
Journal of Parallel and Distributed Computing 60, 924�965 (2000)

Compiler Algorithms for Optimizing Locality
and Parallelism on Shared and
Distributed-Memory Machines

M. Kandemir

Department of Computer Science and Engineering, The Pennsylvania State University,
University Park, Pennsylvania 16802

E-mail: kandemir�cse.psu.edu

J. Ramanujam

Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge,
Louisiana 70803

E-mail: jxr�ee.lsu.edu

and

A. Choudhary

Department of Electrical and Computer Engineering, Northwestern University, Evanston,
Illinois 60208

E-mail: choudhar�ece.nwu.edu

Received July 31, 1998; revised June 20, 1999; accepted February 21, 2000

Distributed-memory message-passing machines deliver scalable perfor-
mance but are difficult to program. Shared-memory machines, on the other
hand, are easier to program but obtaining scalable performance with large
number of processors is difficult. Recently, scalable machines based on logi-
cally shared physically distributed memory have been designed and
implemented. While some of the performance issues like parallelism and
locality are common to different parallel architectures, issues such as data
distribution are unique to specific architectures. One of the most important
challenges compiler writers face is the design of compilation techniques that
can work well on a variety of architectures. In this paper, we propose an
algorithm that can be employed by optimizing compilers for different types of
parallel architectures. Our optimization algorithm does the following: (1)
transforms loop nests such that, where possible, the iterations of the outer-
most loops can be run in parallel across processors; (2) optimizes memory
locality by carefully distributing each array across processors; (3) optimizes
interprocessor communication using message vectorization whenever possible;
and (4) optimizes cache locality by assigning appropriate storage layout for
each array and by transforming the iteration space. Depending on the

doi:10.1006�jpdc.2000.1639, available online at http:��www.idealibrary.com on

9240743-7315�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

machine architecture, some or all of these steps can be applied in a unified
framework. We report empirical results on an SGI Origin 2000 distributed-
shared-memory multiprocessor and an IBM SP-2 distributed-memory
message-passing machine to validate the effectiveness of our approach.
� 2000 Academic Press

Key Words: data reuse; locality optimizations; temporal locality; spatial
locality; memory performance; parallelism; array restructuring; loop transfor-
mations.

1. INTRODUCTION

Optimizing locality and parallelism together is important for UMA (uniform
memory access) architectures (e.g., SGI Power Challenge XL, Dec Alpha-server
8400 5�440, and Sun Ultra Enterprise 6000), shared-memory NUMA (nonuniform
memory access) architectures (e.g., SGI Origin [30], Convex Exemplar [9],
Stanford DASH [31], and MIT Alewife [1]), and distributed-memory multicomputers
(e.g., the IBM SP-2 and Intel Paragon). Optimizing parallelism leads to tasks of
larger granularity with lower synchronization and communication costs and is
beneficial for these parallel machines. Since individual nodes of contemporary
parallel machines have some form of memory hierarchy, optimizing cache locality
of scientific codes on these machines results in better performance. Additionally,
since the distribution of data is an important issue for distributed-memory multi-
computers and some shared-memory NUMA machines, optimizing memory locality
through data distribution has a large impact on the overall performance of
programs on these machines.

We have witnessed a tremendous increase in processor speeds in recent years. In
fact, during the past decade, processor speeds have been improving at a rate of at
least 600 each year [22]. Since the per-year improvement in memory access times
is only around 70 [22], the performance gap between processors and memory has
widened. Although caches are capable of reducing the average memory access time
and optimizing compilers are able to detect significant parallelism, the performance
of scientific programs on both uniprocessors and parallel machines can be rather
poor if locality is not exploited [46]. Some issues that challenge compiler writers
are maximizing parallelism, minimizing communication via loop level optimizations
and block transfers, and optimizing memory and cache locality. Since these issues
are interrelated, we believe that they should be handled in a unified framework. For
example, given a loop nest that has accesses to a number of arrays, locality
optimizations may imply a preferred order for the loops whereas the parallelism
optimizations may suggest another. In this paper, we present a unified method by
which an optimizing compiler can enhance performance of regular scientific codes
for both locality and parallelism. Our method is implemented using the Parafrase-2
compilation framework [37]. Specifically, our optimizations perform the following:

(1) Maximizing the granularity of parallelism by transforming the loop nest
such that the iterations of the outermost loops can run in parallel on a number of
processors; this reduces communication and synchronization costs.

925COMPILER ALGORITHMS

(2) Vectorizing communication, i.e., performing communication in large
chunks of data in order to amortize the high startup cost.

(3) Reorganizing data layouts in memory: we believe that matching the loop
order with individual array layouts in memory is important for obtaining high
levels of performance in regular scientific codes.

A recent study shows that a group of highly parallelized benchmark programs
spend as much as 390 of their cycles stalled waiting for memory accesses [44]. In
order to eliminate the memory bottleneck, cache locality should be exploited as
much as possible. One way of achieving this is to transform loops such that the
innermost loop exhibits unit-stride accesses for as many array references as possible.
While this approach produces satisfactory results for several cases, we show in this
paper that there is still room for significant improvement if the compiler is allowed
to choose memory layouts for large multidimensional arrays. We believe that com-
piler optimizations that exploit spatial locality by changing the conventional
memory layouts (which are language-specific) will be very useful in both unipro-
cessor and multiprocessor�multicomputer environments. Of course, any approach
aimed at improving locality on parallel machines should also maintain high
granularity of parallelism. This is not only because increasing the granularity of
parallelism reduces communication and synchronization costs, but also because
larger granularity of parallelism often correlates with good memory locality and
high levels of performance [46].

The remainder of this paper is organized as follows. In Section 2, we outline basic
concepts related to locality, loop transformations, and data transformations. In
Section 3, related work is summarized, emphasizing the difference between our work
and the previous work on locality. A locality optimization algorithm is introduced
in Section 4. An algorithm that maximizes granularity of parallelism and improves
memory locality is discussed in Section 5. The algorithms in Sections 4 and 5
prepare the reader for the main algorithm of the paper in Section 6, in which a
unified compiler algorithm that can be used on different architectures is presented.
The unified algorithm is generalized to handle multiple nests in Section 7.
Experimental results are given in Section 8, and finally the conclusions are
presented in Section 9.

2. PRELIMINARIES

2.1. Definitions

The iteration space I of a loop nest contains one point for each iteration. An
iteration vector can be used to label each such point in I. We use I9 =(i1 , ..., in)T to
represent the iteration vector for a loop nest of depth n, where each ik corresponds
to a loop index, starting with i1 for the outermost loop index. In fact, an iteration
space I can be viewed as a polyhedron bounded by the loop limits. Such a
polyhedron can be represented by an integer system CI9 �c� .

The subscript function for a reference to an array X is a mapping from the itera-
tion space I to the data space D; this can also be viewed as a polyhedron bounded

926 KANDEMIR, RAMANUJAM, AND CHOUDHARY

by array bounds. A subscript function defined this way maps an iteration vector to
an array element. In this paper, we assume that subscript mappings are affine func-
tions of the enclosing loop indices and symbolic constants. Many references found
in regular scientific codes fall into this category. Under this assumption, a reference
to an array X can be represented as X(LXI9 +b9 X) where LX is a linear transforma-
tion matrix called the array access (reference) matrix, b9 X is the offset (constant)
vector, and I9 is the iteration vector [49, 32, 38, 50]. The kth row of LX is denoted
by lk

X
�

. For a reference to an m-dimensional array inside an n-dimensional loop
nest, the array access matrix is of size m_n and the offset vector is of size m. Let
us now consider the loop nest given below to illustrate these concepts.

DO i=1, N
DO j=1, N

A(i, j)=B(i+ j&1, j+2)
END DO

END DO

For this loop nest, I9 =(i
j), LA=(1

0
0
1), b9 A=(0

0); and LB=(1
0

1
1), b9 B=(&1

2).

2.2. Iteration Space (Loop) Transformations

A linear one-to-one mapping between two iteration spaces can be represented by
a nonsingular matrix T. Let I denote the original iteration space and I$ the trans-
formed iteration space. A linear iteration space transformation of I by a matrix T
means that \@� (@� # I � T@� # I$). That is, each element @� of the original iteration
space I is mapped to T@� on the transformed iteration space I$. Converting the
original loop nest to the transformed nest is a two-step process [50]:

(1) Loop bounds are transformed. If we assume that I can be represented by
CI9 �c� , since I$=TI, the new system defining the transformed polyhedron will be
CT &1I9 $�c� . In general, finding the new loop bounds from CT &1I9 $�c� may require
use of Fourier�Motzkin elimination [42]. In this paper, we denote T &1 by Q. An
important characteristic of our approach is that (using the array access matrices)
the entries of Q are derived in a systematic manner.

(2) Subscript expressions are rewritten in terms of new loop indices. If an
original subscript expression for a reference is LI+b9 , since I$=TI, the new sub-
script expression is LT &1I$+b9 .

2.3. Reuse and Locality

We refer to the unit of data transfer between main memory and cache as a block
or a line. In order to obtain good performance from programs running on a
machine which contains some sort of cache memory, cache locality should be
exploited. That is, a data item brought into cache should be reused as much as
possible before it is replaced. The reuse of the same data while it is still in the cache
is termed temporal locality, whereas the use of the nearby data in a cache line is
called spatial locality [50].

927COMPILER ALGORITHMS

File: 740J 163905 . By:XX . Date:23:06:00 . Time:08:18 LOP8M. V8.B. Page 01:01
Codes: 3017 Signs: 2340 . Length: 52 pic 10 pts, 222 mm

We have to stress that a program may reuse the data, but if that data has been
replaced between reuses we say that it does not exhibit locality. In other words, a
program may have data reuse, but due to the replacement of the data, it might not
be able to exploit cache locality [32]. Consider the example shown below.

DO i=1, N
DO j=1, N

A(j)=B(i)+C(j, i)
END DO

END DO

Assuming a column-major memory layout as the default, array B has temporal
reuse in the j loop and spatial reuse in the i loop in this loop nest. Array A has tem-
poral reuse in the i loop and spatial reuse in the j loop. Array C, on the other hand,
has only spatial reuse in the j loop. Assuming that N is very large, it is reasonable
to expect that, during execution of this nest, only the reuses associated with the
innermost loop (the j loop) will exhibit locality. Similar assumptions have also been
made by Wolf and Lam [49]. As a result, the exploitable reuses for this nest are
the temporal reuse for B and the spatial reuses for A and C.

A large body of previous compiler research has focused on optimizing locality
through loop transformations. Some of the previous research along that direction
will be discussed in Section 3.

2.4. Data Space (Array Layout) Transformations

Locality can be improved by transforming the iteration and�or data spaces. Con-
sider the loop nest shown in Fig. 1a. In this loop nest, assuming default column-
major layouts and that N is very large, the only locality that can be exploited is the
spatial locality due to array B. Exploiting spatial locality for A, on the other hand,
requires loop interchange [50]. While loop interchange will improve the locality for
A, it will affect the locality of B negatively. If, on the other hand, without applying
any loop transformation, array A is stored as row-major in memory, then we can
exploit the spatial locality for both of the references. This simple example shows
that data layout transformations may result in better performance in some cases
compared to loop (iteration space) transformations.

FIG. 1. Two loop nests for which data layout transformations are useful: (a) loop transformation
is not effective, (b) loop transformation is not legal. Notice that in both cases a simple data layout trans-
formation (column-major to row-major conversion) may help.

928 KANDEMIR, RAMANUJAM, AND CHOUDHARY

Consider the code in Fig. 1b. In this example, again assuming a column-major
memory layout as the default, locality is poor for both of the references to array A.
Loop interchange is illegal due to data dependence between references. On the
other hand, if we change the layout of array A to row-major, locality will be very
good for both of the references. This example reveals an important fact: data trans-
formations can be applicable where loop transformations are not, since, unlike loop
transformations, they are not constrained by data dependences in the program
[12].

In addition, data transformations can work for imperfectly nested loops and can
be used to optimize explicitly parallelized programs as well [12]. But since they can-
not improve temporal locality directly, and their effect on program locality is global
(i.e., program-wide), in principle, the best results should be obtained if data space
and iteration space transformations are applied in concert [12]. In this paper, we
attempt to achieve this by determining data layouts for each array and loop
transformations for each nest in a unified framework. As observed by Chandra
et al. [11], due to some certain conditions related to storage and sequence assump-
tions about the arrays, and to passing arrays as subroutine arguments, data trans-
formations may sometimes not be legal. We assume no such situation occurs for the
programs studied in this paper. Chandra et al. [11] have proposed methods to deal
with storage sequence and parameter passing problems when data transformations
are to be applied. An investigation of such issues is beyond the scope of this
paper.

2.5. Scope of Our Work

The scope of our work is regular dense array programs. As mentioned earlier, we
assume that array subscript functions and loop bounds are affine functions of the
enclosing loop indices and symbolic constants. We also assume that the memory
layout of an m-dimensional array can be in any of the m! forms, each correspond-
ing to layout of data in memory linearly by a nested traversal of the axes in some
predetermined order. In other words, the data storage schemes we consider can be
expressed as permutations of the dimensions of the array. For a two-dimensional
array, these are only row-major and column-major layouts. For a three-dimen-
sional array, there are six possible storages, and so on. Blocked layouts, on the
other hand, are useful for some matrix codes and automatic detection of blocked
layouts is in our future research. Each layout that we consider in this paper has an
associated fastest changing dimension (FCD), that is, the innermost dimension in
the traversal of array in memory. For instance, in row-major layouts the last
dimension is the fastest changing dimension. Our layout detection algorithm only
determines the FCD, since under the assumption of large array bounds the relative
order of the other dimensions may not be important. We also assume that on dis-
tributed-memory machines the arrays will be distributed across processors along
only a single dimension. We refer to this dimension as the distributed dimension
(DD). The general flavor of our approach is to determine the appropriate FCD and
DD for a given multidimensional array. Finally, we assume that unless specified
otherwise the default layout is column-major for all arrays.

929COMPILER ALGORITHMS

3. RELATED WORK

3.1. Related Work on Iteration Space Transformations

Loop transformations have been used for optimizing cache locality in several
papers [32, 49, 10, 34]. Results have shown that on several architectures the
speedups achieved by loop transformations can be quite large. McKinley et al. [34]
offer a unified optimization technique consisting of loop permutation, loop fusion,
and loop distribution. By considering iteration space transformations only, they
obtain significant speedups for several scientific codes.

Wolf and Lam [49] propose a data locality optimizing algorithm based on a
mathematical description of reuse. They identify and quantify reuse within an
iteration space. They use vector spaces to represent the directions where reuse
occurs and define different types of reuses found in dense matrix programs. Their
approach is sort of exhaustive in the sense that they try all possible subsets of the
loops in the nest, and (if necessary) by applying unimodular transformations they
bring the subset with the best potential reuse into the innermost positions. They
report performance numbers on some common kernels such as LU decomposi-
tion and SOR (successive-over-relaxation). The main problem with their algorithm
is that they base all decisions depending on whether or not a loop carries reuse.
They do not take the loop bounds into account and sometimes may end up in
suboptimal solutions due to inaccuracies in their representation of reuse vector
spaces.

In contrast, Li [32] describes a data reuse model and a compiler algorithm
called height reduction to improve cache locality. He discusses the concept of a
data reuse vector and defines its height as the number of dimensions from
the first nonzero entry to the last entry. The nonzero entries of a reuse vector
indicate that there are reuses carried by the corresponding loops. The individual
reuse vectors constitute reuse matrices which in turn constitute the global reuse
matrix. His algorithm assigns priorities to reuse vectors depending on the number
of times they occur and tries to reduce the height of the global reuse matrix
starting from the reuse vector of highest priority. His algorithm gives an implicit
preference to spatial reuses. The height reduction algorithm both reduces the
sensitivity of tiling to the tile size and places the loops carrying reuse into innermost
positions.

Kennedy and McKinley [27] present a compiler algorithm for optimizing
parallelism and data locality using loop transformations alone. They show that an
appropriate combination of tiling and loop permutations can be used to obtain
both outer loop parallelism and inner loop locality.

None of [49], [32], and [27] considers data space transformations. In this
paper, we show that data space transformations can also make a difference on the
locality properties of the programs. Moreover, by unifying data space transforma-
tions with iteration space transformations, locality and parallelism can be exploited
in a better way which is not possible by the pure loop or pure data transformations
alone.

930 KANDEMIR, RAMANUJAM, AND CHOUDHARY

Intuitively, the more spatial reuse is exploited, the lower the miss ratio will be
and a lower amount of false sharing will occur [2]. Our unified algorithm tries
aggressively to exploit the spatial locality by considering different memory layouts
for different arrays. Since Li's approach is representative of a class of algorithms
that use loop transformations alone to exploit locality [49, 34, 32], in the course
of this paper, we compare our algorithm to Li's algorithm (denoted l-opt).

3.2. Related Work on Data Space Transformations

Data transformations, on the other hand, deal with data layout and array
accesses rather than reordering of loop iterations. Only a few papers have con-
sidered data transformations to optimize locality. In fact, just like iteration space,
the data space can also be transformed using linear nonsingular transformation
matrices. O'Boyle and Knijnenburg [35] have applied this idea to improve the
cache locality of programs. Let T be a linear nonsingular data transformation
matrix. Omitting the shift-type transformations, a data transformation denoted by
T is applied in two steps, (1) the original reference matrix L is transformed to
TL and (2) the layout of the array in memory is also transformed using T, and
the array declaration statements are changed accordingly. Notice that determining
the bounds of a transformed array may require the use of Fourier�Motzkin
elimination [42]. In fact, rather than trying to determine desired data transforma-
tion matrices, their work focuses more on restructuring the code given a data trans-
formation matrix. In comparison, we apply both data and iteration space transfor-
mations and concentrate on the problem of determining suitable transformation
matrices with locality and parallelism in mind.

Anderson et al. [2] propose a data transformation technique for distributed-
shared-memory machines. By using two types of data transformations (strip-mining
and permutation), they attempt to make the data accessed by the same processor
contiguous in the shared address space. Their algorithm inherits parallelism deci-
sions made by a previous phase of the SUIF compiler [47]; so in a sense it is not
directly comparable to ours which attempts to come up with a transformation
matrix suitable for both locality and parallelism. It is also not clear to us how useful
their approach is on a uniprocessor environment whereas our approach is
applicable to uniprocessors and distributed memory and shared memory machines.

3.3. Related Work on Unified Loop and Data Transformations

Ju and Dietz [25] present a systematic approach that integrates data layout
optimizations and loop transformations to reduce cache coherence overhead.
Cierniak and Li [12] present a unified approach like ours to optimize locality that
employs both data and control transformations. The notion of a stride vector is
introduced and an optimization strategy is developed for obtaining the desired
mapping vectors representing layouts and a loop transformation matrix. At the
end, the following equality is obtained: T Tv=LTx. In this formulation only L,
the array access (reference) matrix, is known. The algorithm tries to find T, the
iteration-space transformation matrix; x, a mapping vector which can assume m!

931COMPILER ALGORITHMS

different forms for an m-dimensional array; and v, the desired stride vector for con-
secutive array accesses. Since this optimization problem is difficult to solve, the
following heuristic is used: first, it is assumed that the transformation matrix con-
tains only zeroes and ones. Second, the value of the stride vector v is assumed to
be known beforehand. Then the algorithm constructs the matrix T row-by-row by
considering a restricted set of legal mappings. In comparison, our approach is more
accurate, as it does not restrict the search space of possible loop transformations.
We can employ any nonsingular legal loop transformation as long as it is suitable
for our purpose. Also, our approach is simpler to be embedded in a compilation
system, since it it does not depend on any new reuse abstraction such as stride vec-
tor whose value should be guessed by a compiler. We simply exploit the available
parallelizing compiler technology to detect optimal array layouts as well as the
iteration space transformation. Our extension to multiple nests is also different from
the one offered by Cierniak and Li [12] for global optimization.

3.4. Related Work on Parallelism

Previous work on parallelism has concentrated, among other topics, on compila-
tion techniques for multicomputers [5, 8, 51, 24], for multiprocessors [47, 7], and
for automatic discovery of parallelism [21, 48, 39, 18, 36, 26]. Since neither data
layout transformations nor cache locality was the central issue in any of these
papers, we do not discuss them here any further.

4. ALGORITHM FOR ENHANCING CACHE LOCALITY

Since accessing data on memory is usually an order of magnitude slower than
accessing data in cache, optimizing compilers must reduce the number of memory
accesses as well as the volume of data transferred. In this section, we present an
algorithm which automatically

(1) transforms a given loop nest to exploit cache locality, and

(2) assigns appropriate memory layouts for arrays referenced in the nest.

This algorithm can be used for optimizing locality in uniprocessors and shared-
memory multiprocessors. Moreover, it can also be employed as part of a unified
technique for optimizing locality and parallelism in distributed-memory multicom-
puters.

4.1. Explanation

The overall algorithm is shown in Fig. 2. In the algorithm, C is the array
reference on the left-hand side whereas Ar represents the rth right-hand side
array (1�r�R). The symbol qi

� refers to the i th column of Q=T &1 from left.
Let j1 , ..., jn be the loop indices of the transformed nest, starting from outermost
position.

932 KANDEMIR, RAMANUJAM, AND CHOUDHARY

File: 740J 163910 . By:XX . Date:23:06:00 . Time:08:19 LOP8M. V8.B. Page 01:01
Codes: 1790 Signs: 1200 . Length: 52 pic 10 pts, 222 mm

FIG. 2. Compiler algorithm for optimizing cache locality. This algorithm first tries to optimize
references for temporal locality. If this is not possible, spatial locality in the innermost loop is attempted.
When it fails, spatial locality in the outer loops is tried. The Ker[.] notation denotes the null set of a
vector or matrix; _ denotes a matrix�vector or vector�vector multiply.

In Step (1), the algorithm attempts to find a qn
� such that the left-hand side

reference will have a temporal locality in the new innermost loop; that is, jn will not
appear in any subscript position (dimension) of this reference. If such a qn

� is found
we leave the memory layout of this array unspecified for now, and later in Step (5)
we assign an arbitrary layout for that array. Since it exhibits temporal locality in
the innermost loop, the spatial locality (and therefore memory layout) for
it is of secondary importance. If there is more than one qn

�=(q1 , q2 , ..., qn), we
select the one with the smallest gcd[q1 , q2 , ..., qn].

If it is not possible to find a qn
� to exploit temporal locality, the algorithm

obtains spatial locality for this reference in Step (2). It tries to transform this

933COMPILER ALGORITHMS

reference into a form C(f1 , f2 , ..., fm) where there exists an 1�i�m such that f i is
an affine function of all loop indices with the coefficient of jn being c (a nonzero
constant), and each fj (i{ j) is an affine function of j1 , j2 , ..., jn&1 but not of jn . In
other words, jn appears only in the ith subscript position In such a case the dimen-
sion i is the FCD for that array. Note that it is always possible to find such a qn

� .
To see this, suppose that we would like to ensure li

C
�

_ qn
�=c is satisfied. We

can delete the i th row of LC and select a qn
� from the Ker set (i.e., the null set)

of the reduced matrix. Then, this qn
� gives us a constant c value when it is multi-

plied by li
C

�
. In practice, it is possible most of the time to find a qn

� such that
c=1.

Having optimized the left-hand side reference and having fixed a qn
� , the algo-

rithm then focuses on the right-hand side references and in Step (3) optimizes each
of them in turn. For each right-hand side reference, it first checks (Step (3.1))
whether temporal locality exists for that reference under the qn

� found in the pre-
vious step. If so, the algorithm proceeds to the next right-hand side array, otherwise
it checks the reference for spatial locality and determines the memory layout (the
FCD) of the associated array (Step (3.2)) using a method similar to the one used
for the left-hand side reference. It is possible that the spatial locality cannot be
exploited for this reference in the innermost loop. After this, in Step (3.4), the algo-
rithm tries to exploit spatial locality in outer loops for all those right-hand side
arrays for which neither spatial nor temporal locality was exploited in the inner-
most loop in Steps (3.1) thru (3.3). It computes a set of feasible vectors with
associated frequencies, and the set is then sorted in decreasing order of frequency.
Let s be the size of this set. The element v of this sorted set is assigned as column
n&v of the matrix Q, for v from 1 to s.

In Step (4) the inverse of the loop transformation matrix is completed using a
dependence-sensitive matrix completion method (e.g., [32] or [6]), and in Step (5) the
algorithm assigns arbitrary memory layouts for the arrays with temporal locality in the
innermost loop and the arrays for which no optimal layout has been found.

The following points should be noted. First, our algorithm considers all m
possible subscript positions (dimensions) as the potential FCD for a given array.
Second, it should be noted that the algorithm first optimizes the left-hand side
array. Although this is not strictly necessary, we found it useful in practice as the
left-hand side array might be both read and written, whereas the other arrays are
only read. If there are more than one left-hand side reference inside the loop nest,
we start with the one that would be more frequently accessed at run-time. Such
information can be obtained through profiling. Third, an important case occurs
when an array is referenced more than once. If all of its references belong to the
same uniformly generated set [17] (i.e., have the same array access matrix), then it
is sufficient to consider only one of them. If, on the other hand, there are references
to the same array with different access matrices, then a reasonable heuristic might
be to select a representative reference for that array and use it in the optimization
process. Our representative reference selection scheme is based on the weight of
references. Essentially, the weight of a reference is the number of times it is accessed
in a typical execution. This number can be estimated by multiplying the trip counts
(the number of iterations) of the loops which enclose that reference. If the trip

934 KANDEMIR, RAMANUJAM, AND CHOUDHARY

counts are not available at compile-time, we use profiling to get this information.
In practice, average trip count estimations are sufficient for a majority of applica-
tions. After the weight of each reference is obtained, the references are divided into
(conformity) groups such that two references belong to the same group if they are
conformant in the sense that they require the same FCD. It is easy to see that two
references are conformant if canonical forms of the last columns of their array access
matrices are equal. The canonical form of a column vector x� =(x1 , x2 , ..., xe)T is
Canonical(x�)=(x1 �g, x2 �g, ..., xe �g)T where g=gcd[x1 , x2 , ..., xe].

Thus, two references R1 and R2 belong to the same conformity group if the last
columns of their access matrices, x� R1

and x� R2
, satisfy

Canonical(x� R1
)=Canonical(x� R2

).

After determining the conformity groups, the compiler computes the weight of each
conformity group. The weight of a conformity group is the sum of the weights of
the references it contains. Assuming that a conformity group Ci contains references
R1 , R2 , ..., and Rk , the weight of Ci can be computed as

weight(Ci)= :
k

j=1

weight(R j)= :
k

j=1

`
l

trip count(l),

where l iterates over the loops that enclose Rj .
Once the weights of the conformity groups are computed, our approach chooses

a reference from a conformity group with the largest weight as representative
reference. Then the compiler proceeds to optimize locality for this reference.

We assume that such a representative reference selection scheme is used in this
paper whenever necessary.

4.2. Complexity

For the left-hand side reference, in the worst case m+1 equation systems are
solved (one for temporal and m for spatial locality corresponding to each subscript).
Assuming n�m (where n is the depth of the loop nest), each system requires
maximum 3(n3) time, giving a total cost of 3(n4) for the left-hand side reference.
The cost of Step (3.3) is 3(n5R) at the worst case since there are R references. The
remaining steps do not change this complexity. It should be mentioned that in
practice most of the steps of the algorithm are not executed at all.

4.3. Example

In this subsection, we illustrate how the locality optimization algorithm works by
giving an example. Figure 3a shows the ijk matrix multiply routine. The array
access matrices are as follows.

935COMPILER ALGORITHMS

File: 740J 163913 . By:XX . Date:23:06:00 . Time:08:20 LOP8M. V8.B. Page 01:01
Codes: 3216 Signs: 2304 . Length: 52 pic 10 pts, 222 mm

FIG. 3. (a) Original matrix multiply nest. The default layout is column-major. (b) Locality
optimized version. Boldfaced references indicate that the associated arrays are row-major. Note that
array C has temporal locality in the innermost loop whereas arrays A and B have spatial locality. (c)
Parallelism optimized version. Arrays A and C are distributed by rows and array B by columns. Note
that the communication due to array B is vectorized.

LC=\1
0

0
1

0
0+, LA=\1

0
0
0

0
1+ , and LB=\0

0
0
1

1
0+ .

In the following we show only the successful trials.
In Step (1), from qn

� # Ker[(1, 0, 0)] and qn
� # Ker[(0, 1, 0)], we determine qn

�=
(0, 0, 1)T as the last column of the inverse of the loop transformation matrix.

Then we move to Step (3) to optimize the right-hand side references. In Step
(3.1) we see that qn

�=(0, 0, 1)T is in the Ker set of the rows of neither LA nor LB.
In Step (3.2) we check for spatial locality of A and B in the innermost loop. Since

\1
0

0
0

0
1+ qn

�=\0
1+ and \0

0
0
1

1
0+ qn

�=\1
0+ ,

we determine the FCDs for references to A and B as the second and first dimen-
sions, respectively. That is, for good spatial locality, arrays A and B should have
row-major and column-major memory layouts, respectively.

Afterward, in Step (4), we complete Q to identity matrix, taking into account the
last column of it (qn

�) found above. Finally, in Step (5), we arbitrarily assign row-
major layout for array C.

The transformed program is shown in Fig. 3b. We note that array C exhibits tem-
poral locality whereas arrays A and B enjoy spatial locality, all in the innermost
loop. To indicate the layout transformations, the references to arrays C and A are
boldfaced.

As stated earlier, after finding FCDs, we determine a suitable (complete) memory
layout. Note that determining an FCD in the two-dimensional case specifies a com-
plete memory layout. For the higher-dimensional cases, we order the remaining
layouts arbitrarily, though our approach can be extended to determine a second
fastest changing dimension and so on. Once a suitable memory layout is deter-
mined, we implement this layout by representing it with a data transformation
matrix [35] and transforming array references as well as array declarations accord-
ingly. For example, in Fig. 3b the layout of array A is determined as row-major.

936 KANDEMIR, RAMANUJAM, AND CHOUDHARY

File: 740J 163914 . By:XX . Date:23:06:00 . Time:08:20 LOP8M. V8.B. Page 01:01
Codes: 2512 Signs: 1533 . Length: 52 pic 10 pts, 222 mm

In order to implement this layout in a language whose default array layout is
column-major (e.g., Fortran), we need to find a two-by-two data transformation
matrix M such that

M \1
0

0
0

0
1+=\x

x
x
x

1
0+ ,

where x denotes a don't-care value. The process of detecting such a transformation
matrix and code generation after that is quite mechanical and beyond the scope of
this paper. We refer the interested reader to [35] for details. In this example, an
array transpose matrix [35] will suffice: M=(0

1
1
0).

Our algorithm can also optimize loop nests with very complex subscript expres-
sions. Consider the loop nest shown in Fig. 4a. The array access matrices are as
follows.

1 &1 0

LA=\ 1
&1

&1
1

0
1+ , LB=\&1

0
1
0

1
1+ , and LC=\1 &1 1+ .

1 0 1

In Step (1), from qn
� # Ker[(1, &1, 0)] and qn

� # Ker[(&1, 1, 1)], we determine
qn
�=(1, 1, 0)T as the last column of the inverse of the loop transformation matrix.

Then we move to Step (3) to optimize the right-hand side references. In Step
(3.1) we see that

\&1
0

1
0

1
1+ qn

�=\0
0+ ,

meaning that it is possible to exploit temporal reuse for array B in the innermost
loop.

Unfortunately, for array C, exploiting temporal locality is not possible as a row
of C, namely (1, 0, 1), is not in the null set of qn

� .

FIG. 4. (a) A loop nest with complex access pattern. (b) Locality optimized code. Note that in this
optimized code for two out of three references we have temporal reuse, and for the third reference we
have spatial reuse, all in the innermost loop. For a loop i, li and ui denote the lower and upper bounds,
respectively.

937COMPILER ALGORITHMS

However, in Step (3.2) we check for spatial locality of C in the innermost loop.
Since

1 &1 0 0

\1 &1 1+ qn
�=\0+ ,

1 0 1 1

we determine the last dimension of array C as the FCD. A layout that matches this
FCD is row-major.

Afterward, in Step (4), we complete Q as

1 0 1

\0 0 1+ ,

0 1 0

and in Step (5), we arbitrarily assign column-major layouts for arrays A and B.
The transformed code is shown in Fig. 4b. We note that for two out of three

references we have temporal reuse and for the third reference we have spatial reuse,
all in the innermost loop.

5. ALGORITHM FOR ENHANCING MEMORY LOCALITY
AND PARALLELISM

In this section, we present a technique which considers loop transformations to
optimize parallelism and communication in message-passing machines. Specifically,
the algorithm presented here transforms a loop nest such that

(1) the outermost transformed loop is distributed over the processors,

(2) the memory locality is optimized by distributing arrays across memories
of the processors, and

(3) communication is performed in large chunks, and it is optimized such
that all nonlocal data are transferred to respective local memories before the execu-
tion of the innermost loop.

We note that the algorithm can also be used for the shared-memory UMA and
NUMA architectures. For the NUMA case (depending on the specific architecture),
the algorithm performs Steps (1) and (2) listed above, whereas for the UMA case
it performs only Step (1).

5.1. Explanation

The overall algorithm is presented in Fig. 5. As before, let j1 , j2 , ..., jn be the loop
indices of the transformed loops from outermost position.

In Step (1) we try to determine a distributed dimension i for the left-hand side
array such that no communication will incur and the outermost.loop parallelism is

938 KANDEMIR, RAMANUJAM, AND CHOUDHARY

File: 740J 163916 . By:XX . Date:23:06:00 . Time:08:21 LOP8M. V8.B. Page 01:01
Codes: 1665 Signs: 1048 . Length: 52 pic 10 pts, 222 mm

FIG. 5. Compiler algorithm for optimizing memory locality and parallelism and minimizing
communication. For each reference, the algorithm first attempts to obtain communication-free outer-
most loop parallelism. If this is not possible, it tries to vectorize the communication out of the innermost
loop.

obtained. This can be done if the reference for the left-hand side array can be trans-
formed into the form C(f1 , f2 , ..., fm) where there exists an 1�i�m such that fi is
an affine function of only j1 with the coefficient of c, and each fj (i{ j) is an affine
function of j1 , j2 , ..., jn . In other words, in the ith dimension only j1 will appear.
When this gets satisfied, array C can be distributed along the ith dimension (i.e.,
i will be the DD), and at the same time the outermost loop is parallelized.

In Step (2) we try to optimize communication for each right-hand side array in
turn. For a given right-hand side array Ar if we can find a row l such that l l

Ar
�

=
li

C
�

, we can distribute Ar along the lth dimension without incurring any

939COMPILER ALGORITHMS

communication due to this array reference. This possibility is checked in Step (2.1)
in the algorithm. If all the right-hand side references have a row in the array access
matrix identical to that of the left-hand side reference, then the entire loop can be
distributed along that dimension and there is no communication [39, 40].

If a communication-free distribution is not possible, in Step (2.2) we attempt to
vectorize the communication out of the innermost loop. It is possible that the trans-
formation matrix required in order to move the communication due to one
reference may conflict with that required for another. Therefore, in this step, we
compute the required transformation matrix Qr for each right-hand side reference
r independently, i.e., as if reference r were the only right-hand side reference. This
can be done if we can transform the right-hand side reference to array Ar to the
form Ar(f1 , f2 , ..., fm) where there exists a dimension s such that fs is an affine
function of only jn and for each k{s, fk is an affine function of j1 , j2 , ..., jn&1 but
not of jn . If this is satisfied, it is easy to see that the communication due to this
reference can be vectorized out of the innermost loop jn , and the array can be
distributed along any dimension other than s. It is possible that the loop trans-
formation that is needed to vectorize communication for this reference may conflict
with that needed for another reference. Therefore, all the loop transformation
matrices computed in this step for each reference are saved. The algorithm in
Fig. 5 only shows vectorization of communication from the innermost loop. Note
that it is possible to repeat Step (2.2) if desired, this time attempting to move
the communication out of the second innermost loop (jn&1). This process
terminates when a loop is encountered outside of which the communication cannot
be moved.

Step (3) shows a simple conflict resolution scheme. Other approaches such as
those based on profiling can be used here. Recall that in Step (2), for each reference
r, the inverse of the associated transformation matrix Qr is either the zero matrix
(that is a matrix in which all entries are zeros, i.e., there was no solution in Steps
(2.1) and (2.2)) or some entries of Qr have been computed. We define two matrices
(whose entries could be don't-cares) Q1 and Q2 to be compatible if for all i, j either
Q1[i, j]=Q2[i, j] or at least one of the two entries Q1[i, j] and Q2[i, j] is a
don't-care. In this step, we find the sets of mutually compatible matrices from
among all the matrices Qr which were defined in Step (2.2). We use a simple greedy
heuristic to compute the sets. Let there be f such sets P1 , ..., Pf . Note that there is
a single Q matrix associated with each set. We assume that the sets P1 , ..., Pf are
arranged in decreasing order of their sizes, i.e., the number of compatible matrices
in the sets. The algorithm in Fig. 5 uses the matrix Q* associated with the set that
has the maximum number of mutually compatible references, copies this matrix to
Q, and completes this matrix as needed (Step (4)) and then uses its inverse as the
desired transformation matrix.

Of course, the transformation matrix should be nonsingular and must satisfy the
data dependences. It is possible that the matrix Q* associated with the first set (of
the sorted sets P1 , ..., Pf) violates dependence constraints or is singular. In such a
case, we scan the matrices associated with the P sets in order and use the first
matrix that satisfies the dependence constraints and is nonsingular. Notice that the
algorithm adheres to the owner-computes rule [4, 20, 51] by performing a left-hand

940 KANDEMIR, RAMANUJAM, AND CHOUDHARY

side based data distribution across the processors. The details of the algorithm can
be found in Refs. [39] and [40].

5.2. Complexity

For the left-hand side reference, in the worst case m equation systems are solved
(one or each candidate DD). Assuming n�m each system requires maximum
3(n3), giving a total cost of 3(n4) for the left-hand side reference. The cost of a
right-hand side reference is at the worst case 3(mn3+mn3), where first term is for
checking communication-free distribution and the second term is for vectorization.
Thus, the overall cost of the algorithm is 3(n4R). Notice that if we attempt to vec-
torize communication above the outer loops as well, the overall complexity
becomes 3(n5R).

5.3. Example

To illustrate the technique, we consider again the ijk matrix-multiply nest shown
in Fig. 3a.

The array access matrices are as follows.

LC=\1
0

0
1

0
0+ , LA=\1

0
0
0

0
1+ , and LB=\0

0
0
1

1
0+ .

As before, we only show the successful trials.
In Step (1) LC_Q=(1

x
0
x

0
x). Therefore q11=1, q12=0, and q13=0.

Since l9 A
1 =l9 C

1 , A can be distributed along the first dimension as well.
Array B, however, has no common row with array C; therefore we try to vec-

torize communication for it. LB_Q=(0
x

0
x

1
0). Therefore q31=q32=q23=0 and

q33=1. Thus, array B can be distributed along the second dimension as the new
innermost loop index appears only in the first dimension.

In these equations, x denotes to a don't-care entry.
At this point, we have

1 0 0

Q=\q21 q22 0+ .

0 0 1

The remaining entries should be selected such that Q should be of full-rank and
no data dependence is violated. In this case the compiler can set q21=0 and q22=1
using a completion algorithm.

This results in the identity matrix meaning that no transformation is needed.
Arrays A and C are distributed by rows and array B by columns. The resulting
program with the data transfer call is shown in Fig. 3c. Note that the communica-
tion for array B is performed outside the innermost loop; that is, it is vectorized.
The notation B(V , v) in Fig. 3c denotes the set of elements [(w, v) : 1�w�N].

941COMPILER ALGORITHMS

File: 740J 163919 . By:XX . Date:23:06:00 . Time:08:21 LOP8M. V8.B. Page 01:01
Codes: 1813 Signs: 978 . Length: 52 pic 10 pts, 222 mm

FIG. 6. (a) SYR2K loop nest from BLAS. Notice that the subscript expressions are quite complex.
(b) Optimized version of (a) obtained by the algorithm given in Fig. 5. All arrays are distributed along
columns and all communications are vectorized above the innermost loop.

This algorithm can optimize loop nests with quite complex subscript functions as
well. As an example, consider the SYR2K nest shown in Fig. 6a from BLAS [16].
Figure 6b shows the optimized version of this loop nest. The resulting loop trans-
formation matrix is

1 &1 0

T=\&1 0 1 + .

0 0 &1

The arrays A, B, and C are all distributed by columns; and all communications
are vectorized before the innermost transformed loop.

6. UNIFIED ALGORITHM

This section presents a unified algorithm which combines the characteristics of
the two algorithms presented in the previous two sections (Sections 4 and 5). There
are many factors involved in this case and the algorithm presented here is a greedy

942 KANDEMIR, RAMANUJAM, AND CHOUDHARY

heuristic in the sense that it handles the array references one by one and uses the
decisions taken during optimization of a reference in optimization of the others.

Specifically, given a loop nest, our unified algorithm

(1) transforms the nest such that the outermost transformed loop can be run
in parallel across the processors,

(2) optimizes memory locality by distributing each array across the memories
of the processor,

(3) optimizes interprocessor communication by vectorizing it whenever
possible, and

(4) optimizes cache locality by assigning an appropriate memory layout for
each array and by transforming the iteration space.

For distributed-memory multicomputers, all four steps can be applied. For the
shared-memory NUMA case, depending on the specific machine, Steps (1), (2), and
(4) are attempted; and for the UMA case, only Steps (1) and (4) can be performed.

6.1. Explanation

In this subsection, we give the rationale behind the unified algorithm. As before,
for simplicity, we assume there is only one uniformly generated set per array. If this
is not the case, the representative reference selection scheme discussed earlier should
be used.

At the heart of our unified optimization algorithm is determining for each array
an array access matrix suitable for both parallelism and locality. One might think
of an ideal access matrix as the one which helps to exploit temporal locality in the
innermost loop and produces outermost loop parallelism without incurring inter-
processor communication. Such an ideal access matrix is of the form

\
x x } } } } } } x 0

+
m_n

.

x x } } } } } } x 0

1 0 } } } } } } 0 0

x x } } } } } } x 0

x x } } } } } } x 0

x x } } } } } } x 0

In this matrix x denotes to a don't-care entry. Notice that the matrix has a zero last
column which guarantees temporal locality in the innermost loop and a row of the
form (1, 0, ..., 0, 0) which implies outermost loop parallelism. Supposing that this
row is the ith row where 1�i�m, the array in question can be distributed across
the memories of the processors along the ith dimension (i.e., i is the DD). In addi-
tion, during the entire execution of the innermost loop the elements of this array
can be held in a register. For such an array, the memory layout is of secondary
importance as it exhibits temporal locality in the innermost loop.

943COMPILER ALGORITHMS

Another ideal access matrix is the one which helps to exploit spatial locality in
the innermost loop and ensures outermost loop parallelism without communica-
tion. Such an access matrix is of the following form:

\
x x } } } } } } x 0

+
m_n

.

x x } } } } } } x 0

1 0 } } } } } } 0 0

x x } } } } } } x 0

x x } } } } } } x 1

x x } } } } } } x 0

Assuming that (1, 0, ..., 0, 0) is the ith row and the nonzero entry in the last column
occurs in the jth row, we have i as the DD and j as the FCD for the array in ques-
tion. In other words, we can distribute the array along the ith dimension and store
it in memory such that the jth dimension will be the fastest changing dimension. It
should be emphasized that the compiler should try all possible m values for i and
j. It should also be noted that i{ j as the same dimension cannot be a DD and
FCD at the same time.

Our algorithm tries to achieve one of these ideal access matrices for as many
references as possible. For the remaining references, the algorithm considers the
next most desirable access matrices. The selection of those matrices depends on
whether parallelism is favored over locality or vice versa. For example, we can insist
on exploiting spatial locality in the innermost loop, but can accept some com-
munication vectorized out of the innermost loop. Obviously, such an approach
favors locality over parallelism. Alternatively, we can insist on communication-free
outermost loop parallelism, but can sacrifice some locality by, let's say, exploiting
spatial locality in the second innermost loop instead of the innermost loop. Such an
approach favors parallelism over cache locality.

In Table 1 we show the alternative access matrices that our current implementa-
tion tries for a reference to a two-dimensional array enclosed by a three-dimen-
sional loop nest.

The upper-left quadrant (UL) of the table presents the desired access matrices for
obtaining outermost loop parallelism as well as exploiting temporal locality in the
innermost loop. The upper-right (UR) quadrant, on the other hand, shows the
access matrices for obtaining outermost loop parallelism and exploiting spatial
locality in the innermost loop. The lower-left (LL) corner of the table gives the
access matrices that will be used when the locality is favored over parallelism. In
that case, the spatial locality is exploited in the innermost loop, but the com-
munication incurred by the reference is vectorized out of the innermost loop.
Finally, the lower-right (LR) quadrant shows the access matrices when parallelism
is favored over locality. In this case the outermost loop parallelism is achieved but
the spatial locality is exploited in the second innermost loop. Depending on the
target architecture these four quadrants can be tried in different orders. In our
current implementation, for the distributed-memory message-passing machines we

944 KANDEMIR, RAMANUJAM, AND CHOUDHARY

TABLE 1

Desired Array Access Matrices for a Two-Dimensional
Array Enclosed in a Three-Deep Loop Nest

group (1) group (2)

\1
x

0
x

0
0+ , \x

1
x
0

0
0+ \1

x
0
x

0
1+ , \x

1
x
0

1
0+

group (3) group 4

\x
0

x
0

0
1+ , \0

x
0
x

1
0+ \1

x
0
1

0
x+ , \x

1
1
0

x
0+

Note. An x denotes a don't-care entry. The four quadrants
in this table correspond to the groups: upper-left quadrant
(group (1)) temporal locality in the innermost loop, no com-
munication; upper-right quadrant (group (2)) spatial locality
in the innermost loop, no communication; lower-left quadrant
(group (3)) spatial locality in the innermost loop, vectorized
communication; and lower-right quadrant (group (4)) spatial
locality in the second innermost loop, no communication.

adopt UL, UR, LR, and LL in that order. For the distributed-shared-memory
machines, on the other hand, we try UL, UR, LL, and LR in that order. Given
accurate cost measurements, it is possible to select an appropriate order for the
trials.

Essentially, starting from the left-hand side reference, the algorithm handles each
array reference in turn and tries to find a suitable access matrix for satisfying
locality and parallelism. In doing so, it fills some elements of Q as well. Then it
proceeds with the next reference and tries to fill out the remaining elements of Q
and so on. After all the references have been handled, if there are still unspecified
elements of Q, they are filled out using a modified version of the completion
algorithms proposed by Li [32] and Bik and Wijshoff [6].

An important question is how many access matrices should be tried for a given
array reference. In theory, an approach can perform an exhaustive search over all
possible access matrices (not just the ones belonging to one of the four sets men-
tioned above). Such an approach will also try access matrices such as those, let's
say, which exploit the spatial locality in the third innermost loop and vectorize the
communication in the second innermost loop, etc. Our experience, albeit limited,
shows that for most regular scientific codes encountered in practice examining four
sets of access matrices mentioned above is sufficient. These four sets correspond to
four quadrants shown in Table 1. In the following we will call each quadrant a
group. Notice that given an array dimensionality m, and a loop depth n, it is always
possible to generate these four groups which contain desired access matrices corre-
sponding to (1) temporal locality, no communication; (2) spatial locality, no com-
munication; (3) spatial locality, vectorized communication; and (4) spatial locality
(in the second innermost loop), no communication, respectively.

945COMPILER ALGORITHMS

File: 740J 163923 . By:XX . Date:23:06:00 . Time:08:22 LOP8M. V8.B. Page 01:01
Codes: 1618 Signs: 1044 . Length: 52 pic 10 pts, 222 mm

FIG. 7. Sketch of the unified compiler algorithm for optimizing cache locality, memory locality,
parallelism, and minimizing communication. Note that for each reference we check all possible access
matrices from all four groups.

The sketch of our unified algorithm is given in Fig. 7. We assume that four
groups are denoted by i=1, 2, 3, 4, respectively. Also assume that Rij refers to the
jth access matrix from group i. For example in Table 1,

R11=\1
x

0
x

0
0+ and R32=\0

x
0
x

1
0+ .

Notice that 1� j�m(m&1) for an m-dimensional array. The reason is that we
need to select a dimension for DD and another dimension for FCD.

In Step (1) we have a three-deep loop nest. For each reference we try each
possible access matrix from four groups. When an acceptable access matrix is
found, we store the matrix associated with this reference and move on to the next
array. The reason we do this is to be be able to detect and resolve conflicts. In this
step, the associated matrix Qr could either be undefined or has some values set.

946 KANDEMIR, RAMANUJAM, AND CHOUDHARY

Since there may be conflicting requirements on the transformation matrix from
different references, we use a conflict resolution scheme in Step (2). This scheme is
similar in spirit to the conflict resolution step used in Fig. 5. A key difference
between the two algorithms is that the left-hand side array gets a special treatment
in the algorithm in Fig. 5, whereas that is not the case in the combined algorithm
in Fig. 7. Accordingly, the conflict resolution step takes all the computed Qr

matrices (both left- and right-hand side) into account. (See the discussion in
Section 4.1 for a description of the conflict resolution scheme.)

Finally, in Step (3) we complete Q, and in Step (4) we assign arbitrary layouts
for the references with temporal locality in the innermost loop.

Our current approach precomputes the desired access matrices of all four groups
of access matrices for commonly used array dimensions (e.g., m=2, 3, 4) and loop
depths (e.g., n=2, 3, 4) and stores them in tables for the algorithm shown in Fig. 7.

6.2. Complexity

The complexity of the approach is the product of the trip counts of the loops
shown in Fig. 7 and 3(n3); that is, 3(n4R). Notice that if we consider all levels of
spatial reuse and vectorization above the outer loops, the complexity would be
higher.

6.3. Example

We consider the original matrix-multiply nest of Fig. 3a once more. The array
access matrices are

LC=\1
0

0
1

0
0+ , LA=\1

0
0
0

0
1+ , and LB=\0

0
0
1

1
0+ .

Again, we show only the successful trials.
For the left-hand side reference, we can use

1 0 0

R11=\1
x

0
x

0
0+ } LC_Q=\1

x
0
x

0
0+O Q=\x x 0+ .

x x x

This means we can exploit temporal locality in the innermost loop and can have
outermost loop parallelism by distributing the array row-wise across the memories
of the processors.

For array A, we can use

1 0 0

R21=\1
x

0
x

0
1+ } LA_Q=\1

x
0
x

0
1+O Q=\x x 0+ .

x x 1

947COMPILER ALGORITHMS

In this case, the FCD for array A is two; that is, the array should be stored as
row-major. In addition, due to row (1, 0, 0) in the transformed access matrix, there
will be no communication for that reference with the outermost loop parallelism.

For array B, we can use

1 0 0

R21=\0
x

0
x

1
0+ } LA_Q=\0

x
0
x

1
0+O Q=\x x 0+ .

0 0 1

Thus, array B will not have outermost loop parallelism, but its communication
will be vectorized out of the innermost loop. In addition, it will have a column-
major memory layout in memory.

In Step (3), we set q21=0 and q22=1 reaching the identity matrix. Finally, in
Step (4), we assign row-major memory layout to array C. The resulting program
is the same as shown in Fig. 3c with appropriate memory layouts.

7. GLOBAL OPTIMIZATION PROBLEM

The impact of data layout optimizations is global in the sense that when memory
layout for an array is modified this new layout should be applied for all references
to that array in the entire program. In some cases, this global effect can cause
problems. These problems can be handled to a certain extent by applying iteration
space transformations for the loop nests that are suffering from negative impact of
the layout transformation. In other words, global impact of data layout transforma-
tions can be resolved locally by iteration space transformations.

In this section, we concentrate on the global locality optimization problem; that
is, optimizing a number of consecutive loop nests simultaneously. In fact, we will
handle a subproblem, namely optimizing cache locality across a number of loop
nests. The other part of the global problem, optimizing data distribution across
processors in multiple nests, has been handled in the literature (see, for example,
[43, 21, 18, 36, 26, or 3]) and we do not discuss that problem here. Although the
algorithm to be presented in this section can be modified to incorporate optimal
global data distribution detection as well, for the sake of clarity we assume in this
section that a suitable data distribution will be always available after the global
algorithm discussed here has run. In a future work, we plan on integrating the
global algorithm to be presented here with one of the techniques proposed by pre-
vious authors on automatic data distribution such as Anderson et al. [2], Kremer
[28], and Gupta and Banerjee [21].

7.1. Local Candidates

In previous sections we tried to determine locally optimal memory layouts given
a loop nest. When working on a global setting which comprises a number of loop
nests, however, a local suboptimal solution may be globally optimal or vice versa.
This implies that it may not be a good idea to consider only locally optimal
memory layouts during global optimization process. In other words, we need to

948 KANDEMIR, RAMANUJAM, AND CHOUDHARY

consider a number of local alternatives per nest in the global optimization (which
includes the best local alternative, of course). The important question now is how
to select those local alternatives. As the reader would recall, the algorithm in Fig. 2
returns only a single solution which consists of memory layouts for all arrays. We
call such a solution a local combination or a local alternative. The number of local
alternatives can be increased in at least two ways:

(1) In Step (5) of the algorithm in Fig. 2, instead of assigning a single
arbitrary layout for the references with temporal locality in the innermost loop, we
can consider all possible memory layouts for such references; that is, for an
m-dimensional array with temporal locality in the innermost loop we can consider
all m possible dimensions as the FCD; or

(2) We can adopt an exhaustive search to find local alternatives based on the
layout of the left-hand side array. In other words, for the left-hand side array we
can try all m+1 alternatives which exploit either temporal locality in the innermost
loop (one alternative) or exploit spatial locality in the innermost loop (m alter-
natives). After that, for each such alternative we attempt to optimize all right-hand
side references. This approach requires a minor modification to the algorithm given
in Fig. 2. Specifically, Step (3) in Fig. 2 should be embedded within Steps (1) and
(2) so that for each alternative solution for the left-hand side reference we can
consider all the right-hand side references.

We have chosen to implement the second approach, because it puts an upper
bound to the number of local alternatives: We can have at most m+1 local alter-
natives (one for temporal locality and m for spatial locality with the FCD ranging
from 1 to m). Notice that each possible local alternative is also associated with an
accompanying loop transformation. Henceforth, we refer to this modified loop-level
locality optimization approach as local. Throughout this section, we assume that
local is run for each individual loop nest in the program, and all local alternatives
and associated loop transformations are determined.

It is important to emphasize that although we can have m+1 local alternatives
at most, this number can be reduced in general using an aggressive approach. For
example, given a local alternative and associated loop transformation the cache
miss rates can be estimated using the approach proposed by Sarkar et al. [41]. The
local alternatives whose estimated miss rates are higher than a threshold can be
eliminated from further consideration.

Alternatively, the number of local alternatives can be further increased if we con-
sider a number of alternative loop transformations to obtain the same FCD for a
given array.

In the explanation which follows we assume that an arbitrary number of alternatives
can be returned by local (less than, equal to, or greater than m+1). In the run-time
experiments, however, we considered exactly m+1 local alternatives per nest.

7.2. General Problem

Let [N1 , N2 , ..., Nn] denote the different loop nests in the program and
[A1 , A2 , ..., Am] denote the different arrays. In general each nest can access a

949COMPILER ALGORITHMS

subset of these arrays. We first present a sketch of a proof which shows that the
problem of finding global memory layouts (for all arrays) which satisfy all the
(transformed) nests is NP-complete [19] even for the restricted case where only
row-major (r-m) and column-major (c-m) memory layouts are considered.

When local is run for each nest in the program, we obtain local alternatives
similar to those shown in Table 2a. For example, nest N1 accesses three arrays and
local returns two local alternatives for that nest. We define the number of entries
in the table as the size of the problem.

First, the problem belongs to the NP class [19]; this is because a nondeter-
ministic algorithm need only guess a solution and check in polynomial time
whether or not it satisfies all the nests. Next, we reduce the satisfiability problem
[19] to our problem as follows: A given formulation is transformed to multiplica-
tions of sums (a polynomial-time operation). After that, each multiplicative term is
associated with a nest, and each subterm (clause) in a multiplicative term is
associated with a layout combination. With each logical variable x we associate an

TABLE 2

Local Layout Assignments for Different Examples

A1 A2 A3 A4 A5

(a)

N1 r-m r-m r-m
r-m c-m c-m

N2 c-m c-m
r-m c-m

N3 c-m c-m r-m

(b)

N1 r-m c-m c-m

N2 c-m c-m r-m r-m

N3 r-m r-m r-m

(c)

N1 r-m c-m c-m
r-m r-m c-m

N2 c-m c-m r-m r-m

N3 r-m r-m r-m
r-m c-m r-m
c-m c-m c-m

Note. A nonempty entry in (Ni , Aj) means that the nest Ni

accesses the array Aj . For a given nest Ni , each row
represents a local alternative. r-m denotes row-major and c-m
denotes column-major.

950 KANDEMIR, RAMANUJAM, AND CHOUDHARY

array X. If the logical variable appears itself, we assign c-m layout for X; if x�
complement of x) appears, we assign r-m layout for X.

For example, the layout assignments shown in Table 2a correspond to the follow-
ing formulation where ai and ai are the logical variables associated with array Ai .

(a1 a2 a3 +a1 a2a3) } (a2a5+a2 a5) } (a1a3 a4)

There might be some special cases to handle, though. For example, after obtaining
the desired form, a multiplicative term can contain expressions such as in (ac+bc�)
which does not have all the variables. This expression should be transformed to
(a(b+b�) c+(a+a�) bc�)=abc+ab� c+abc� +a� bc� so that each subterm contains logi-
cal variables a, b, and c or complements of them.

It is easy to see that the formulation is satisfied if and only if there is a layout
assignment that satisfies all the nests. Since the reduction can be achieved in poly-
nomial time, the problem is NP-hard; and since it belongs to the class NP as well,
it is NP-complete. Since this problem is a restricted version of the most general
problem of finding suitable layout assignments such that the value of a cost func-
tion will be �k, we argue that the general problem is also NP-complete. Note that
in our restricted version, k=0.

7.3. A Heuristic for Detecting Memory Layouts

Given that even the restricted form of the global layout problem is NP-complete,
we search for a near-optimal solution with polynomial time which is good enough
in practice. Let LLl

N (A) be a local layout for an array A in a local alternative l

for nest N and GL(A) be the global layout (to be determined) for array A. For
example, in Table 2a, LL1

N1
(A1)=r-m and LL2

N2
(A5)=c-m. We define the follow-

ing parameter:

+(A, N, l)={0
1

if LLl
N (A)=GL(A) or A is not referred in N

otherwise.

Essentially, +(A, N, l) represents the cost of the layout of array A for a specific
local alternative l of a specific loop nest N. Given this definition of +, the cost of
nest N under a local alternative l is LCost(N, l)=�A +(A, N, l). Similarly,
ACost(A, l)=�N +(A, N, l) is the cost of array A considering all the loop
nests, again under a specific local alternative l. An important relation between
LCost and ACost is

:
A

ACost(A, l)=:
N

LCost(N, l)=:
N

:
A

+(A, N, l).

We can now formulate the global layout determination problem as a problem of
finding a global memory layout for each array (that is, determining GL(A) for each
A) and a corresponding local alternative for each nest (that is, determining l for
each N) such that �N �A +(A, N, l) is minimized.

951COMPILER ALGORITHMS

Let us now consider the case shown in Table 2b. In this simple example there is
only one alternative per loop nest. In this special case, we can apply the following
heuristic: Consider each column in turn and pick up the layout that occurs most
frequently. In the case of a tie, choose a layout arbitrarily. For this example, the
heuristic leads to r-m, c-m, c-m, r-m, and r-m layouts for A1 , A2 , A3 , A4 , and A5 ,
respectively. The complexity of this heuristic is 3(s_R) where s is the number of
nests and R is the number of arrays. However, local can return multiple local alter-
natives for a single nest. Assuming p local alternatives per nest, a simple extension
of the above heuristic results in 3(ps_s_R) complexity which is not acceptable
unless s is very small. In the following, we formulate the problem on a DAG (directed
acyclic graph) and solve it using a shortest path algorithm.

To demonstrate our approach, we consider the example shown in Table 2c. Let
alternatives(N) be a function that gives the number of alternative layout combina-
tions for nest N. For our example (Table 2c), alternatives(N1)=2, alter-
natives(N2)=1, and alternatives(N3)=3. Similarly let arrays(N) be a function that
gives the number of arrays referenced in nest N. Again, for our example,
arrays(N1)=3, arrays(N2)=4, and arrays(N3)=3. Our approach consists of four
steps:

Step (1): We first construct a bipartite graph where one group of nodes
corresponds to loop nests while the other group corresponds to the arrays. There
is an edge between an array node and a nest node if and only if the array is referenced
in the nest. Such a bipartite graph is called an interference graph by Anderson
et al. [3], and they use it to solve the global data distribution problem. Then an
algorithm to find connected components is run on this graph. Each connected com-
ponent corresponds to a group of loop nests that access a subset of the arrays
declared in the program. For the example given in Table 2c, the connected compo-
nent algorithm returns only one component: the graph itself. The complexity of the
connected components algorithm on a bipartite graph is 3(s+R) where s is the
number of nests and r is the number of arrays [14]. The following steps operate
on a single connected component at a time.

Step (2): In this step, an appropriate order of the loop nests is determined.
This order will be used only for constructing a DAG on which a shortest path algo-
rithm is run and is not used to change the textual order of the nests in the program
by any means. We present two heuristics to determine an order for the loop nests:
one which tries to minimize the number of edges of the DAG (min-edge), and
another with a higher accuracy (high-accuracy). It will be shown that there is
a tradeoff between complexity of the DAG and accuracy of the solution.

Min-edge heuristic. This heuristic attempts to find an order which will
minimize the number of edges in the DAG. It proceeds as follows:

(1) The nests are ordered such that alternatives(Ni)�alternatives(Ni+1),
1�i�n&1 (i.e., according to a nondecreasing number of alternatives).

(2) The place of N1 is fixed in the middle.

952 KANDEMIR, RAMANUJAM, AND CHOUDHARY

(3) The nests Nn and Nn&1 are placed on the left and right sides of N1 ,
respectively. Then the nests N2 and N3 are placed before Nn and after Nn&1 ,
respectively, and so on.

The aim of this heuristic is to minimize the sum of the subproducts alternatives(Nj)
_alternatives(Nk) where Nj and Nk are neighboring nests in the final order. For
the example given in Table 2c, [N3 , N2 , N1] is the nest order returned by the
min-edge. The rationale behind this heuristic is that the complexity of the single-
source shortest path algorithm on a DAG is 3(V+E) where V and E correspond
to the number of vertices and edges of the DAG, respectively [14]. In our case, the
number of vertices is fixed for a given program and is equal to the sum of the
number of alternatives for all the nests plus two extra nodes for source and target.
The number of edges, on the other hand, can be minimized by changing the order
of the nests. The practical significance of this heuristic is that it strives to reduce the
compilation time, as the shortest path algorithm will run at compile time. To
appreciate the reduction in the complexity of the DAG when Min-edge is used,
suppose that we have three nests with the number of local alternatives 1, 4, and 9.
If the nests are ordered as 1, 4, 9, the total number of edges will be 1+1_4+4_
9+9=1+4+36+9=50. The first term (1) and the last term (9) are due to source
and target nodes, respectively (see below). If we use the Min-edge heuristic,
however, we order the nests as 9, 1, 4 and the total number of edges will be
9+9_1+1_4+4=9+9+4+4=26.

Max-accuracy heuristic. This heuristic tries to increase the accuracy of the
solution at the expense of a more complex DAG. The shortest path algorithm to
be explained in the next step minimizes the cost originating from conflicting layout
requirements between the adjacent nests in the final order and is based on the idea
that this cost minimization process between each adjacent pair, hopefully, leads to
a near-optimal overall cost. This may not be true if the two neighbors (left and
right) of a loop nest have conflicting layouts for some arrays, but those arrays
are not referenced in that loop nest itself. In this case, the cost of the shortest
path between these two neighbors may be zero, but in reality a global layout assign-
ment will lead to a nonzero cost. In order to reduce the possibility of the occur-
rence of this unfortunate case, the max-accuracy heuristic orders the loop
nests as [N1 , N2 , ..., Nn] where arrays(N1)�arrays(N2)� } } } �arrays(Nn&1)�
arrays(Nn). For the example given in Table 2c, [N2 , N1 , N3] and [N2 , N3 , N1]
are the nest orders returned by the max-accuracy. It should be noted that this
heuristic in general may increase the compile time (as it does not care about the
number of edges) but (hopefully) reduces the run time by resulting in better global
layouts. Alternatively, an approach can apply both heuristics and make a decision
based on all returned nest orders.

It should be emphasized that the rest of the global locality optimization algo-
rithm is independent from how the nests are ordered.

Step (3): Suppose that, without loss of generality, [N1 , N2 , ..., Nn] is the
order obtained by the previous step. We construct a DAG as follows: For each
alternative layout combination of each nest we create a node. This node is given the
name Ni, j where i is the nest number and j is the number of the local alternative.

953COMPILER ALGORITHMS

File: 740J 163931 . By:XX . Date:23:06:00 . Time:08:22 LOP8M. V8.B. Page 01:01
Codes: 3659 Signs: 2800 . Length: 52 pic 10 pts, 222 mm

There is a directed edge from Ni, j to Ni+1, k for all 1� j�alternatives(Ni) and
1�k�alternatives(Ni+1). This edge is annotated by a set of arrays whose local
memory layouts differ in Ni and Nj . The cost of this edge is defined as the number
of those arrays. Notice that such a cost definition is coarse, but the algorithm can
be fed more accurate cost models where available. For example, a more aggressive
approach can use the estimated number of potential misses [41] as the cost func-
tion. Alternatively, we can weight each edge with the probability of execution of the
nest times the total array sizes whose layouts differ. If necessary, profiling the
sequential code can provide us with information about loop trip counts, array sizes,
and branch probabilities. A source node (S) and a target node (T) (both with zero
cost) are also added onto DAG such that there is an edge from S to N1, j for all
1� j�alternatives(N1) and an edge from Nn, k to T for all 1�k�alternatives(Nn).
Then a shortest path algorithm for this DAG is run from S to T. The path with the
minimum cost gives a suggested local alternative for each nest. Figure 8a shows the
DAG obtained by the order [N1 , N2 , N3] for the example given in Table 2c. The
edges are annotated with names of the arrays whose layouts are different in the con-
nected alternatives. The shortest path algorithm on this DAG returns with two
near-optimal solutions, N1, 1 , N2, 1 , N3, 2 and N1, 1 , N2, 1 , N3, 3 , omitting the source
and target nodes. In the first solution a cost occurs due to array A2 whereas in the
second solution the cost is due to array A4 . Now let us concentrate on the DAG
in Fig. 8b which is obtained from the order [N2 , N1 , N3]. In this DAG, the
shortest path algorithm returns the solution N2, 1 , N1, 1 , N3, 3 with a cost of zero. But,
if these local layouts are assigned there will be a cost originating from the conflict-
ing requirements on A4 by N2, 1 and N3, 3 . Since our approach considers only adja-
cent nest pairs, this cost does not reflect on the cost of the shortest path and the
solution is still suboptimal. This problem occurs because of the fact that A4 is not
referenced in N1 but is referenced in its left and right neighbors (N2 and N3 , respec-
tively). In fact, this is the case that the max-accuracy heuristic is designed to
prevent from happening as much as possible.

Step (4): The final phase of the heuristic determines the global memory
layouts for all arrays using the suggested local alternatives obtained in the previous
step. We refer to the shortest path obtained in the previous step by $; and the ith

FIG. 8. DAGs for different examples. Each edges is annotated by the number of arrays whose local
layouts differ in the local alternatives. The thick dashed curve in (c) shows the shortest path.

954 KANDEMIR, RAMANUJAM, AND CHOUDHARY

File: 740J 163932 . By:XX . Date:23:06:00 . Time:08:23 LOP8M. V8.B. Page 01:01
Codes: 3338 Signs: 2790 . Length: 52 pic 10 pts, 222 mm

node of the shortest path (excluding the source and target) is denoted by $i . Sup-
pose that there is a conflict between $i and $i+1 on an array A. In order to resolve
this conflict the layout for A should be changed either in $i or in $i+1 , as we do
not consider array redistribution in memory. Our approach decides the alternative
to be changed by considering all nodes along the shortest path. The algorithm
traverses the shortest path and records, for each array with conflicting layout
demands, the number of r-m and c-m layout demands. Then, in an attempt to
satisfy the majority of the nests, it chooses the layout that occurs most frequently.
Notice that this is exactly the same procedure used for solving the simpler case of
the general problem (see Table 2b). After that, the local layouts (in suggested local
alternative) of a nest which are different from global layouts are changed accord-
ingly. If desired, local can be run once more for the suboptimal nests by taking into
account the globally optimized layouts.

To sum up, after the third phase, the suggested local alternatives for each nest,
and after the fourth phase, the global layouts for the whole program, are deter-
mined, and then the local layouts are adjusted accordingly.

Since a loop nest can have at most m+1 local alternatives, if we assume s loop
nests in the program, the total number of nodes in the DAG is at most s(m+1)+2.
The additional term represents the source and target nodes. The total number of
edges, on the other hand, is (s&1)(m+1)2+2(m+1). This is because there are at
most (m+1)(m+1) edges between two neighboring loop nests in the DAG, and
there are a total of (s&1) such neighboring pair of loop nests. The term 2(m+1)
comes from the source and target nodes. Overall, the total space complexity of the
DAG is 3(sm2).

It is important to note the difference between our approach and one that uses an
integer linear programming (ILP) formulation such as that of Kremer and
Kennedy [26]. The ILP formulation used by Kennedy and Kremer [26] uses an
enumerated set of local candidates (for distributions of arrays) for each phase; each
phase (determined a priori) specifies only a partial distribution and there can be
changes across phases, resulting in the need for ILP. In our approach, we order the
nests for processing using greedy heuristics. Therefore once the nests are ordered,
what we have is simply a version of the shortest path problem in which constraints
are propagated from one nest to a later nest in order. Note that it is possible to use
an ILP formulation in our case as well.

FIG. 9. A simple example consisting of three loop nests. For the sake of illustration, we assume that
local returns 2, 4, and 2 local alternatives for N1 , N2 , and N3 , respectively.

955COMPILER ALGORITHMS

TABLE 3

Local Layout Assignments for the Program Fragment
in Fig. 9

A B C D E

N1 r-m c-m r-m
c-m r-m c-m

N2 r-m c-m r-m c-m
r-m c-m r-m c-m
r-m r-m c-m r-m
c-m r-m c-m r-m

N3 c-m r-m c-m c-m
r-m c-m r-m r-m

Note. c-m denotes column-major and r-m denotes row-
major.

7.4. Example

In order to demonstrate the technique on a program fragment, we consider a
simple example shown in Fig. 9 which consists of three consecutive nests. Assume
that when local is run for each nest of this program it returns the alternatives
shown in Table 3. The first phase of the algorithm returns only a single connected
component. In the second phase, min-edge gives two preferred orders,
[N2 , N1 , N3] and [N2 , N3 , N1], both with 18 edges on the corresponding DAGs.
The max-accuracy heuristic, on the other hand, returns [N2 , N3 , N1] and
[N3 , N2 , N1]. Since [N2 , N3 , N1] is common to both heuristics, we select that
order for the DAG to be constructed. The resulting DAG is shown in Fig. 8c. The
shortest path algorithm returns the path [N2, 1 , N3, 2 , N1, 1] (shown as a thick
dashed curve) with a zero pair-wise cost. It should be noted that, for this example,
that assignment happens to be optimal as well. That is, the optimal global memory
layouts for arrays A, B, C, D, and E are r-m, c-m, r-m, r-m, and r-m, respectively.

8. PERFORMANCE RESULTS

In this section we shall present our experimental results on seven regular matrix
codes: risch, a transpose routine from NWChem [23], a large computational
chemistry package; vpenta and btrix from Spec 92 [15]; lu, an LU decomposi-
tion program which makes use of three matrices; adi from Livermore Kernels
[33]; mxm, the classical ijk matrix multiplication routine; and mxmxm, a routine
from [12] which multiplies three two-dimensional matrices.

Our experimental results are obtained on the SGI Origin 2000 distributed-
shared-memory machine and the IBM SP-2 message-passing architecture. Each

956 KANDEMIR, RAMANUJAM, AND CHOUDHARY

processor of the Origin 2000 is 195 MHz R10000 MIPS processor, with 32 Kbyte L1
data cache and 4 Mbyte L2 unified cache. R10000 is an advanced superscalar pro-
cessor which can fetch and decode four instructions per cycle and can run them on
five pipelined functional units. Both caches are two-way associative and nonblock-
ing. For L1 cache hits, the latency is 2 cycles; and for L1 misses that hit in L2, the
latency is 8 to 10 cycles. The C versions of the transformed programs are compiled
using the native compiler using the -03 option (the blocking and unrolling are dis-
abled explicitly as they blur temporal reuse). The IBM SP-2 is a distributed-
memory message-passing machine and has RS�6000 Model 590 processors, each
with a 256 Kbyte data cache. As we mentioned earlier, our approach is imple-
mented using Parafrase-2 [37] as a source-to-source translator. The translated
programs are then compiled using the -02 option with the native compiler.

We first evaluate the mxm routine in detail on the Origin and then present the
overall results for all programs. In evaluating our technique we mainly concentrate
on four parameters: execution cycles, mflops rate, primary cache misses (PCM),
and TLB misses. Execution cycles and mflops rates are obtained using timing
routines in the program whereas the miss rates are obtained using the hardware
performance counters on the Origin. For this study, we ignore the number of
secondary cache misses.

Table 4a shows the performance of the original mxm code on a single node of the
Origin 2000 using different SIZE_SIZE double-precision matrices. All arrays in the
original code have row-major memory layouts. Table 4b shows the same
parameters for the optimized code using the approach explained in this paper.
Table 4c, on the other hand, shows the execution cycles per processor and mflops
rates for 1000_1000 double-precision matrices using a different number of pro-
cessors. From Tables 4a and 4b, we observe that there are 22, 21, 21, and 980

improvements in the execution cycles, mflops rates, L1 cache misses, and TLB
misses, respectively. In particular, optimizing for cache locality has a huge impact
on the number of TLB misses (due to improved memory locality). However, the
R10000 processor used in the Origin 2000 has a complex hardware where lots of
misses can get overlapped with the ongoing computation; therefore, the overall
improvement is around 210. Table 4c shows that when all processor sizes are con-
sidered, we have a 130 improvement in the mflops rates.

Tiling (blocking) is a technique to improve the locality and parallelism in loop
nests and is a combination of strip-mining and loop permutation [10, 49, 29, 13,
50]. Due to interference misses, it is difficult to select a suitable blocking factor (tile
size). Unless the blocking factor is tailored according to the matrix size and cache
parameters, the performance of tiling may be rather poor [13, 29]. We also
investigated what happens when we tile the original and the optimized codes for
matrix multiply. The results are presented in Table 5. We see in Tables 5a and 5b
that in general tiling has a significant impact in the overall performance of the code.
Another observation is that when a single node is considered the locality optimization
brings a 20 improvement in the mflops rates over the original tiled code. However,
we also observe that the improvement in the TLB misses is at around 790. There-
fore, we can expect that in machines with larger remote latency to local latency
ratio the impact of locality optimization on tiling will be higher. (In the Origin that

957COMPILER ALGORITHMS

TABLE 4

Performance Results for m_m on the SGI Origin 2000

Size Cycles secs mflops PCM TLB

(a) Original code

250 53, 791, 486 0.279 111.89 643, 683 351
500 474, 620, 174 2.485 100.59 10, 898, 344 37, 839
750 1, 624, 182, 002 13.111 64.36 31, 143, 773 257, 610

1000 3, 794, 084, 796 25.404 78.73 61, 576, 000 1, 119, 772
1250 7, 362, 564, 410 44.361 88.06 89, 704, 228 3, 276, 983

(b) Optimized code

250 46, 351, 293 0.247 126.52 634, 047 316
500 365, 675, 339 1.879 131.79 9, 191, 568 1, 601
750 1, 390, 474, 757 11.856 71.17 26, 255, 207 4, 199

1000 3, 141, 423, 468 21.820 91.66 45, 511, 806 11, 720
1250 5, 443, 610, 016 33.769 115.68 71, 222, 154 29, 197

(c) Execution cycles per processor and mflops rates with Size=1000

on different number of processors

Original Optimized

Number of procs Cycles mflops Cycles mflops

1 3, 794, 084, 796 78.73 3, 141, 423, 468 91.66
2 2, 449, 015, 482 126.45 2, 104, 961, 384 143.95
3 2, 002, 523, 515 156.63 1, 782, 032, 138 176.38
4 1, 763, 195, 747 180.59 1, 597, 983, 884 200.42
5 1, 646, 348, 059 196.14 1, 501, 126, 373 215.49
6 1, 412, 387, 509 204.69 1, 354, 394, 317 228.73
7 1, 401, 777, 158 211.24 1, 234, 491, 198 240.96
8 1, 266, 574, 001 207.66 1, 125, 485, 929 244.80

Note. The execution cycles (per processor) and mflops rates are obtained using timing routines in the
program whereas the miss rates are obtained using the hardware performance counters on the Origin.
For this study, we ignore the number of secondary cache misses. PCM denotes the primary cache misses
and TLB refers to the TLB misses.

we use this ratio is around 2.) If multiple node performance is considered, the
optimized tiled version has an 110 improvement in mflops rates and a 170

improvement in the execution cycles on 8 processors over the original tiled code.
These results reveal that optimizing locality before tiling may further enhance the
memory performance.

We now turn to the global picture and consider in Fig. 10 the mflops rates of all
the programs. For each program, we compile and run three different versions:

958 KANDEMIR, RAMANUJAM, AND CHOUDHARY

File: 740J 163936 . By:XX . Date:23:06:00 . Time:08:24 LOP8M. V8.B. Page 01:01
Codes: 2743 Signs: 1275 . Length: 52 pic 10 pts, 222 mm

TABLE 5

Performance Results for the Tiled m_m Code on the SGI Origin 2000

Size Cycles secs mflops PCM TLB

(a) Original code

250 39, 755, 847 0.213 146.03 428, 744 396
500 309, 753, 349 1.655 151.06 4, 681, 308 31, 125
750 1, 027, 432, 650 10.480 80.52 10, 353, 755 56, 947

1000 2, 550, 973, 238 18.894 105.86 29, 610, 985 773, 778
1250 4, 961, 294, 521 31.803 122.83 52, 308, 223 2, 282, 477

(b) Optimized code

250 38, 958, 125 0.211 147.41 405, 653 345
500 303, 166, 413 1.602 156.06 3, 316, 253 9, 612
750 1, 011, 261, 450 10.169 82.97 13, 481, 989 54, 109

1000 2, 432, 754, 503 18. 691 107.00 36, 443, 931 173, 314
1250 4, 715, 763, 339 31.102 125.60 55, 173, 671 414, 070

(c) Execution cycles per processor and mflops rates with Size=1000

on different number of processors

Original Optimized

Number of procs Cycles mflops Cycles mflops

1 2, 550, 973, 238 105. 86 2, 432, 754, 503 107.00
2 1, 802, 352, 157 160.76 1, 781, 115, 880 166.66
3 1, 474, 743, 898 201.07 1, 240, 750, 519 209.02
4 1, 435, 008, 133 213.22 1, 196, 824, 753 223.63
5 1, 366, 130, 001 226.96 1, 112, 705, 892 239.90
6 1, 269, 450, 004 245.25 1, 047, 278, 804 258.44
7 1, 152, 357, 278 263.71 960, 662, 143 277.79
8 1, 139, 057, 256 259.52 940, 619, 346 287.29

Note. The tile size is set to 50_50 double-precision elements in all experiments.

FIG. 10. Mflops rates on (a) a single node and (b) 8 nodes of the SGI Origin. A 350 improvement
is obtained over the l-opt version on a single node.

959COMPILER ALGORITHMS

File: 740J 163937 . By:XX . Date:23:06:00 . Time:08:24 LOP8M. V8.B. Page 01:01
Codes: 3326 Signs: 2335 . Length: 52 pic 10 pts, 222 mm

FIG. 11. Per processor execution cycles on (a) a single node and (b) 8 nodes of the SGI Origin. All
values are in millions.

original is the original unoptimized code, l-opt is a version that uses only loop
transformations to improve locality [32], and opt is the version obtained using the
approach discussed in this paper. The l-opt version uses all linear loop transformations
(represented by square nonsingular transformation matrices) as well as other loop
transformations such as loop fusion and loop distribution. We also implemented
this version in the Parafrase-2 [37] framework following the algorithms (height
reduction and width reduction) given in Li's thesis [32]. Note that this loop trans-
formation framework uses general nonsingular transformations which subsume
unimodular loop transformations [49] and loop permutations [34]. We note that
for riscf and lu the original and the l-opt versions result in the same code.
In the riscf code, within the same loop nest different arrays are accessed with
different access patterns so loop transformation is not able to optimize it. In lu, the
dependences prevent the linear loop transformations which would otherwise
improve the performance. We also note that in adi and vpenta the l-opt and the
opt versions result in the same optimized code; that is, for these programs memory
layout transformations do not bring any additional improvement. We can see from
Figs. 10a and 10b that our approach is quite successful in optimizing locality on
both single node and multiple nodes. Considering all programs, the opt almost
doubles the mflops rate of the original version and results in a 350 improvement
over the l-opt version on a single node showing the importance of a unified
approach which takes into account loop as well as data transformations. Another
point to emphasize is that unlike most approaches to locality which gives priority
to spatial locality, since our approach tries to optimize temporal locality first, in
general we have a reduction in the number of loads and stores. For example, on a
single node of the Origin with 1000_1000 double-precision matrices, l-opt

TABLE 6

Number of Iterations Executed by Each Program

Program riscf vpenta btrix lu adi m_m m_m_m

Iterations 83, 886, 080 10, 353, 600 4, 055, 940 106, 000, 000 5, 242, 880 1, 000, 000 2, 000, 000

960 KANDEMIR, RAMANUJAM, AND CHOUDHARY

File: 740J 163938 . By:XX . Date:23:06:00 . Time:08:25 LOP8M. V8.B. Page 01:01
Codes: 2701 Signs: 1888 . Length: 52 pic 10 pts, 222 mm

FIG. 12. Primary cache misses (PCM) on (a) a single node and (b) 8 nodes of the SGI Origin. All
values are in millions. These results are obtained using the performance counters in the Origin.

generates 2, 052, 597, 824 load operations whereas opt generates 2, 016, 720, 224
load operations. Similarly, for store operations l-opt results in 12, 228, 912 stores
while our approach produces only 6, 026, 224 due to the fact that we start optimizing
from the left-hand side references and attempt to optimize each reference first for
temporal locality then for spatial locality.

Figures 11a and 11b present the performance figures in execution cycles per pro-
cessor (in millions). As a reference, we also give in Table 6 the number of iterations
executed by each program. These results show the impressive reductions in cycles
achieved by our unified approach to locality and parallelism.

Figures 12a and 12b give the primary cache misses in millions. We note that
except for the mxm code on a single node, the opt version achieves the lowest miss
rates for the L1 cache. Figures 13a and 13b on the other hand, present the TLB
misses under three versions. The figures on top of some bars give the number of
misses (again in thousands) whose corresponding bars cannot fit in the space. It is
easy to see that on a single node, the TLB misses of original is not even comparable
to that of the opt version except for the adi and the lu codes (in the lu code the
improvement mainly comes from the reduction in PCM). Again except for vpenta,
lu, and adi the TLB misses of the l-opt version is not comparable to that of opt.
The results on 8 nodes are also similar. It is interesting to note that in codes such

FIG. 13. TLB misses on (a) a single node and (b) 8 nodes of the SGI Origin. All values are in
thousands. These results are obtained using the performance counters in the Origin.

961COMPILER ALGORITHMS

File: 740J 163939 . By:XX . Date:23:06:00 . Time:08:25 LOP8M. V8.B. Page 01:01
Codes: 2753 Signs: 2092 . Length: 52 pic 10 pts, 222 mm

FIG. 14. Performance of the programs on the IBM SP-2. Overall the opt version achieves a 530

improvement over the original version and a 290 improvement over the l-opt version.

as mxm and mxmxm the main locality improvement comes from the TLB misses
rather than the L1 misses. In the adi code the optimized version increases the
number of TLB misses. But in that case that increase is more than compensated by
the reduction in the L1 and L2 misses (not shown).

Finally, Fig. 14 shows the mflops rates performance of the programs on the IBM
SP-2. Overall the opt version delivers a 530 improvement over the original ver-
sion and a 290 improvement over the l-opt version. We should emphasize that the
results presented in this figure are conservative in the sense that the unoptimized
programs are also parallelized (if possible) such that the maximum granularity of
parallelism is obtained; moreover, the data are distributed across the memories of
the processors so as to eliminate the interprocessor communication as much as
possible. In particular, in four out of the seven codes the data is distributed so that
all potential communications are eliminated. Since this may not always be the case
for the unoptimized programs, we believe that the performance improvement
obtained by our algorithm will be higher in general.

9. SUMMARY

The broad variety of parallel architectures renders designing unified compiler
techniques difficult. However, although the underlying hardware facilities are dif-
ferent, we believe that all the parallel architectures will benefit from compiler
optimizations that are aimed at improving locality and deriving large-granularity of
parallelism. In this paper, we describe a compiler algorithm that handles locality,
parallelism, and data distribution in a unified manner and that can be embedded
in a compilation framework for parallel machines. Our algorithm derives the entries
of a loop transformation matrix and determines suitable memory layouts for
each array such that good locality, outermost loop parallelism, and minimum

962 KANDEMIR, RAMANUJAM, AND CHOUDHARY

communication are obtained. Our experiments with several benchmarks on the SGI
Origin 2000 distributed-shared memory multiprocessor and the IBM SP-2 message-
passing machine show the effectiveness of the unified approach.

Further research will involve investigating compiler algorithms which can handle
complex data distributions (e.g., distributions along more than one dimension and
diagonal-wise distributions) and locality in a unified manner for both single-nest
and multiple-nest cases. We believe that the results presented in this paper provide
encouraging evidence that the challenges posed by different parallel systems can be
handled with unified compilation techniques; that is, it seems possible to design
unified compilation techniques for distributed and shared address space machines.

ACKNOWLEDGMENTS

This work is supported in part by NSF Young Investigator Award CCR-9357840, NSF CCR-9509143.
The work of J. Ramanujam is supported in part by an NSF Young Investigator Award CCR-9457768
and by NSF Grant CCR-9210422.

REFERENCES

1. A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B. Lim, K. Mackenzie,
and D. Yeung, The MIT Alewife machine: architecture and performance, in ``Proc. 22nd International
Symposium on Computer Architecture,'' 1995.

2. J. M. Anderson, S. P. Amarasinghe, and M. S. Lam, Data and computation transformations for
multiprocessors, in ``Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming,'' July 1995.

3. J. M. Anderson and M. S. Lam, Global optimizations for parallelism and locality on scalable
parallel machines, in ``Proc. SIGPLAN Conference on Programming Language Design and
Implementation,'' pp. 112�125, June 1993.

4. V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, An interactive environment for data
partitioning and distribution, in ``5th Distributed Memory Computing Conference, Charleston, SC,
April 1990.''

5. P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges IV, J. G. Holm, A. Lain, D. J. Palermo,
S. Ramaswamy, and E. Su, The PARADIGM compiler for distributed-memory multicomputers,
IEEE Comput. 28, 10 (October 1995), 37�47.

6. A. J. C. Bik and H. A. G. Wijshoff, ``On a Completion Method for Unimodular Matrices,'' Technical
Report 94-14, Dept. Computer Science, Leiden University, Netherlands, 1994.

7. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee, D. Padua,
Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu, Parallel programming with Polaris, IEEE Comput.
29, 12 (December 1996), 78�82.

8. Z. Bozkus, L. Meadows, D. Miles, S. Nakamoto, V. Schuster, and M. Young, Techniques for com-
piling and executing HPF programs on shared-memory and distributed-memory parallel systems, in
``Proc. 1st International Workshop on Parallel Processing, Bangalore, India, December 1994.''

9. T. Brewer and G. Astfalf, The evolution of the HP�Convex Exemplar, in ``Proc. COMPCON
Spring'97: 42nd IEEE Computer Society International Conference,'' pp. 81�86, February 1997.

10. S. Carr and K. Kennedy, Blocking linear algebra codes for memory hierarchies, in ``Proc. 4th SIAM
Conference on Parallel Processing for Scientific Computing, Chicago, IL, December 1989.''

11. R. Chandra, D. Chen, R. Cox, D. Maydan, N. Nedeljkovic, and J. M. Anderson, Data-distribution
support on distributed-shared memory multiprocessors, in ``Proc. Programming Language Design
and Implementation (PLDI), Las Vegas, NV, 1997.''

963COMPILER ALGORITHMS

12. M. Cierniak and W. Li, Unifying data and control transformations for distributed shared memory
machines, in ``Proc. SIGPLAN'95 Conference on Programming Language Design and Implementa-
tion, La Jolla, CA, June 1995.''

13. S. Coleman and K. McKinley, Tile size selection using cache organization and data layout, in ``Proc.
SIGPLAN'95 Conference on Programming Language Design and Implementation, La Jolla, CA,
June 1995.''

14. T. Cormen, C. Leiserson, and R. Rivest, ``Introduction to Algorithms,'' The MIT Press, Cambridge,
MA, 1990.

15. K. M. Dixit, New CPU benchmark suites from SPEC, in ``Proc. COMPCON'92��37th IEEE
Computer Society International Conference, San Francisco, CA, February 1992.''

16. J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff, A set of level 3 basic linear algebra
subprograms, ACM Trans. Math. Software 16, 1 (March 1990), 1�17.

17. D. Gannon, W. Jalby, and K. Gallivan, Strategies for cache and local memory management by
global program transformations, J. Parallel Distrib. Comput. 5 (1988), 587�616.

18. J. Garcia, E. Ayguade, and J. Labarta, A novel approach towards automatic data distribution, in
``Proc. Supercomputing'95, San Diego, December 1995.''

19. M. R. Garey and D. S. Johnson, ``Computers and Intractability: A Guide to the Theory of NP-Com-
pleteness,'' Freeman, New York, 1979.

20. M. Gerndt, Updating distributed variables in local computations, Concurrency Practice Experience
2, 3 (September 1990), 171�193.

21. M. Gupta and P. Banerjee, Demonstration of automatic data partitioning techniques for paralleliz-
ing compilers on multicomputers, IEEE Trans. Parallel Distrib. Systems 3, 2 (March 1992), 179�193.

22. J. L. Hennessy and D. A. Patterson, ``Computer Architecture: A Quantitative Approach,'' second ed.,
Morgan Kaufmann, San Mateo, CA, 1995.

23. High Performance Computation Chemistry Group, ``NWChem: A Computation Chemistry Package
for Parallel Computers,'' version 1.1, Pacific Northwest Laboratory, Richland, WA, 1995.

24. S. Hiranandani, K. Kennedy, and C.-W. Tseng, Compiling Fortran D for MIMD distributed-
memory machines, Commun. Assoc. Comput. Mach. 35, 8 (August 1992), 66�88.

25. Y.-J. Ju and H. Dietz, Reduction of cache coherence overhead by compiler data layout and loop
transformations, in ``Proc. 4th Workshop on Languages and Compilers for Parallel Computing,
Santa Clara, CA, August 1991.''

26. K. Kennedy and U. Kremer, Automatic data layout for High Performance Fortran, in ``Proceedings
of Supercomputing'95, San Diego, CA, December 1995.''

27. K. Kennedy and K. S. McKinley, Optimizing for parallelism and data locality, in ``Proc. 1992 ACM
International Conference on Supercomputing (ICS'92), Washington, D.C., July 1992.''

28. U. Kremer, ``Automatic Data Layout for Distributed Memory Machines,'' Ph.D. thesis, Rice Univer-
sity, Houston, TX, 1995.

29. M. S. Lam, E. Rothberg, and M. E. Wolf, The cache performance and optimizations of blocked algo-
rithms, in ``Proc. 4th International Conference on Architectural Support for Programming
Languages and Operating Systems, April, 1991.''

30. J. Laudon and D. Lenoski, The SGI Origin: A CC-NUMA highly scalable server, in ``Proc. 24th
Annual International Symposium on Computer Architecture, May 1997.''

31. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy, The DASH
prototype: implementation and performance, in ``Proc. 19th International Symposium on Computer
Architecture, Gold Coast, Australia, May 1992,'' pp. 92�103.

32. W. Li, ``Compiling for NUMA Parallel Machines,'' Ph.D. Thesis, Cornell University, Ithaca, NY,
1993.

33. F. McMahon, ``The Livermore Fortran Kernels: A Computer Test of the Numerical Performance
Range,'' Technical Report UCRL-53745, Lawrence Livermore National Laboratory, Livermore, CA,
1986.

964 KANDEMIR, RAMANUJAM, AND CHOUDHARY

34. K. McKinley, S. Carr, and C. W. Tseng, Improving data locality with loop transformations, ACM
Trans. Progr. Languages Systems 18, 4 (July 1996), 424�453.

35. M. O'Boyle and P. Knijnenburg, Non-singular data transformations: definition, validity, applica-
tions, in ``Proc. 6th Workshop on Compilers for Parallel Computers, Aachen, Germany, 1996,''
pp. 287�297.

36. D. Palermo and P. Banerjee, Automatic selection of dynamic data partitioning schemes for dis-
tributed-memory multicomputers, in ``Proc. 8th Workshop on Languages and Compilers for Parallel
Computing, Columbus, OH, 1995,'' pp. 392�406.

37. C. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L. Lee, B. P. Leung, and D. A. Schouten,
Parafrase-2: an environment for parallelizing, partitioning, synchronizing, and scheduling programs
on multiprocessors, in ``Proc. the International Conference on Parallel Processing, St. Charles, IL,
August 1989,'' pp. 39�48.

38. J. Ramanujam, Non-unimodular transformations of nested loops, in ``Proc. Supercomputing 92,
Minneapolis, MN, November 1992,'' pp. 214�223.

39. J. Ramanujam and A. Narayan, Integrating data distribution and loop transformations for dis-
tributed memory machines, in ``Proc. 7th SIAM Conference on Parallel Processing for Scientific
Computing, February 1995'' (D. Bailey et al., Eds.), pp. 668�673.

40. J. Ramanujam and A. Narayan, Automatic data mapping and program transformations, in ``Proc.
Workshop on Automatic Data Layout and Performance Prediction, Houston, TX, April 1995.''

41. V. Sarkar, G. R. Gao, and S. Han, Locality analysis for distributed shared-memory multiprocessors,
in ``Proc. the Ninth International Workshop on Languages and Compilers for Parallel Computing,
Santa Clara, CA, August 1996.''

42. A. Schrijver, ``Theory of Linear and Integer Programming,'' Wiley-Interscience Series in Discrete
Mathematics and Optimization, Wiley, New York, 1986.

43. T. J. Sheffler, R. Schreiber, J. R. Gilbert, and S. Chatterjee, Aligning parallel arrays to reduce
communication, in ``Frontiers '95: The 5th Symposium on the Frontiers of Massively Parallel
Computing, McLean, VA, February 1995,'' pp. 324�331.

44. C.-W. Tseng, J. Anderson, S. Amarasinghe, and M. Lam, Unified compilation techniques for shared
and distributed address space machines, in ``Proc. 1995 International Conference on Supercomputing
(ICS'95), Barcelona, Spain, July 1995.''

45. R. Thekkath, A. P. Singh, J. P. Singh, S. John, and J. Hennessey, An evaluation of a commercial
CC-NUMA architecture: the CONVEX Exemplar SPP-1200, in ``Proc. 11th International Parallel
Processing Symposium, Geneva, Switzerland, April 1997.''

46. E. Torrie, C.-W. Tseng, M. Martonosi, and M. W. Hall, Evaluating the impact of advanced memory
systems on compiler-parallelized codes, in ``Proc. International Conference on Parallel Architectures
and Compilations Techniques (PACT), Limassol, Cyprus, June 1995.''

47. R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K. Tjiang,
S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy, SUIF: An infrastructure for
research on parallelizing and optimizing compilers, ACM SIGPLAN Notices 29, 12 (December
1994), 31�37.

48. M. Wolf and M. Lam, A loop transformation theory and an algorithm to maximize parallelism,
IEEE Trans. Parallel Distrib. Systems 2, 4 (October 1991), 452�471.

49. M. Wolf and M. Lam, A data locality optimizing algorithm, in ``Proc. ACM SIGPLAN 91 Conf.
Programming Language Design and Implementation, June 1991,'' pp. 30�44.

50. M. Wolfe, ``High Performance Compilers for Parallel Computing,'' Addison�Wesley, Reading, MA,
1996.

51. H. Zima and B. Chapman, Compiling for distributed-memory systems, Proc. IEEE 81, 2 (1993),
264�287.

965COMPILER ALGORITHMS

	1. INTRODUCTION
	2. PRELIMINARIES
	FIG. 1

	3. RELATED WORK
	4. ALGORITHM FOR ENHANCING CACHE LOCALITY
	FIG. 2
	FIG. 3
	FIG. 4

	5. ALGORITHM FOR ENHANCING MEMORY LOCALITY AND PARALLELISM
	FIG. 5
	FIG. 6

	6. UNIFIED ALGORITHM
	TABLE 1
	FIG. 7

	7. GLOBAL OPTIMIZATION PROBLEM
	TABLE 2
	FIG. 8
	FIG. 9
	TABLE 3
	8. PERFORMANCE RESULTS
	TABLE 4
	FIG. 10
	TABLE 5
	FIG. 11
	TABLE 6
	FIG. 12
	FIG. 13
	FIG. 14

	9. SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

