in

Figure 2:E. All arrays are column-wise decomposed across proces-
sors. The arraysC andB are optimized for parallelism (� = 0),
whereas the arrayA is optimized for communication with� = 3.
The arraysC andA are optimized for locality in the innermost
loop, whereas for arrayB the locality is exploited in the second
loop.
Next the algorithm considers the other alternative for the arrayC.
LC :Q =

�
1 0 0
0 0 1

�
with (�; �) = (0; 1). Thereforeq11 = 1,

q12 = 0, q13 = 0, q21 = 0, q22 = 0 andq23 = 1.
LA:Q =

�
1 0 0
� 1 0

�
with (�; �) = (0; 2). Thereforeq32 = 1

andq33 = 0.
LB :Q =

�
� � 0
0 0 1

�
with (�; �) = (3; 1). Thereforeq32 = 1.

At this pointT�1 = Q =
�

1 0 0
0 0 1

q31 1 0

�
. By settingq31 = 0,

T�1 = Q =
�

1 0 0
0 0 1
0 1 0

�
. The resulting program is shown in

Figure 2:F. All arrays are row-wise decomposed across processors.

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

The arraysC andA are optimized for parallelism (� = 0), whereas
the arrayB is optimized for communication with� = 3. The
arraysC andB are optimized for locality in the innermost loop,
whereas for arrayA the locality is exploited in the second loop.

7 Global Optimization Problem

In this section, we concentrate on the global optimization problem;
that is, optimizing a number of consecutive loop nests simultane-
ously. In fact, we will handle a sub-problem, namely optimizing
locality across a number of loop nests. The other part of the global
problem, data decomposition across processors in multiple nests,
was handled extensively [23, 7, 2] and is beyond the scope of this
paper. Although the algorithm to be presented in this section can
easily be modified to incorporate optimal global data decomposi-
tion detection as well, for the sake of clarity we assume in this
section that all possible data decompositions across processors are
equally acceptable. We plan on integrating the global algorithm to
be presented here with the techniques given by [23], [7] and [2].
Throughout this section, we assume that the algorithm presented
in 6, henceforth referred aslocal(), is run for each individual loop
nest, and all possible optimized memory layouts and loop orders
are determined. Due to lack of space, we only give formal defini-
tion of the problem; and sketch an approach to attack it.

LetfN1;N2; :::;Nng denote the different loop nests in the pro-
gram; andfA1;A2; :::;Amg denote the different arrays. In gen-
eral each nest can access a subset of these arrays. We assume that
local() is run for each nest, and a number of possible optimized
layout combinations are obtained for each nest. The problem of
finding a global array layout combination that satisfies all the nests
is NP-complete even for the restricted case where only row-major
(r-m) and column-major (c-m) memory layouts are considered. We
search for a near-optimal solution with polynomial time which is
good enough in practice. LetLL`N (A) be a local layout for an
arrayA in a combinatioǹ for nestN andGL(A) be the global
layout for arrayA. We define the following parameter:

�(A;N ; `) =

n
0 if LL`

N
(A) = GL(A) orA is not referred inN

1 otherwise

Given this definition of�, the cost of nestN under local lay-
out combinatioǹ is LCost(N ; `) =

P
A
�(A;N ; `). Similarly

ACost(A; `) =
P
N
�(A;N ; `) is the cost of arrayA consider-

ing all the loop nests, again under a specific local combination`.
An important relation betweenLCost andACost is
X
A

ACost(A; `) =
X
N

LCost(N ; `) =
X
N

X
A

�(A;N ; `)

Now we can formulate the global layout determination problem as
a problem of finding global layout assignments for all arrays (that
is, to determineGL(A) for eachA) and corresponding local layout
assignments for each nest (that is, to determine` for eachN) such
that

P
N

P
A
�(A;N ; `) is minimized.

Let us now concentrate on an example in which there is only
one alternative per loop nest. In this special case, we can apply
the following heuristic: Consider each column in turn, and pick
up the layout that occurs most frequently. In case of tie, choose
a layout arbitrarily. The complexity of this heuristic is�(n �m)
wheren is the number of nests andm is the number of arrays.
Unfortunately,local() can return multiple alternatives for a single
nest. Assumingp alternatives per nest, a simple extension of the
above heuristic results in�(pn � n�m) complexity which is not
acceptable unlessn is very small. In what follows we formulate the
problem on a DAG (directed acyclic graph) as in [13] and solve it
using ashortest pathalgorithm.

Let alternatives(N) be a function that gives the number of al-
ternative layout combinations for nestN . Similarly letarrays(N)
be a function that gives the number of distinct arrays referenced in
nestN . Our approach consists of four steps:

(1) We first construct a bipartite graph where one group of
nodes corresponds to loop nests while the other group corresponds
to the arrays. There is an edge between an array node and a nest
node if and only if the array is referenced in the nest. Such a bipar-
tite graph is calledinterference graphby Andersonet.al. [1], and
they use it to solve the global data decomposition problem. Then
an algorithm to find the connected components is run on this graph.
Each connected component corresponds to a group of loop nests
that access a subset of the arrays declared in the program. The
complexity of the connected components algorithm on a bipartite
graph is�(n+m)wheren is the number of nests andm is the num-
ber of arrays [6]. The following steps operate on a single connected
component at a time.

(2) In this step, an appropriate order of the loop nests is de-
termined. This order will be usedonly for constructing a DAG on
which ashortest pathalgorithm is run, and isnot used to change
the textual order of the nests in the program by any means. Differ-
ent heuristics can be used to determine an order for the loop nests.
The two of them are

min-edge The idea here is to order the nests such that the
total number of the edges in the DAG will be minimized.

max-accuracy This heuristic tries to increase the accuracy
of the solution at the expense of a more complex DAG.

(3) Suppose that, without loss of generality,fN1;N2; :::;Nng
is the order obtained by the previous step. We construct a DAG as
follows: For each alternative layout combination of each nest we
create a node. This node is given the nameNi;j wherei is the nest
number andj is the number of the alternative. There is a directed
edge fromNi;j to Ni+1;k for all 1 � j � alternatives(Ni)
and1 � k � alternatives(Ni+1). This edge is annotated by
a set of arrays whose local memory layouts differ inNi andNj .
The costof this edge is defined as the number of those arrays. A
source node (S) and a target node (T) (both with zero cost) are also
added onto DAG such that there is an edge fromS toN1;j for all
1 � j � alternatives(N1), and an edge fromNn;k to T for all
1 � k � alternatives(Nn). Then a shortest path algorithm for
this DAG is run fromS to T . The path with the minimum cost
gives a good local layout combination for each nest.

(4) The final phase of the heuristic determines the global mem-
ory layouts using the local layout assignments obtained in the previ-
ous step. We refer to the shortest path obtained in the previous step
by �; and theith node of the shortest path (excluding the source and
target) is denoted by�i. Suppose that there is a conflict between�i
and�i+1 on an arrayA. In order to resolve this conflict the lay-
out forA should be changed either in�i or in �i+1, as we do not
consider data redistribution in this paper. Our approach decides the
alternative to be changed by considering all nodes along the short-
est path. The algorithm traverses the shortest path and records, for
each array for which there are conflicting demands, the number of
r-m and c-m demands. Then, in an attempt to satisfy the major-
ity of the nests, it chooses the layout that occurs most frequently.
Notice that this is exactly the same procedure used for solving the
simpler case of the problem where there is a single alternative per
nest. After that, the local layouts in a nest which are different from
global layouts are changed accordingly.

To sum up, after the third phase, the local layout combinations
for each nest, and after the fourth phase, the global layout combi-
nation for the whole program are determined, and then the local
layouts are adjusted accordingly.

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

DO i = 1, n DO u = 1, n DO u = 1, n
DO j = 1, n DO v = 1, n DO v = 1, n
DO k = 1, n receiveC(v,*) receiveB(v,*)
DO l = 1, n DO w = 1, n, n receiveC(*,v)
A(i,j)+=B(k,i)+C(l,k) DO y = 1, n DO w= 1, n

ENDDO l A(u,y)+=B(w,u)+C(v,w) DO y=1, n
ENDDO k ENDDO y A(y,u)+=B(v,y)+C(w,v)

ENDDO j ENDDO w ENDDO y
ENDDO i ENDDO v ENDDO w

ENDDO u ENDDO v
ENDDO u

(A) (B) (C)

Figure 5: (A) A four-deep loop nest. (B) Optimized version of (A). (C) Optimized version of (A).

8 Simulation Results and Experiments

In this section, we present our simulation and experimental results
on three programs: matrix multiplication, a four deep loop nest,
and a simple benchmark. The last program is optimized using the
global optimization algorithm presented in Section 7 as it contains
more than one nest. The algorithms presented in this paper are
applied manually to the programs, then the loops pointed by the
algorithms are parallelized usingINDEPENDENTdirective of the
HPF [3] language. We demonstrate the simulation results obtained
by using an enhanced version of DineroIII [8], a trace-driven cache
simulator. We simulate the miss rates over a range of cache sizes
(4K, 8K, 16K, 32K, 64K, 128K), block (cache line) sizes (8, 16, 32,
64, 128, 256) and set-associativities (direct-mapped, 2-way, 4-way,
full-associative) for single processor. Also presented are empirical
results obtained on SPARCstation 5, IBM SP-2, SGI Challenge and
Convex Exemplar. SPARCstation 5 has a 16K direct-mapped data
cache and a 32 MB memory. IBM SP-2 is a distributed-memory
message-passing machine and has RS/6000 Model 590 processors,
each with a 256 KB data cache. SGI Challenge has a logically
and physically shared memory system (a UMA architecture). It
uses snoopy write-invalidate cache coherence. Each node has a
16KB direct-mapped data cache and a 4MB L2 data cache, which
is 4-way set-associative. The cache line size is 32 bytes on the
internal cache and 128 bytes on the L2 cache. In SGI experiments,
static scheduling has been employed. The exemplar SP-1200, on
the other hand, has 1MB data cache. The line size is 32 bytes, and
the cache is direct-mapped. Due to space concerns, we present only
a subset of our simulation and experimental results.

Tiling is a technique to improve the locality and parallelism, and
is a combination of strip-mining and loop permutation [28, 29, 10,
22]. Due to interference misses it is difficult to select a suitable tile
size. In other words, unless the tile size is tailored according to the
matrix size and cache parameters, the performance of tiling may
be rather poor [5, 15]. Our algorithm improves the performance of
tiling as it enhances inter-tile locality.

Matrix Multiplication: Figure 6 demonstrates the miss ratios
for the matrix multiplication nest with500 � 500 double arrays
on a direct-mapped cache. We present four different versions of
the program: unoptimized (Unopt), optimized (all arrays column-
major,Opt), tiled version of the unoptimized nest (Unopt+Tiled)
and tiled version of the optimized nest (Opt+Tiled). The first thing
to notice is that the tiled-optimized version outperforms the rest
for all cache and block sizes. It is also important to note that, for
some cases, even optimized nest without tiling performs better than
the tiled-unoptimized version (e.g. with cache size=8K, and block
size=128.) The tile size is fixed at32 elements for the tiled ver-
sions. The results clearly show the effectiveness of our approach at

improving the cache locality in uniprocessors.
Figure 7 illustrates theinsensitivityof the optimized tiled ver-

sion to the tile size. The numbers above the bars denote the tile
sizes. Notice that while the miss ratio of the unoptimized-tiled ver-
sion increases with the tile size, that of the optimized-tiled version
is quite stable. We note that for this example, similar results have
been obtained by Li [16] as well.

Figures 8:A and B show the execution times for the matrix
multiplication nest with different input sizes on SPARCstation 5
and a single node of SGI Challenge respectively; and Figure 8:C
gives the execution times on different number of processors on SGI
Challenge with1000 � 1000 double matrices. We note that for
1000 � 1000 double matrices there is20% performance improve-
ment over the unoptimized nest on a single node of SGI Challenge;
and on SPARCstation 5 with500�500 double matrices nearly200
seconds are saved (40% performance improvement). The improve-
ment on multiprocessors comes from both eliminating false sharing
and exploiting spatial locality.

Figure 9:A shows the performance of our approach on SP-2
with 512 � 512 real arrays usingpghpf[3] compiler with no opti-
mizations turned on. We report the execution times for four differ-
ent versions:
Unopt Nocomm: Unoptimized version without communication.
The loop order and memory layouts are not changed; arraysC and
A are distributed by rows across the processors; and arrayB is
replicated resulting in no communication.
Unopt Comm: Unoptimized version with communication. The
loop order and memory layouts are not changed; arraysC andA
are distributed by rows whereas arrayB is distributed by columns.
Opt Nocomm: Optimized version without communication. The
loop order is shown in Figure 2:E, and all arrays have column-major
layout. ArraysC andB are distributed by columns, while arrayA
is replicated.

Opt Comm: Optimized version with communication. The loop
order is shown in Figure 2:E. All arrays are column-major and dis-
tributed by columns across the processors.
Opt Nocomm has the best execution times as can be seen from
Figure 9:A; another point is that, for all processor sizes, it is bet-
ter thanUnopt Nocomm andOpt Comm is better than theUn-
opt Comm. Clearly, this improvement comes from the locality
optimizations. We note that the super-linear speedups in some
cases are due to cache effects. It is interesting to observe that
the execution times forOpt Comm are very close to those ofUn-
opt Nocomm, the average difference being1:5 seconds. This is
because of the fact that the compiler optimizes inter-processor com-
munication aggressively, and consequently locality optimizations
become more and more important. This result also implies that if
locality is not taken into account, the parallelized versions of scien-
tific nests may not produce the desired speedups on multicomput-

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

16 32 64 128
Block Size

0.00

0.10

0.20

0.30

0.40

M
is

s
R

a
tio

Cache Size=4K, n=500

16 32 64 128
Block Size

0.00

0.10

0.20

0.30

0.40

M
is

s
R

a
tio

Cache Size=8K, n=500

16 32 64 128
Block Size

0.00

0.10

0.20

0.30

0.40

M
is

s
R

a
tio

Cache Size=16K, n=500

16 32 64 128
Block Size

0.00

0.10

0.20

0.30

0.40

M
is

s
R

a
tio

Cache Size=32K, n=500

Unopt
Opt
Unopt+Tiled
Opt+Tiled

Figure 6: Simulation results for matrix multiplication.

0.00

0.10

0.20

0.30

0.40

M
is

s
R

at
io

Cache Size=8K, n=750, Block Size=32

16

32

64

128

256

16

32 64 128 256

Unopt Opt

0.00

0.10

0.20

0.30

0.40

M
is

s
R

at
io

Cache Size=8K, n=750, Block Size=64

16
32

64

128

256

16
32 64 128 256

Unopt Opt

0.00

0.10

0.20

0.30

0.40

M
is

s
R

at
io

Cache Size=8K, n=750, Block Size=128

16

32
64

128
256

16 32 64
128 256

Unopt Opt

Figure 7: Tile size sensitivity for matrix multiplication.

200 300 400 500
problem size (n)

0.0

100.0

200.0

300.0

400.0

500.0

ex
ec

ut
io

n
tim

e
(s

ec
)

(A)

Unopt
Opt

250 500 750 1000
problem size (n)

0.0

100.0

200.0

300.0

400.0

500.0

ex
ec

ut
io

n
tim

e
(s

ec
)

(B)

Unopt
Opt

1 2 4 8 12
number of processors (p)

0.0

100.0

200.0

300.0

400.0

500.0

ex
ec

ut
io

n
tim

e
(s

ec
)

(C)

Unopt
Opt

Figure 8: Execution times for matrix multiplication (A) on SPARCstation 5 (B) on a single node of SGI. (C) on multiple nodes of SGI with
1000 � 1000 double matrices.

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

ers, even if the maximum degree of parallelism is obtained and the
communication is minimized.

Finally, Figure 9:B shows the performance of the matrix multi-
plication on the Convex Exemplar. The same four versions1 de-
scribed earlier were run on up to32 processors. We note that
Opt Nocomm outperforms all other versions for almost all pro-
cessor sizes. The reduction in the performance observed beyond 8
processors is not specific to this example and can be attributed to
poor inter-hypernode performance in Convex [25].

A Four-Deep Loop Nest: While matrix multiplication does not
take benefit of the layout flexibility, the four deep loop nest shown
in Figure 5:A does. Array reference matrices for this nest are as

follows. LA =

�
1 0 0 0
0 1 0 0

�
, LB =

�
0 0 1 0
1 0 0 0

�

andLC =

�
0 0 0 1
0 0 1 0

�
. Application of the unified algo-

rithm results in two optimized node programs as shown in Fig-
ures 5:B and C respectively. In Figure 5:B, arrayA is optimized
with (0; 1), referenceB is optimized with(0; 2), and referenceC
is optimized with(3; 2). ArraysA andC have row-major layouts
and are distributed by rows, whereas arrayB is column-major and
is distributed by columns. Before thew-loop, communication is
performed forC. In Figure 5:C, on the other hand, referenceA
is optimized with(0; 1) and referenceC is optimized with(3; 2),
incurring communication before thew-loop. ArrayB could only
be optimized for locality; and communication is needed for it be-
fore thew-loop. ArraysA andC are row-major whereas arrayB
is column-major.

Figure 10 illustrates the lack of sensitivity to the tile size exhib-
ited by the optimized tiled versions. We ran experiments with three
different versions:Unopt, unoptimized version (Figure 5:A);W-
Opt, optimized version by fixing row-major layouts for all arrays;
andOpt one of the versions obtained by our approach (Figure 5:B).
As before, the numbers above the bars denote the tile sizes. Notice
that while the miss ratio of the unoptimized tiled version is very
unstable, that of the optimized version (Figure 5:B) is stable. Also
note that our version outperformsW-Opt for all tile, block (cache
line) and cache sizes; that is, our approach exploits inter-tile local-
ity better.

Figures 11:A and B present the execution times for this example
with different input sizes on SPARCstation 5 and a single node of
SGI respectively.Opt-1 andOpt-2 denote the optimized versions
obtained by our algorithm (Figures 5:B and C). Figures 11:C and
D, on the other hand, show the execution times on multiple nodes
of SGI Challenge with150 � 150 and200 � 200 double arrays
respectively. It can be seen that although the approach based on
loop transformations alone can improve the performance, our ap-
proach results in the best execution times on both uniprocessor and
multiprocessors. In SPARC, for example, with250 � 250 double
matrices our approach (Opt-2) runs in almost 800 seconds less than
the W-Opt. On four nodes of the SGI Challenge, with200 � 200
double arrays our version (Opt-2) saves36 more seconds thanW-
Opt. This example clearly shows that relaxing the memory layouts
can save substantial amounts of time for some nests.

Figure 12:A demonstrates the performance of the four deep
loop nest on SP-2 with128 � 128 real arrays. We compare the
versions given in Figures 5:A, B and C respectively. As shown in
the figure, the optimized versions perform similarly, and they out-
perform the unoptimized version for all processor sizes. Finally,

1We should emphasize that the data distribution across processors are dictated in
the HPF compiler level. How these directives are interpreted in terms of Convex data
distribution directives (e.g.block-shared) is not investigated here.

Figure 12:B shows the performance of the four deep loop nest on
the Convex Exemplar. The versions given in Figures 5:A and C
compared. The results illustrate the effectiveness of our approach;
although the performance degrades beyond 8 processors for all ver-
sions.

A Simple Benchmark: We now show the impact of our global
optimization algorithm (Section 7) on a simple benchmark that
can benefit from layout optimization. The program shown in Fig-
ure 13:A is from [4]. The left part of Figure 14 shows the improve-
ment obtained by our approach in terms ofnormalizedmiss rates.
For each cache size, the three bars from bottom to top correspond
to unoptimized version with column-major layouts (Unopt-C), un-
optimized version with row-major layouts (Unopt-R) and version
optimized by our approach (Opt) respectively. In the optimized
version, the loops in the first nest are interchanged; and the follow-
ing layouts are assigned:A, C, andD are column-major;B and
E are row-major. Also, in the optimized version, the outermost
loop in each nest is parallelized, and the arraysA, C andD are
distributed column-wise while the arraysB andE are distributed
row-wise. With these optimizations, the spatial locality for every
reference is exploited in the innermost loop and the optimized pro-
gram is given in Figure 13:B. In simulations,400 � 400 double
matrices are used.

The right part of Figure 14 shows the execution times on SP-2
with 2048 � 2048 real arrays. For a single processor, the problem
size was too big to fit in the memory; so we ran the experiments
on 2, 4, 8 and16 processors. As can be seen from the figure, the
optimized version improves the performance substantially (30% to
50%).

From the simulation results and our experiments we can con-
clude that our optimizations in general reduce the miss rate and
sensitivity of the program to the cache size, and improve the scal-
ability of the program by improving spatial locality. The effect of
our algorithm on false sharing, though, is yet to be evaluated quan-
titively.

9 Conclusions

The broad variety of parallel architectures render designing unified
compiler techniques difficult. However, although the underlying
hardware facilities are different, we believe all types of parallel
architectures will benefit from compiler optimizations which aim
good locality and large-granular parallelism. In this paper, we de-
scribed a constructive algorithm that handles locality, parallelism
and data decomposition in a unified manner. Our algorithm de-
rives the terms of a transformation matrix such that the best locality
and minimum communication are obtained. Our experiments with
message-passing, UMA and NUMA architectures demonstrate the
effectiveness of our approach on different parallel platforms.

Further research will involve investigating compiler algorithms
which can handle complex data distributions (e.g. distributions
along more than one dimension) and spatial locality in a unified
manner for both single-nest and multiple-nest cases.

Acknowledgments

We would like to thank Eric Schwabe of Northwestern University,
and Ilteris Demirkiran of Syracuse University for enlightening dis-
cussions on the global layout optimization problem.

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

References

[1] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and compu-
tation transformations for multiprocessors. InProc. Fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, July 1995.

[2] J. M. Anderson, and M. S. Lam. Global optimizations for parallelism
and locality on scalable parallel machines. InProc. SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages
112–125, June 1993.

[3] Z. Bozkus, L. Meadows, D. Miles, S. Nakamoto, V. Schuster, and
M. Young. Techniques for compiling and executing HPF programs
on shared-memory and distributed-memory parallel systems. InProc.
1st International Workshop on Parallel Processing, Banglore, India,
December 1994.

[4] M. Cierniak, and W. Li. Unifying data and control transformations
for distributed shared memory machines.Proc. SIGPLAN ’95 Con-
ference on Programming Language Design and Implementation, La
Jolla, California, June 1995.

[5] S. Coleman, and K.S. McKinley. Tile size selection using cache orga-
nization and data layout. InProc. SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation, La Jolla, CA, June
1995.

[6] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms,
The MIT Press, Cambridge, MA, 1990.

[7] M. Gupta, and P. Banerjee. Demonstration of automatic data parti-
tioning techniques for parallelizing compilers on multicomputers. In
IEEE Transactions on Parallel and Distributed Systems, 3(2):179-
193, March 1992.

[8] M. D. Hill, and A. J. Smith. Evaluating associativity in CPU caches.
IEEE Trans. on Computers, C-38, 12, December 1989, pages 1612–
1630.

[9] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran
D for MIMD distributed memory machines.Communications of the
ACM, 35(8):66-88, August 1992.

[10] F. Irigoin, and R. Triolet. Supernode partitioning.Proc. 15th Annual
ACM Symp. Principles of Programming Languages, pages 319-329,
San Diego, CA, January 1988.

[11] Y.-J. Ju and H. Dietz. Reduction of cache coherence overhead by com-
piler data layout and loop transformations.Proc. 4th Workshop on
Languages and Compilers for Parallel Computing, Santa Clara, CA,
August 1991.

[12] M. T. Kandemir, J. Ramanujam, and A. N. Choudhary. A Compiler
Algorithm for Optimizing Locality in Loop Nests. InProc. 11th ACM
International Conference on Supercomputing, pages 269–276, Vi-
enna, Austria, July 1997.

[13] K. Kennedy, and U. Kremer. Automatic data layout for High Per-
formance Fortran. InProceedings of Supercomputing’95, San Diego,
CA, December 1995.

[14] C. Koelbel, D. Lovemen, R. Schreiber, G. Steele, and M.Zosel.High
Performance Fortran Handbook. The MIT Press, 1994.

[15] M. S. Lam, E. Rothberg and M. E. Wolf. The cache performance and
optimizations of blocked algorithms. InProc. 4th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, April 1991.

[16] W. Li. Compiling for NUMA parallel machines. Ph.D. Thesis, Cornell
University, Ithaca, NY, 1993.

[17] W. Li, and K. Pingali. Access Normalization: Loop restructuring for
NUMA compilers.ACM Transactions on Computer Systems, Novem-
ber 1993.

[18] K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with
loop transformations.ACM Transactions on Programming Languages
and Systems,1996.

[19] M. F. P. O’Boyle, and P. M. W. Knijnenburg. Non-singular data trans-
formations: Definition, validity, applications. InProc. 6th Workshop
on Compilers for Parallel Computers, Aachen, Germany, 1996.

[20] J. Ramanujam, and A. Narayan. Integrating data distribution and loop
transformations for distributed memory machines. InProc. 7th SIAM
Conference on Parallel Processing for Scientific Computing,D. Bai-
ley et al.,Eds., pp. 668–673, February 1995.

[21] J. Ramanujam. Beyond unimodular transformations.The Journal of
Supercomputing, 9(4):365–389, 1995.

[22] J. Ramanujam, and P. Sadayappan. Tiling multidimensional iteration
spaces for multicomputers.Journal of Parallel and Distributed Com-
puting, 16(2):108-120, October 1992.

[23] T. J. Sheffler, R. Schreiber, J. R. Gilbert, and S. Chatterjee. Aligning
parallel arrays to reduce communication. InFrontiers ’95: The 5th
Symposium on the Frontiers of Massively Parallel Computation, pages
324-331, McLean, VA, February 1995.

[24] C.-W. Tseng, J. Anderson, S. Amarasinghe, and M. Lam. Unified
compilation techniques for shared and distributed address space ma-
chines. InProc. 1995 International Conference on Supercomputing
(ICS’95), Barcelona, Spain, July 1995.

[25] R. Thekkath, A. P. Singh, J. P. Singh, S. John, and J. Hennessey. An
Evaluation of a commercial CC-NUMA architecture: The CONVEX
Exemplar SPP1200. InProc. 11th International Parallel Processing
Symposium, Geneva, Switzerland, April 1997.

[26] E. Torrie, C-W. Tseng, M. Martonosi, and M. W. Hall. Evaluating the
impact of advanced memory systems on compiler-parallelized codes.
In Proc. International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), June 1995.

[27] M. Wolf, and M. Lam. A loop transformation theory and an algo-
rithm to maximize parallelism.IEEE Transactions on Parallel and
Distributed Systems, 2(4):452-471, October 1991.

[28] M. Wolf, and M. Lam. A data locality optimizing algorithm. InProc.
ACM SIGPLAN 91 Conf. Programming Language Design and Imple-
mentation, pages 30–44, June 1991.

[29] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, CA, 1996.

[30] H. Zima and B. Chapman. Compiling for distributed-memory sys-
tems.Proceedings of the IEEE, 81(2):264-287, 1993.

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

1 2 4 8 16
number of processors (p)

0.0

20.0

40.0

60.0

80.0

100.0

e
xe

cu
tio

n
 t
im

e
 (

se
c)

(A)

Unopt_Nocomm
Unopt_Comm
Opt_Nocomm
Opt_Comm

12 4 8 16 32
number of processors (p)

0.0

100.0

200.0

300.0

e
xe

cu
tio

n
 t
im

e
 (

se
c)

(B)

Unopt_Nocomm
Unopt_Comm
Opt_Nocomm
Opt_Comm

Figure 9: Execution times for matrix multiplication on (A) SP-2 and (B) Convex Exemplar

0.00

0.10

0.20

0.30

0.40

M
is

s
R

at
io

Cache Size=8K, n=750, Block Size=32

Unopt W-Opt Opt

16

3264

128

256

16
3264128256

163264128
256

0.00

0.10

0.20

0.30

0.40

M
is

s
R

at
io

Cache Size=8K, n=750, Block Size=64

Unopt W-Opt Opt

16

3264

128

256

1632 64128256

16 3264128256

0.00

0.10

0.20

0.30

0.40

M
is

s
R

at
io

Cache Size=8K, n=750, Block Size=128

Unopt W-Opt Opt

16

3264

128
256

16 3264128256
163264128256

Figure 10: Tile size sensitivity for a four-deep nest.

50 100 150 200 250
problem size (n)

0.0

1500.0

3000.0

4500.0

6000.0

7500.0

9000.0

10500.0

12000.0

e
xe

cu
tio

n
 t

im
e

 (
se

c)

(A)

Unopt
W-Opt
Opt-1
Opt-2

50 100 150 200 250
problem size (n)

0.0

500.0

1000.0

1500.0

e
xe

cu
tio

n
 t

im
e

 (
se

c)

(B)

Unopt
W-Opt
Opt-1
Opt-2

1 2 4 8
number of processors (p)

0.0

100.0

200.0

300.0

e
xe

cu
tio

n
 t

im
e

 (
se

c)

(C)

Unopt
W-Opt
Opt-1
Opt-2

1 2 4 8
number of processors (p)

0.0

200.0

400.0

600.0

800.0

e
xe

cu
tio

n
 t

im
e

 (
se

c)

(D)

Unopt
W-Opt
Opt-1
Opt-2

Figure 11: Execution times (A) on SPARCstation 5. (B) on a single node of SGI. (C) on multiple nodes of SGI with150�150 double arrays.
(D) on multiple nodes of SGI with200 � 200 double arrays.

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

1 2 4 8 16
number of processors (p)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

e
xe

cu
tio

n
 t
im

e
 (

se
c)

(A)

Unopt
Opt-1
Opt-2

12 4 8 16 32
number of processors (p)

0.0

100.0

200.0

300.0

400.0

e
xe

cu
tio

n
 t
im

e
 (

se
c)

(B)

Unopt
Opt

Figure 12: Execution times for a four deep loop nest on (A) SP-2 (B) Convex Exemplar.

DO i = 1, n DO j = 1, n
DO j = 1, n DO i = 1, n
A[i,j]=B[j,i]*C[i,j]+D[i,j]* LOG (E[j,i]) A[i,j]=B[j,i]*C[i,j]+D[i,j]* LOG (E[j,i])

ENDDO j ENDDO i
ENDDO i ENDDO j

DO i = 1, n DO i = 1, n
DO j = 1, n DO j = 1, n
B[i,j]=A[j,i]+E[i,j] B[i,j]=A[j,i]+E[i,j]

ENDDO j ENDDO j
ENDDO i ENDDO i

(A) (B)

Figure 13: (A) A simple benchmark. (B) Optimized version of (A).

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Miss Rates

8K

16K

32K

64K

128K

C
a
ch

e
 S

iz
e

Simple Benchmark, Block Size = 32

Unopt-C

Unopt-R

Opt

2 4 8 16
number of processors (p)

0.0

2.0

4.0

6.0

8.0

10.0

e
xe

cu
tio

n
 t

im
e

 (
se

c)

Unopt
Opt

Figure 14: Normalized miss rates for simple benchmark (left) and execution times on SP-2 (right).

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97)
0-8186-8090-3/97 $10.00 © 1997 IEEE

