
Exploiting Shared Scratch Pad Memory Space in
Embedded Multiprocessor Systems

Mahmut Kandemir
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802

kandemir@cse.psu.edu

J. Ramanujam
Dept. Elec. & Comp. Engr.
Louisiana State University
Baton Rouge, LA 70803

jxr@ece.lsu.edu

A. Choudhary
Dept. Elec. & Comp. Engr.
Northwestern University

Evanston, IL 61801

choudhar@ece.nwu.edu

ABSTRACT
In this paper, we present a compiler strategy to optimize data ac-
cesses in regular array-intensive applications running on embed-
ded multiprocessor environments. Specifically, we propose an opti-
mization algorithm that targets the reduction of extra off-chip mem-
ory accesses caused by inter-processor communication. This is
achieved by increasing the application-wide reuse of data that re-
sides in the scratch-pad memories of processors. Our experimental
results obtained on four array-intensive image processing applica-
tions indicate that exploiting inter-processor data sharing can re-
duce the energy-delay product by as much as 33.8% (and 24.3%
on average) on a four-processor embedded system. The results also
show that the proposed strategy is robust in the sense that it gives
consistently good results over a wide range of several architectural
parameters.
Categories and Subject Descriptors B.3 [Hardware] Memory
Structures; D.3.4 [Software] Programming Languages: Processors
[Compilers]
Terms Algorithms, management, performance.
Keywords Embedded multiprocessors, energy consumption, scratch
pad memories, access patterns, compiler optimizations, data tiles.

1. INTRODUCTION
The mobile/embedded computing device market is projected to

grow to 16.8 million units in 2004, representing an average annual
growth rate of 28% over the five year forecast period [10]. This
brings up the issue of optimizations in application design, system
software and circuit/architectural levels for resource-constrained
devices, where battery energy and limited storage capabilities are
brought into spotlight. While there have been significant strides
made in optimizing energy and performance using circuit and ar-
chitectural level optimizations, not many studies have looked at the
problem of software level optimizations for mobile/embedded sys-
tems. Consequently, any effort in this direction will help us to re-
alize the goal of achieving high performance and low energy con-
sumption in mobile/embedded devices.

As microprocessors grow more and more powerful, designers are
building larger and ever more sophisticated systems to solve com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

plex problems. In particular, in the area of digital signal and video
processing, specialized microprocessors are getting more powerful,
making them attractive for a wide range of embedded applications.
As a result of this, embedded system designers are now using mul-
tiple processors in a single system (either in the form of SoC or in
the form of a multiprocessor board) to address the computational
requirements of a wide variety of applications. In future, we can
expect that more and more embedded systems will be based on
multiprocessor architectures.

Many applications from image and video processing domains
have significant data storage requirements in addition to their press-
ing computational requirements. Previous studies [5, 13] show that
high off-chip memory latencies and energy consumptions are likely
to be the limiting factor for future embedded systems. Therefore,
compiler-based techniques for optimizing memory access patterns
are extremely important. An optimizing compiler can be particu-
larly useful in embedded image and video processing applications
as many of these applications exhibit regular (compile time analyz-
able and optimizable) data access patterns. Previous work [2, 9]
shows that regular data access patterns found in array-dominated
applications can be better captured if we employ a scratch pad
memory (a software-managed SRAM), instead of a more tradi-
tional data cache.

In this paper, we present a compiler-based strategy for optimiz-
ing energy consumption and memory access latency of array dom-
inated applications in a multiprocessor based embedded system.
Specifically, we show how a compiler can increase data sharing
opportunities when multiple processors (each one is equipped with
a scratch pad memory) operate on a set of arrays in parallel. This
is in contrast with previous work on scratch pad memories that ex-
clusively focused on single processor architectures. In this paper,
we make the following major contributions:
– We show that inter-processor communication requirements in

a multiprocessor embedded system can lead to extra off-chip
memory requests and present a compiler strategy that elimi-
nates these extra off-chip memory requests. Our strategy is
implemented using an experimental compiler infrastructure [1]
and targets array-dominated embedded applications.

– We report performance and energy consumption data showing
the effectiveness of our optimization strategy. The results show
that exploiting inter-processor data sharing can reduce energy-
delay product by as much as 33.8% (and 24.3% on average)
on a four-processor embedded system. The results also show
that the proposed strategy is robust in the sense that it gives
consistently good results when several architectural parameters
are varied over a wide range.

The rest of this paper is organized as follows. In the next section,
we discuss our multiprocessor architecture and execution model.
In Section 3, we present details of our optimization strategy. In
Section 4, we introduce our experimental setup and report experi-

15.2

219

Core 1

Core 2

Core 3

Core 4

SPM 2

SPM 1

SPM 3

SPM 4

Clock Circuitry

ASIC

Remaining
Circuitry

Synhronization/Communication Logic

O
 f

 f
 -

 C
 h

 i
 p

D
 R

 A
 M

VS-SPM
SoC

Figure 1: A VS-SPM based system architecture.

mental results. In Section 5, we offer our conclusions and give an
outline of the planned future work on this topic.

2. ARCHITECTURE, EXECUTION MODEL
A scratch pad memory (SPM) is a fast SRAM that is managed by

software (the application and/or compiler) [11, 9, 2, 14]. It can be
used for optimizing both data and instruction accesses. In applica-
tions that exhibit regular data access patterns (which are compile-
time analyzable and optimizable), an SPM can outperform a con-
ventional data cache memory as software can lead to a better flow
of data to/from SPM as compared to the conventional cache, whose
management of the flow of data is at a fine-grain level (cache line
granularity), controlled by hardware, and mostly independent of
the application [9].

A virtually shared scratch pad memory (VS-SPM), on the other
hand, is a shared SRAM space made up by individual SPMs of
multiple processors. In this paper, we focus on a multiproces-
sor on-a-chip architecture, as shown in Figure 1. In this architec-
ture, we have a system-on-a-chip (SoC) and an off-chip DRAM
that can hold data as well as instructions. The SoC holds multi-
ple processor cores (with their local SPMs), inter-processor com-
munication/synchronization mechanism, clock circuitry, and some
ASIC. The SPMs of individual processors make up a VS-SPM.
Each processor has fast access to its own SPM as well as to SPMs of
other processors. With respect to a specific processor, the SPMs of
other processors are referred to as remote SPMs. Accessing remote
SPMs is possible using fast on-chip communication links between
processors. Accessing off-chip DRAM, however, is very costly in
terms of both latency and energy. Since per access energy and la-
tency of VS-SPM are much lower than the corresponding values
of DRAM, it is important to make sure that as many data requests
(made by processors) as possible are satisfied from the VS-SPM.
Obviously, this can be achieved by maximizing the reuse of data
in the VS-SPM. While an application programmer can achieve this
by carefully chorographing data flow to/from VS-SPM, it is clear
that this would be overwhelming for her/him. Instead, we show in
this paper that automatic compiler support can achieve very good
results by optimizing the reuse of data in the VS-SPM. It should be
noted that each processor in the SoC can also contain an instruction
cache and/or a loop cache. Their management, though, is orthogo-
nal to the VS-SPM management.

An example system that is similar to the architecture considered
in this paper is the VME/C6420 from Blue Wave Systems [3]. This
system uses a 9-port crossbar on the board. Four of these ports con-
nect to identical processors with their local SRAM modules, four
to high-bandwidth I/O connections, and the ninth to an off-board
memory. The ports on the crossbar enable high data movement
rates (typically, 264 Mbytes/sec). Using crossbar links increases
the net bandwidth provided by the system. Consequently, access-
ing local SRAM module and remote SRAM modules are much
faster and much less energy consuming than accessing the off-chip
DRAM. The local SRAM modules in Blue Wave correspond to lo-

cal SPMs in our system; consequently, the compilation techniques
for both the systems should be very similar (despite the fact that
one of these is board-based and the other is SoC based).

The execution model in a VS-SPM based architecture is as fol-
lows. The system takes as input a loop-level parallelized applica-
tion. In this model, each loop nest is parallelized as much as possi-
ble. In processing a parallel loop, all processors in the system par-
ticipate computation and each executes a subset of loop iterations.
When the execution of a parallel loop has completed, the processors
synchronize using a special construct called barrier before starting
the next loop. The synchronization and communication between
processors is maintained using fast on-chip communication links.
Based on the parallelization strategy, each processor works on a
portion of each array in the code. Since its local SPM space is
typically much smaller than the portion of the array it is currently
operating on, it divides its portion into chunks (called data tiles)
and operates on one chunk at a time. When a data tile has been
used, it is either discarded or written back into off-chip memory (if
modified).

In order to improve the reuse of data in the VS-SPM, one can
consider intra-processor data reuse and inter-processor data reuse.
Intra-processor data reuse corresponds to optimizing data reuse when
considering the access pattern of each processor in isolation. Pre-
vious work presented in [11] and [9] addresses this problem. It
should be noted, however, that exploiting intra-processor reuse only
may not be very effective in a VS-SPM based environment. This is
because intra-processor data reuse has a local (processor-centric)
perspective and does not take inter-processor data sharing effects
into account. Such effects are particularly important in applications
where data regions touched by different processors overlap. This is
very common in many array-intensive image processing applica-
tions. Inter-processor data reuse, on the other hand, focuses on the
problem of optimizing data accesses considering access patterns of
all processors in the system. In other words, it has an application-
centric view of data accesses.

In order to see the difference between application-centric and
processor-centric views, let us consider the code fragment in Fig-
ure 2 which performs Jacobi iteration over two N�N square arrays
U1 and U2. In this code fragment, f (:) is a linear function and
par f or indicates a parallel for-loop whose iterations are to be dis-
tributed (evenly) across processors available in the system. Note
that since this loop does not have any data dependences, both the
for-loops are parallel. Since our approach works on an already par-
allelized program, we do not concern ourselves with the question of
how the code has been parallelized (i.e., by application programmer
or by an optimizing compiler). Assuming that we have four proces-
sors (P1, P2, P3, and P4) as shown in Figure 1, the portion of array
U2 accessed by each processor is shown in Figure 3(b). Each pro-
cessor is responsible from updating an (N=2)� (N=2) sub-array of
U2. The portions accessed by processor 1 from array U1 are shown
in Figure 3(a). This portion is very similar (in shape) to its portion
from array U2 except that it also includes some elements shared
(accessed) by other processors. In the remainder of this paper, such
elements are called non-local elements (or border elements). As-
suming that the arrays U1 and U2 initially reside in off-chip DRAM,
each processor brings a data tile of its U1 sub-array and a data tile
of its U2 sub-array from DRAM to VS-SPM, updates the corre-
sponding elements, and stores the U2 data tile back in the DRAM.
Figure 3(c) shows seven data tiles (from U2) that belong to proces-
sor 4. This processor accesses these tiles starting from tile 1 and
ending with tile 7.

Let us first see how each processor can make effective use of
its local SPM space (processor-centric optimization). We focus on
processor 1, but our discussion applies to any processor. Processor
1 first brings a data tile from U2 and a data tile from U1 from off-
chip memory to its SPM. After computing the new values for its
U2 data tile, it stores this data tile back in off-chip memory and

220

parfor (i=2; i <= N-1; i++)
parfor (j=2; j <= N-1; j++)
U2[i][j] += f(U1[i][j-1]+U1[i-1][j]+U1[i][j+1]+U1[i+1][j])

Figure 2: Jacobi iteration.

proceeds by bringing new data tiles from U1 and U2. However, to
exploit reuse, it keeps the last row of the previous U1 data tile in
SPM. This is because this row is also needed when computing the
elements of the new U2 tile. This optimization is referred to as local
buffering or processor-centric data reuse.

While such a tiling strategy makes effective use of the SPM space
as far as intra-processor reuse is concerned, it fails to capture inter-
processor data reuse. Let us consider how our four processors exe-
cute this nest in parallel. Figure 3(d) illustrates the scenario where
four processors are working on their first data tiles from array U1
(assuming row-block data tiles). Let us focus on processor 3; sim-
ilar discussion applies to other processors as well. This processor,
while working on its first data tile, needs data from processors 1, 2,
and 4. More specifically, it needs an entire row from processor 1
(that is, the last row of processor 1’s last tile), a single element from
processor 2, and two elements from processor 4. These non-local
elements are also shown in Figure 3(d). It should be noted that
processor 4 can supply these elements immediately from its local
SPM. This is because these two array elements are part of the data
tile it is currently working on. However, processors 1 and 2 need to
perform off-chip memory accesses for the data required by proces-
sor 3 as these data are not currently in their local SPMs. Obviously,
these extra off-chip memory requests (that is, memory requests per-
formed due to inter-processor communication requirements only)
will be very costly. A similar scenario occurs when we consider a
different data tile shape. Figure 3(e) shows processor access pat-
terns (to array U1) when a square data tile is used. It also shows
the non-local elements required by processor 4 when it is operating
on its first data tile. We can easily see that none of these elements
are in any SPM (as other processors are also working on their first
data tiles). Consequently, in order for processor 4 to complete its
computation on its first tile, other processors need to perform extra
off-chip memory accesses. It should also be noted that it is not a
good idea to try to bring the non-local elements to the local SPM
and keep them there until they are requested by other processors.
This is because such a strategy would lead to keeping data in the
SPM without much reuse and decrease overall SPM space utiliza-
tion.

However, since the code fragment in Figure 2 does not exhibit
any data dependence, the processors do not have to stick to the
same tile processing order; that is, they do not have to process their
data tiles in the same order. In particular, they can bring (and pro-
cess) their data tiles in such a way that whenever one processor
needs a non-local array element (to perform some computation),
the needed data can be found in some remote SPM. If this can be
achieved for all non-local accesses, we can eliminate all the extra
off-chip memory accesses due to inter-processor communication.
Figures 3(f) and (g) show how extra off-chip memory requests can
be eliminated when row-block and square data tiles are used, re-
spectively. Note that in these scenarios each processor has a differ-
ent tile access pattern. The following section present an automatic
compiler-directed tile processing strategy to achieve this and Sec-
tion 4 measures potential benefits of doing so.

3. COMPILER SUPPORT
There are at least two sub-problems in compiling array-dominated

applications for a VS-SPM based environment:
– Data Tile Shape/Size Selection: The first step in compilation

is to determine the shape and sizes of data tiles. The impor-

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������������������
������������������
������������������
������������������

������������������
������������������
������������������

������������������
������������������
������������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�

Data Tile 1

Data Tile 2

Data Tile 3

Data Tile 4

Data Tile 5

Data Tile 6

Data Tile 7

P1
P
2

P
3

P
4

P1
P
2

P
3

P
4

P1

(d) (e)

(f) (g)

U U

(a) (b)

(c)

Non-local
Elements

1 2

of Processor

Figure 3: (a-b) Local array portions of processors for the ar-
rays accessed in Figure 2. (c) Data tiles to be processed by a
processor. (d-g) Different tile access patterns.

tant parameters in this process are the available SPM space and
data access pattern of the application. While this problem is
important, it is beyond the scope of this paper. In this paper, we
assume rectilinear tile shapes and that all processors have the
same SPM capacity and operate with identical data tiles (whose
size is determined by the local SPM size).

– Tile Access Pattern Detection: In this step, which we also call
scheduling, given a data tile shape/size, we want to determine a
data tile access pattern (for all processors) such that extra off-
chip memory accesses (due to inter-processor communication)
are eliminated. In the rest of this section, we present a compiler
technique that addresses this problem.

The degree of freedom [4] of a given data tile indicates the its move-
ment capability on data space. For instance, the degree of freedom
for the data tile given in Figure 3(d) is one as it can move only in
one direction (in vertical direction), whereas the degree of freedom
for the data tile shown in Figure 3(e) is two as it can move in both
horizontal and vertical directions.

We define a tile access pattern matrix (scheduling matrix), de-
noted H , which determines the order in which the data tiles are ac-
cessed. The dimensions of a scheduling matrix are decided based
on the degree of freedom. Let us focus on two-dimensional ar-
rays; our results extend to higher-dimensional arrays as well. In the
two-dimensional case, if the degree of freedom is one, the schedul-
ing matrix is 2 � 1; if the degree of freedom is two, the schedul-
ing matrix is 2 � 2. For nested loops that do not contain flow-
dependences, the tile access patterns and their corresponding schedul-
ing matrices for a degree of freedom of 1 and 2 are given in Fig-
ures 4(a) and (b), respectively. Each column of H corresponds to
an axis and the value of the vector in a column denotes the di-
rection of the access along the corresponding axis. In addition to
the elements of each column, the ordering of the columns of H
is extremely important. The first column denotesAs an example,

221

1

0() -1
0() 0

1()-1

0()

0

1()-1

0
1 0

0 1()

1 0

0()-1

0()-1

-10

0

1()-1

0
1 0

0 1()

1 0

0()-1

0()-1

-10

1 1 1

1 1 11

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

31

(a)

(b)

(c)

Figure 4: Tile access patterns and scheduling matrices for two-
dimensional arrays accessed in a nested loop.

the matrix H =
�

1 0
0 �1

�
corresponds to positive direction of

movement (at the beginning of the pattern) in the x-axis and nega-
tive direction of movement in the y-axis.

We also define direction vectors for each processor with respect
to its neighbors. For example, the direction vector of processor 1

with respect to processor 4 (see Figure 3(a)) is: ~v1;4 =
�

1
�1

�
:

The direction vector of processor i with respect to processor j is
denoted ~vi; j . Essentially, this is a vector whose elements indicate
the signs (positive denoted by +1, negative denoted by�1 and zero
by 0) of the vector distance from the co-ordinates of processor i to
the co-ordinates of processor j.

The objective of our tile access pattern strategy should be mini-
mizing the extra off-chip memory accesses. This can be achieved
by making sure that whenever a processor needs a non-local ar-
ray element, some other processor can supply it from its SPM.
To achieve this, our scheduling strategy uses the following result
(proof omitted for lack of space):
Lemma 1. Consider two processors i and j with their scheduling
matrices Hi and H j , respectively. Schedules denoted by these ma-
trices eliminate extra off-chip memory accesses (when considering
only these two processors) if and only if they satisfy the following
equality called the scheduling equality: Hi

T
~vi; j = H j

T
~v j;i:

Our scheduling algorithm consists of three steps:

(1) Assign a symbolic scheduling matrix to each processor. The
rank of the scheduling matrix will be equal to the degree of
freedom of data tiles.

(2) Construct scheduling equalities for each processor pair using
direction vectors and scheduling matrices. These equalities col-
lectively represent the constraints that need to be satisfied for
eliminating all extra DRAM accesses due to inter-processor
communication.

(3) Initialize the scheduling matrix of a processor with an arbitrary
schedule (e.g., using one of the matrices in Figures 4(a) or (b))
and compute the corresponding scheduling matrices (tile access
patterns) of the remaining processors by solving the scheduling
equalities.

As an example application of this algorithm, consider the nest in
Figure 2 assuming four processors and a degree of freedom of 2
(Figure 3(e)). In the first step, we assign symbolic scheduling ma-

trices for processors. Let Hi =

�
hi

1;1 hi
1;2

hi
2;1 hi

2;2

�
be the scheduling

matrix for processor i. In the second step of our scheduling algo-
rithm, we compute scheduling equalities. For example, scheduling
equalities for processor 2 are:�

h2
1;1 h2

2;1
h2

1;2 h2
2;2

��
�1
�1

�
=

�
h3

1;1 h3
2;1

h3
1;2 h3

2;2

��
1
1

�
�

h2
1;1 h2

2;1
h2

1;2 h2
2;2

��
0
�1

�
=

�
h4

1;1 h4
2;1

h4
1;2 h4

2;2

��
0
1

�
�

h2
1;1 h2

2;1
h2

1;2 h2
2;2

��
�1

0

�
=

�
h1

1;1 h1
2;1

h1
1;2 h1

2;2

��
1
0

�

Equalities for other processors are constructed in a similar fashion.
In the last step, we determine individual scheduling matrices. To
do so, we initialize the scheduling matrix of a processor to a sched-
ule and find the scheduling matrices of the remaining processors.

For example, if we set: H1 =

�
h1

1;1 h1
1;2

h1
2;1 h1

2;2

�
=
�

1 0
0 1

�
; we

find H2 =
�
�1 0

0 1

�
;H3 =

�
1 0
0 �1

�
;H4 =

�
�1 0

0 �1

�
:

These scheduling matrices give us the tile access patterns shown in
Figure 3(g). Note that these access patterns do not incur any extra
off-chip memory accesses originating from inter-processor com-
munication.

The scheduling algorithm for a nested loop that may contain
flow-dependences is the same as that of a loop that does not con-
tain any flow-dependences except that the scheduling matrix se-
lected should respect all data dependences. Particularly, when flow-
dependences [15] are involved, we cannot have snake-like tile ac-
cess patterns shown in Figure 4(b). Instead, for the cases with a de-
gree of freedom of 2, we can employ the tile access patterns and the
associated scheduling matrices shown in Figure 4(c). The numbers
attached to arrows in this figure indicate the order of accesses. Our
approach has two steps. First, we run only the first two steps of the
algorithm given for the non-flow dependence case, and obtain all
scheduling equalities. Then, instead of just initializing one of the
scheduling matrix to an arbitrary form and determining the others
(as in the previous case), we try all possible scheduling matrices for
one of the processors and, for each case, we determine the corre-
sponding scheduling matrices for other processors. In other words,
instead of just one solution, we come up with multiple solutions.
Among these solutions, we select the one (if any) that does not
violate any data dependences. In case we have no such a matrix,
we employ a default scheduling scheme that does not break any
dependences. Obviously, the default strategy will not necessarily
eliminate extra DRAM accesses.

As an example, let us consider the successive-over-relaxation
(SOR) loop shown in Figure 5. In this code fragment, if we ap-

222

for (i=2; i <= N-1; i++)
parfor(j=1; j <= N-1; j++)
U_1[i][j] += g(U_1[i-1][j]+U_1[i][j+1]+U_1[i+1][j])

Figure 5: SOR iteration.

1

2

3

1

2

3

2

3

1

1

2
3

123 1 2 3

123 1 2 3

(a) (b)

Figure 6: Illegal (a) and legal (b) access patterns for the code
fragment in Figure 5.

ply our three-step strategy, one possible schedule would have the
following scheduling matrices (assuming four processors): H1 =�

1 0
0 1

�
;H2 =

�
�1 0

0 1

�
;H3 =

�
1 0
0 �1

�
;H4 =

�
�1 0

0 �1

�
:

This is shown in Figure 6(a). Since the schedules for processors 2
and 4 violate data dependences, they are not acceptable. Another

schedule has these scheduling matrices: H1 =
�
�1 0

0 1

�
;H2 =�

1 0
0 1

�
;H3 =

�
�1 0

0 �1

�
;H4 =

�
1 0
0 �1

�
: The tile ac-

cess pattern corresponding to this schedule is given in Figure 6(b).
We note that this is a legal schedule. In should be noted however
that in the case of flow-dependences, it may not always be possible
to eliminate all extra off-chip memory accesses.

4. EXPERIMENTS

4.1 Experimental Setup
Our experimental setup consists of a compiler environment and

an in-house simulator. Our optimization algorithm is implemented
using the SUIF (Stanford University Intermediate Format) experi-
mental compiler infrastructure [1]. SUIF consists of a small, clearly
documented kernel and a toolkit of compiler passes built on top of
the kernel. The kernel defines the intermediate representation, pro-
vides functions to access and manipulate the intermediate represen-
tation, and structures the interface between compiler passes. The
toolkit currently includes C and Fortran front-ends, a loop-level
parallelism and locality optimizer, an optimizing MIPS back-end,
a set of compiler development tools, and support for instructional
use. The output of SUIF is a C code which can be compiled using
the native compiler of the platform in question.

To test the effectiveness of our strategy, we used four array-
dominated applications (written in C) from the image processing
domain: 3D, dfe, splat, and wave. 3D is an image-based
modeling application that simplifies the task of building 3D mod-
els and scenes. dfe is a digital image filtering and enhancement
code. splat is a volume rendering application which is used in
multi-resolution volume visualization through hierarchical wavelet
splatting. It is used primarily in the area of morphological image
processing. And finally, wave is a wavelet compression code that
targets specifically medical applications. This code has a character-
istic that it can reduce image data to an extremely small fraction of
its original size without compromising image quality significantly.
These C programs are written so that they can operate on images
of different sizes. The total input sizes used in our experiments

Figure 7: % savings in energy-delay product (base configura-
tion).

were 305KB, 286KB, 635KB and 628KB for 3D, dfe, splat
and wave, respectively.

Our simulator takes a parallel code written in C as input and
simulates a multiprocessor architecture. Each simulated processor
is a 100MHz MIPS 4Kp core with a five-stage pipeline that sup-
ports four execution units (integer, multiply-divide, branch control,
and processor control). Each core has thirty-two, 32-bit general-
purpose registers. We assume a local SPM (SRAM) attached to
each core with an access latency of 2 cycles. We also simulate
inter-processor communication. To test the robustness of strategy,
we experimented with different remote SPM access latencies (from
4 cycles to 16 cycles). We also assumed an extra 1 cycle latency
for each inter-processor synchronization operation. The simulated
off-chip DRAM is 4MB with an access latency of 80 cycles. The
simulator outputs the number of accesses to each SPM, number off
off-chip accesses, number and volume of inter-processor commu-
nications, and overall execution time of the application. To paral-
lelize the applications, we adopted an aggressive strategy in which
all the loops in a given nest (except the innermost one) are par-
allelized (provided that data dependences allow that). The energy
model used for SPMs is very similar to that of a cache memory [12]
except that it assumes full associativity and does not consider a tag
array. The energy model used by our simulator for interconnects
is transition-sensitive and is very similar to that presented in [16].
Since we focus only on data memory performance and energy, we
do not report data on instruction accesses and datapath activity. In
computing the executing cycles, however, all the cycles spent in
datapath (including the stall cycles) are accounted for.

4.2 Results
Due to space concerns, we present data for only energy-delay

product. Energy-delay product is a suitable metric that allows us
to evaluate the impact of an optimization on both energy and per-
formance (execution cycles) [6, 8]. In our context, the energy
component of the energy-delay product corresponds to the mem-
ory system energy due to data accesses. This includes the en-
ergy consumed in SPMs, interconnect between processors, off-chip
DRAM accesses, and in the interconnect between SoC and off-chip
DRAM. The delay is the overall parallel execution time of the ap-
plication. In our experiments, we compare two different versions
of each benchmark. The first version is the code with only local
SPM optimizations; it does not try to eliminate extra DRAM ac-
cesses due to inte-processor communication. The second version is
the result of our VS-SPM based optimization strategy. All results
presented in this subsection are percentage improvements brought
by the second version over the first version.

Figure 7 gives the energy-delay product improvements for our
base configuration with different values of remote SPM access la-
tency. In the base configuration, the access latencies for local SPM
and off-chip DRAM are 2 and 80 cycles, respectively. Also, the

223

Figure 8: % savings in energy-delay product (sensitivity to the
number of processors).

Figure 9: % savings in energy-delay product (sensitivity to the
shape of the tile and size of the available SPM space).

number of processors is four, the row-block data tiles are used, and
the available local SPM space is 1/8th of the local portion of the
processor (this ratio is called the slab ratio). Note that the slab ra-
tio can be changed by changing the SPM size or array sizes; in our
experiments, we changed the SPM size. It should be mentioned
that when the remote SPM latency is increased, the corresponding
per access energy consumption (for remote SPM) is also propor-
tionally increased. We observe from these results that our approach
generates best results with the smallest remote SPM latencies (as
expected). The average improvements when remote SPM latency
is 4 and 20 are 24.3% and 5.7%, respectively.

To measure the sensitivity of our approach to the number of pro-
cessors, we performed another set of experiments. We used pro-
cessor sizes of 2, 8, 16, and 32. All other parameters are the same
as in the base configuration. The results shown in Figure 8 (which
also include our default processor size of 4) indicate that the effec-
tivess of our strategy increases when the number of processors is
increased. This is because an increase in the number of processors
leads to an increase in inter-processor communication volume, and
consequently, the version without VS-SPM optimization performs
very frequent extra DRAM accesses. Therefore, we observe an in-
crease in percentage improvements.

The last set of experiments gauge the sensitivity of our strategy
to the shape of the tile and size of the available SPM space. Each
bar in Figure 9 indicates the shape of the tile (row-block, column-
block, or square) and the slab ratio (within parantheses). It can
be observed that our approach is more effective with smaller slab
ratios. Note that a smaller slab ratio represents more pressure on
data memory. Considering the fact that applications are processing
larger and larger data sets, this result is encouraging. We also ob-
serve that we save more when square tiles are used. This is due to
the fact that the performance (and energy behavior) of the original
codes is extremely poor when square tiles are used.

5. CONCLUSIONS AND FUTURE WORK
Efficient compilation techniques for complex programs are par-

ticularly important for array-dominated embedded applications. As
microprocessors grow more and more powerful, designers are build-
ing more sophisticated embedded/mobile systems. An important
trend in such systems is the increased use of multiple processors.
This paper presents a compiler-directed optimization strategy for
exploiting software-controlled, shared SRAM space in a multipro-
cessor embedded system. Our approach is oriented towards elim-
inating extra off-chip DRAM accesses caused by inter-processor
communication. The results obtained using four array-intensive
applications show that significant reductions in energy-delay prod-
uct are possible using this approach. This work can be extended
in several ways. First, we plan to perform experiments with mul-
tiple levels of SPMs and hybrid multiprocessor environments that
consist of both SPMs and data caches. Second, we would like to
investigate different compiler optimizations for optimizing inter-
processor communication and study the impact of these optimiza-
tions on off-chip memory accesses. Third, we want to explore
compiler optimizations that exploit array sharing between different
loop nests in an embedded multiprocessor environment. Finally,
we would like to extend this work to heterogeneous multiprocessor
architectures.
Acknowledgments We acknowledge the support of the National
Science Foundation through grants 0093082, 0073800, and 0121706.

6. REFERENCES
[1] S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng. The SUIF

compiler for scalable parallel machines. In Proc. 7th SIAM
Conference on Parallel Processing for Scientific Computing, 1995.

[2] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy
efficiency of embedded systems by application-specific memory
hierarchy generation. IEEE Design & Test of Computers, pages
74–85, April-June, 2000.

[3] Blue Wave Systems. http://www.bluews.com/
[4] R. Bordawekar, A. Choudhary, and J. Ramanujam. Automatic

optimization of communication in compiling out-of-core stencil
codes. In Proc. 10th ACM International Conference on
Supercomputing, 1996.

[5] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle. Custom memory management methodology.
Kluwer, 1998.

[6] A. Chandrakasan, W. Bowhill, and F. Fox. Design of
High-Performance Microprocessor Circuits. IEEE, 2001.

[7] Dinero IV Trace-Driven Uniprocessor Cache Simulator. URL:
http://www.cs.wisc.edu/�markhill/DineroIV/

[8] R. Gonzales and M. Horowitz. Energy dissipation in general purpose
microprocessors. IEEE Journal of Solid-State Circuits, pages
1277–1284, Sep. 1996

[9] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I.
Kadayif, and A. Parikh. Dynamic management of scratch-pad
memory space. In Proc. 38th Design Automation Conference, 2001.

[10] Mobile Computing Devices: A New Era in Personal Computing,
August 2000. Computer Market Dynamics.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of
scratch-pad-memory in embedded processor applications. In Proc.
European Design & Test Conference, 1997.

[12] W-T. Shiue and C. Chakrabarti. Memory exploration for low power,
embedded systems. In Proc. 36th Design Automation Conference
(DAC’99), 1999.

[13] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Y. Kim, and W. Ye.
Energy-driven integrated hardware-software optimizations using
SimplePower. In Proc. Int. Symp. Computer Architecture, 2000.

[14] L. Wang, W. Tembe, and S. Pande. Optimizing on-chip memory
usage through loop restructuring for embedded processors. In Proc.
9th International Conference on Compiler Construction, 2000.

[15] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[16] Y. Zhang, Y. Chen, W. Ye, and M. J. Irwin. System-level
interconnect power modeling. In Proc. the 11th International ASIC
Conference, 1998.

224

