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Abstract

Many large scale applications, have significant I/O requirements as
well as computational and memory requirements. Unfortunately,
limited number of I/O nodes provided by the contemporary message-
passing distributed-memory architectures such as Intel Paragon and
IBM SP-2 limits the I/O performance of these applications severely.
In this paper, we examine some software optimization techniques
and architectural scalability and evaluate the effect of them in five
I/O intensive applications from both small and large application do-
mains. Our goals in this study are twofold: First, we want to under-
stand the behavior of large-scale data intensive applications and the
impact of I/O subsystem on their performance and vice-versa. Sec-
ond, and more importantly, we strive to determine the solutions for
improving the applications’ performance by a mix of architectural
and software solutions. Our results reveal that the different appli-
cations can benefit from different optimizations. For example, we
found that some applications benefit from file layout optimizations
whereas some others benefit from collective I/O. A combination of
architectural and software solutions is normally needed to obtain
good I/O performance. For example, we show that with limited
number of I/O resources, it is possible to obtain good performance
by using appropriate software optimizations. We also show that be-
yond a certain level, imbalance in the architecture results in perfor-
mance degradation even when using optimized software, thereby
indicating the necessity of increase in I/O resources.

1 Introduction

Large scale parallel scientific applications in general tend to be
computationally intensive as well as data intensive. The advances
in I/O systems both in hardware and software, are much behind
compared to those in processors and interconnection networks; re-
sulting in poor performance for I/O-intensive applications. In this
paper, we investigate the I/O performance of five different I/O-
intensive applications. Our experiments confirm that, for all of
these applications, poor I/O performance limits the overall perfor-
mance of the application. This impact is sometime so severe that
when a certain number of compute nodes (processors) is reached,

�This work was supported in part by NSF Young Investigator Award CCR-
9357840, NSF CCR-9509143, NSF ASC-9707074, Sandia National Labs Contract
AV-6193, and in part by the Scalable I/O Initiative, contract number DABT63-94-C-
0049 from Defense Advanced Research Projects Agency(DARPA) administered by
US Army at Fort Huachuca. Dr. D.E.Bernholdt was supported by the Alex G. Nason
Fellowship at Syracuse University.

the execution time increases. Although such a situation can some-
time occur with computationally intensive applications as well, the
main problem with the programs in our application suite is the lim-
ited number of I/O nodes and unoptimized I/O performed by the
programs. Therefore, beyond a certain point increasing the number
of compute nodes has a negative impact in I/O as well as execution
times. A typical high-performance parallel computer consists of
compute nodes and I/O nodes (which have disks and/or disk arrays
attached to them). A combination of architectural and software so-
lutions is normally needed to obtain good I/O performance. For
example, we show that with limited number of I/O resources, it is
possible to obtain good performance by using appropriate software
optimizations including layout transformations, collective I/O and
prefetching. We also show that beyond a certain level, imbalance
in the architecture results in performance degradation even when
using optimized software.

We show that several optimizations are very effective on the I/O
performance. For instance, we found that performance of some ap-
plications can be substantially improved by changing the file layout
of the out-of-core arrays involved. For some other application, we
found collective I/O to be very useful. For yet another application,
we found prefetching to be effective. While many of these opti-
mizations are not new, we show here that the different applications
can benefit from different optimizations.

In this paper we investigate the software optimizations and re-
source scalability issues in detail. In particular, we address the fol-
lowing questions:

� How much improvement can be obtained by optimizing the
I/O software; and what kind of optimization techniques can
be used?

� How much improvement can be obtained by increasing I/O
resources (e.g. number of I/O nodes) thereby making the
architecture more balanced?

� How do the hardware and software improvements compare
to each other?

� Do different I/O intensive applications have different improve-
ments when the I/O resources are increased and/or the soft-
ware is improved?

The rest of this paper is organized as follows. In Section 2 we
describe the applications in our experimental suite. In Section 3 we
discuss the Intel Paragon and IBM SP-2 machines’ salient I/O fea-
tures. In Section 4 we present the experimental data obtained from



original (unoptimized) programs, discuss the individual optimiza-
tions and explain how they improve the I/O as well as the overall
performance of the applications. In Section 5 we discuss the related
work and present the conclusions of the paper.

2 Applications

In this study we focus on five different I/O intensive parallel ap-
plications written in Fortran by using message-passing constructs,
ranging from500 lines of code to 19,000 lines (up to 538,000 lines
if accompanying libraries are included). The important characteris-
tics of these applications are given in Table 1.SCF 1.1 andSCF
3.0 are from computational chemistry domain and are very large
applications [8].AST is an astrophysics code;BTIO is disk-based
version of a flow-solver program from NAS benchmarks [4]; and
FFT is a 2-D out-of-core FFT program. More details on the ap-
plications can be found in [6]. Below, we give a summary of the
various applications.

SCF 1.1 The Hartree-Fock method obtains the energy and wave
function of a molecular system by iterating over two basic steps un-
til self-consistency (SCF) is obtained. At the heart of the Hartree-
Fock method is the construction of the Fock matrixF and in the
process aboutN 4 integrals must be evaluated, whereN is the di-
mension of the basis set of the input. The values of these integrals
remain constant throughout the iterations and evaluating each inte-
gral is a non-trivial computation, involving 300–500 floating point
operations, on average. To lend perspective to these figures, it is
worth mentioning that the design goal forSCF 1.1 ’s SCF mod-
ule is calculations of 1,000 atoms with basis sets of 10,000 func-
tions, which would involve as many as1016 integrals. In the HF
algorithm, the integrals constitute the largest volume of data and
a sizable computational expense. In a disk-based implementation,
the integrals are computed on the first iteration and written to disk,
then read from disk rather than being recomputed for each subse-
quent iteration. In the write phase, each node writes a private file
of the integrals it evaluated during first construction of the Fock
matrix. The read phase, on the other hand, consists of several it-
erations. In each iteration, each processor reads its private file in
its entirety. SCF 1.1 application code consists of about 16,500
lines of code and about 225,000 lines when supporting libraries are
included.

SCF 3.0 TheSCF 3.0 parallel computational chemistry pack-
age encompasses a broad range of functionality, including the self-
consistent field (SCF) module. InSCF 1.1 , calculations could
be either “direct”, meaning that integrals are re-computed for ev-
ery iteration of the SCF algorithm, or “disk-based”, meaning that
integrals are evaluated once and written to disk during the first it-
eration, then read from disk on every subsequent iteration. The
semi-directSCF 3.0 approach is a compromise between the two,
where limits may be specified on the size of disk files, and any in-
tegrals which are not stored on disk are recomputed. Some attempt
is made to arrange the integral evaluation from most to least ex-
pensive, so that those integrals which must be recomputed on every
iteration are generally less expensive than those kept on disk. Fi-
nally, to help account for the difference in load balance between
the evaluation of integrals (on the first iteration) and reading them
from disk (subsequent iterations), the sizes of the integral files are
balanced (currently to within 10% or 1 MB, whichever is larger)
after writing is complete. In addition to change in the SCF module
itself, there have also been changes to the I/O part of the application
from the 1.1 to 3.0 releases.

FFT The fast Fourier Transform (FFT) is widely used in many
areas such as digital signal processing, partial differential equation
solutions and various other scientific and engineering problems.
We implemented 2-D out-of-core FFT on the Intel Paragon. The 2-
D out-of-core FFT consists of three steps: (1) 1-D out-of-core FFT,
(2) 2-D out-of-core transpose, and (3) 1-D out-of-core FFT. The
1-D FFT steps consist of reading data from the two-dimensional
out-of-core array and applying 1-D FFT on each of the columns.
In order to perform 1-D out-of-core FFTs, the data on disk is strip-
mined into memories of compute nodes. This step is highly par-
allel, limited in general only by the size of the available memory
and individual processor speeds. After this, the processed columns
are written to file. In the transpose step, the out-of-core array is
staged into memory, transposed and written to a file. This step is
very expensive in terms of both I/O and communication. The in-
nermost loop of the transpose routine uses two disk resident files
one of them is transposed into the other.

BTIO BTIO application simulates the I/O required by a pseudo-
time-stepping flow solver. It is a disk-based version of a program
from NAS parallel benchmark suite [4]. The main operation in
the code is periodic writes performed by all processors to a multi-
dimensional array stored in a file. Note that periodic write opera-
tions are used by such applications for check-pointing and/or off-
line visualization and analysis of data. The code contains a lot of
seek operations which in turn causes the performance to be poor. It
represents the class of write dominant I/O intensive applications.

AST The astrophysics application [11] performs a study of highly
turbulent convective layers of late-type stars such as the sun. The
application simulates the gravitational collapse of self-gravitating
gaseous clouds due to the Jeans instability process. This is the
fundamental mechanism through which inter-galactic gases con-
dense to form stars. It uses the piecewise parabolic method to solve
the compressible Euler equations and a multi-grid elliptic solver
to compute the gravitational potential. The application uses several
distributed arrays and processes them and writes them on to the disk
to one common shared file. The reasons that this application per-
forms I/O is threefold, namely, check-pointing [1], data analysis,
and visualization. All the three cases make the I/O mainly write-
intensive, except when there is a restart of the application from pre-
viously check-pointed data, it becomes read-intensive. The appli-
cation uses several data arrays that are processed during the course
of the application and are stored on disk in one file in column-
major order for data analysis and check-pointing purposes. For
visualization purposes several shared files are created by the ap-
plication. The original application performs I/O accesses in small
non-contiguous chunks.

3 Platforms

In this Section we summarize some of the salient characteristics of
our platforms, Intel Paragon and IBM SP-2, emphasizing the I/O
capabilities. The reason that we use these platforms is the fact that
both machines represent a class of distributed-memory message-
passing architectures that present the user with scalable I/O archi-
tectures. Also the parallel file systems (PFS [9] in Paragon and
PIOFS [3] in SP-2) on these machines are versatile and enable the
users to code a variety of optimization techniques. The large scale
applications in our experimental suite are available to us at these
machines. Finally, these architectures are widely used by the sci-
entists, so represent natural targets in our experimental study.



Table 1: Applications in our experimental suite and their important characteristics.

Application Source Lines Description Platform Type of I/O
SCF 1.1 PNL 16,500 self consistent field computation Paragon writes integrals to disk, and reads them
SCF 3.0 PNL 19,000 self consistent field computation Paragon writes integrals to disk, and reads them
FFT authors 500 2D out-of-core FFT Paragon reads and writes two matrices
BTIO NASA Ames 6713 simulates the I/O required by a flow solver SP-2 periodic writes of arrays
AST Univ. of Chicago 17000 simulates gravitational collapses of cloudsParagon writes arrays for check-pointing

Table 2: I/O Summary of the original version ofSCF 1.1 for
LARGEinput : 4 processors [Total I/O time is 4.4 Hours].

Oper Oper I/O Time Vol % of I/O % of exec
Count (Sec) (GB) time time

Open 19 1.97 0.00 0.00
Read 566,315 60,284.31 37 95.56 51.66
Seek 994 8.01 0.01 0.01
Write 40,331 2,792.11 2.5 4.43 2.39
Flush 49 0.25 0.00 0.00
Close 14 0.46 0.00 0.00

All I/O 607,722 63,087.11 39.5 100.00 54.06

Intel Paragon The Paragon that we use forFFT experiments
consists of 56 compute nodes, 3 service nodes, and 1 HIPPI node.
The compute nodes are arranged in a two-dimensional mesh com-
prised of 14 rows and 4 columns. The compute nodes use the Intel
i860 XP microprocessor and have 32 MBytes of memory each. The
i860 has a peak performance of 75 MFlops, yielding a system peak
speed of 4.2 GFlops. The total memory capacity of the compute
partition is around 1.8 GBytes. For the other experiments except
BTIO we use a Paragon machine with 512 compute nodes, and has
service (I/O) partitions of sizes 12, 16 and 64. The compute node
topology is mesh and the processor characteristics are the same as
the small Paragon mentioned above. In the experiments, we use 12,
16 and 64 node I/O partitions. In both machines, the parallel file
system, PFS, stripes the user files across the available I/Onodes in
a round-robin fashion. The default stripe unit size, which is 64 KB,
is used in all of our experiments, exceptSCF 1.1 where we make
experiments with different stripe unit sizes.

IBM SP-2 ForBTIO application, we use an SP-2 with 80 nodes.
All nodes that are used in the experiments were RS/6000 Model
390 nodes with at least 256 MB memory. The parallel file system,
PIOFS [3], distributes the files across multiple I/O nodes. Only
four out of the five I/O nodes are available for the user files, and
each such node has four 9 GB SSA disks attached to it. The fifth
node is the directory server. The striping unit (called BSU in the
PIOFS) is 32 KB.

4 Optimizations and Performance Comparison

In this section, we present experimental results on our program
suite, and explain some of the techniques which improve the I/O
performance of the applications.

Table 3: I/O Summary of PASSION version ofSCF 1.1 for
LARGEinput : 4 processors [Total I/O time is 2.5 Hours].

Oper Oper I/O Time Vol % of I/O % of exec
Count (Sec) (GB) time time

Open 19 0.65 0.00 0.00
Read 566,330 33,805.21 37 95.38 37.73
Seek 604,342 256.56 0.72 0.29
Write 40,336 1,380.79 2.5 3.90 1.54
Flush 49 0.15 0.00 0.00
Close 14 0.37 0.00 0.00

All I/O 1,211,090 35,443.72 39.5 100.00 39.56

4.1 Experimental Methodology

Our experimental methodology is as follows: For each applica-
tion, we applied several software optimizations but due to lack of
space we present only the results of most effective optimizations.
Based on the platform on which we ran the application on we also
changed the number of I/O nodes to observe its impact on the appli-
cation’s I/O behavior. In the small Paragon machine we used 2 and
4 I/O node subsystems, the only available partitions. In the large
Paragon, we used 12, 16, and 64 I/O node partitions. In the SP-2,
on the other hand, the number of I/O nodes is fixed at four, which
is the only available partition.

4.2 SCF 1.1: e�ect of e�cient interface and prefetching

We investigated the performance ofSCF 1.1 for small as well as
large number of compute nodes separately. The results for the small
number of compute nodes are summarized in three bar charts given
in Figure 1. In fact, that figure presents a summary of an incre-
mental evaluation of the I/O optimizations that we performed for
this application for small processor sizes. We consider three repre-
sentative inputs which we callSMALL, MEDIUMandLARGE. An
important observation about this application is that the program-
mers have reasonably optimized the I/O related parts of the pro-
grams. Instead of directly using the access pattern imposed by the
application, they first pack the data to be written onto disk in larger
chunks and then write the packed chunk in a single I/O call. While
this effort renders further I/O optimizations difficult; it makes the
applications’ I/O pattern amenable to prefetching. In these experi-
ments, we evaluated three versions of the application: (1) original
version [8] with Fortran I/O. This version was obtained from PNL;
(2) an optimized version which uses PASSION [10] (from North-
western University) I/O calls; (3) an optimized version which uses
PASSION prefetch calls. We represent each optimization combina-
tion in Figure 1 with a five-tuple of (V,P,M,Su,Sf) where, V is the
version used (O - original version with Fortran I/O calls, P - opti-
mized version with PASSION I/O calls, F - optimized version with
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Figure 1: Impact of optimizations on different input sizes forSCF 1.1 on Intel Paragon. The number of basis functions (N – problem size)
for SMALL, MEDIUMandLARGEare 108, 140 and 285 respectively. The configuration tuples are : I - (O,4,64,64,12); II - (P,4,64,64,12); III -
(F,4,64,64,12); IV - (F,32,64,64,12); V - (F,32,256,64,12); VI - (F,32,256,128,12); VII - (F,32,256,128,16). [For small number of processors,
the application-related factors are more effective than system-related factors].
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Figure 2: Performance summary forSCF 1.1 for LARGEinput on Intel Paragon [Up to 64 compute nodes optimized versions perform well;
beyond 64 compute nodes the unoptimized version with larger number of I/O nodes performs better].

PASSION prefetch calls); P is the number of processors; M is the
available memory to the application (in KB); Su is the stripe unit
size (in KB); and Sf is the stripe factor (number of I/O nodes in this
case). The tuple (O,4,64,64,12) corresponds to the default config-
uration. For the measurement of the I/O times in the prefetching
versions, we take into account the I/O, wait and copy times also.
The results shown in Figure 1 summarize our evaluations. The im-
portant point to note is that the effect of the optimizations is quite
similar in all three input sizes. It is easy to see that the factors that
can be modified from within the software are much more effec-
tive than the system-related factors like number of compute nodes
and number of I/O nodes within this experimental domain. In gen-
eral, we can conclude that when the number of processors used are
small in number the application-related factors have a much higher
impact on the execution and I/O times of the application than the
system-related factors. Tables 2 and 3 show a detailed quantitative
breakdown of the various I/O operations performed by the appli-
cation on four processors for the Original and PASSION version
using the Pablo I/O tracing library [2]. We clearly see that theSCF
1.1 is extremely read intensive and by using a different interface
to the file system (Table 3) we obtain better read and write times
thereby reducing the total time. We must mention that the tracing
library we used obtained results from the application level and we
used it mainly in runs using small number of processors. Also for
the larger number of processors cases, we were more interested in
studying the scalability of the application.

The results for the larger processor case are presented in Fig-
ures 2 and 3. We notice from Figure 2(b) that up to 64 processors,
the software optimizations are more effective in the overall perfor-
mance; however beyond 64 processors, the lack of I/O resources
dominates, and the unoptimized version with 64 I/O nodes outper-
forms the optimized versions with 16 I/O nodes. From Figure 3,
we infer that as the number of processors or compute nodes used
increases so does the contention at the I/O nodes. We observe that
the increase in I/O nodes translates into reduced I/O contention and
results in improved total execution times, especially when we use
larger number of compute nodes.

4.3 SCF 3.0: e�ect of balanced I/O

We evaluated the I/O and overall performance of theSCF 3.0
from both hardware and software points of view. As inSCF 1.1 ,
we have found an efficient interface and prefetching quite useful.
Since we discussed those issues withSCF 1.1 , due to lack of
space, here we do not elaborate on them. Instead, we focus on
another optimization technique, which we callbalanced I/O
which is made possible by the application programmers. In contrast
to SCF 1.1 , the application programmers of theSCF 3.0 give
the user the opportunity of balancing I/O versus computation. That
is, the user can specify what percentage of the integrals are to be
cached on disk and what percentage are to be re-computed when
necessary. We found that the ratio can make a critical difference in



16 64

1

2

3

4
processors = 32

I/O Nodes
ti

m
e 

(1
00

0’
s 

o
f 

se
c)

16 64

1

2

3

4
processors = 64

I/O Nodes

ti
m

e 
(1

00
0’

s 
o

f 
se

c)

16 64

1

2

3

4
processors = 128

I/O Nodes

ti
m

e 
(1

00
0’

s 
o

f 
se

c)

16 64

1

2

3

4
processors = 256

I/O Nodes

ti
m

e 
(1

00
0’

s 
o

f 
se

c)

16 64

1

2

3

4
processors = 372

I/O Nodes
ti

m
e 

(1
00

0’
s 

o
f 

se
c)

16 64

1

2

3

4
processors = 512

total time (original)
total time (passion)
total time (prefetch)
I/O time (original)
I/O time (passion)
I/O time (prefetch)

I/O Nodes

ti
m

e 
(1

00
0’

s 
o

f 
se

c)

Figure 3: Effect of increasing the number of I/O nodes onSCF 1.1 on Intel Paragon.

the overall performance of the application. The problem, however,
is that the best ratio is dependent on the input size. Therefore, it is
almost impossible to make an educated guess beforehand.

Figure 4 shows the overall performance of the application on
16 and 64 I/O nodes respectively for different processor sizes and
percentages of cached integrals. The first observation is that the
number of I/O nodes is not very effective on the overall perfor-
mance. The other two factors, however, namely the number of
compute nodes and percentage of cached integrals do make a dif-
ference as shown in the figures. This is in contrast toSCF 1.1
where the number of I/O nodes is a critical factor. The reason is
that, inSCF 3.0 I/O is not as dominant as inSCF 1.1 . Another
point to note is that changing the number of compute nodes makes a
big difference, especially with the low percentages of cached data.

The capability of changing the percentage of the cached inte-
grals presents the user with some opportunities. In order to improve
the performance, either the number of processors or the percent-
age of the cached integrals can be increased. The choice depends
on the availability of extra disk space versus additional number of
compute nodes. For the platform (Intel Paragon) on which these
experiments were conducted we found that increasing the percent-
age of integrals stored on the disk gave better performance. For
example, when the percentage of integrals cached is around 90%
or so, (for the 64 I/O nodes case), we found that even increasing
the number of processors from 32 to 256, did not give any ob-
servable performance gain in the execution time. But if the disk
space is limited and can only partially fit the integrals, then using
larger number of processors to reduce the load of re-computation
per processor is beneficial in decreasing the total execution times.
From the results, we can conclude that forSCF 3.0 , the amount
of disk space available for caching is more important followed by
the number of processors. Only in the event of the less disk space,
increasing the number of processors would be desirable.

4.4 FFT: e�ect of layout optimization

Figure 5(a) shows the I/O times (in seconds) for three different ver-
sions ofFFT application on the Intel Paragon: two versions of the
original program with 2 and 4 I/O nodes, and an optimized version
on 2 I/O nodes. The results show that the I/O performance of the
unoptimized program is very poor. In the original unoptimized (2

I/O node case) version, the I/O time actually increases when we use
more than 4 compute nodes. When we increase the number of I/O
nodes to 4, the increase in the I/O time happens after 8 compute
nodes. We note that this trend in the I/O time almost identically re-
flects on the total execution time (see Figure 5(b)). The reason for
this is that the I/O time for this application constitutes 90%-95%
of the execution time and therefore is the dominant factor in the
overall behavior of the application.

The most costly operation in the 2-D out-of-core FFT is a 2-
D out-of-core local transpose performed by each processor. In the
original program, file layout for these two arrays is column-major.
The transpose is performed by reading a rectangular chunk from
one of the files, transposing it in the local memory, and writing
it in the other file. Since both files are column-major, optimizing
the block dimension for one array has a negative impact on I/O
performance of the other array, resulting in poor I/O performance
observed in Figure 5. On the other hand, if we store one of the
arrays in row-major order the I/O performance of both the arrays
improves. This is evident from Figure 5 where the optimized ver-
sion of the program on two I/O nodes outperforms the unoptimized
program on four I/O nodes for all processor sizes. For this ex-
ample, within this experimental domain, we can conclude that the
layout optimizations are very effective, and the optimized version
outperforms the unoptimized version which uses more number of
I/O nodes.

An important point about those types of layout optimizations is
that they can sometimes be detected by parallelizing compilers by
using suitable linear algebraic techniques. For example, reference
[7] shows how the data layout optimizations can be automatized
within a parallelizing compiler. The main idea is to choose the ap-
propriate file layouts for disk-resident arrays referenced in an I/O
intensive program. To achieve this goal, an optimizing compiler
employs a suitable analysis to detect the access pattern of the indi-
vidual loop nests in the program at compile-time, then depending
on the collected information decides which layout to choose for
each disk-resident array.

4.5 BTIO: e�ect of collective I/O

As mentioned earlier, the base version of the application uses MPI-
2 I/O as a UNIX style interface and contains a lot of seek opera-
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Figure 4: Performance ofSCF 3.0 for different percentages of cached integrals forMEDIUMinput on the Intel Paragon (a) with 16 I/O
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Figure 5: Performance ofFFT on Intel Paragon [1.5GB total I/O amount].

tions. The I/O performance ofBTIO for the input Class A is shown
in Figure 6(a) and the overall performance is shown in Figure 6(b),
respectively. In contrast toFFT, BTIO is not as I/O dominant.
From Figure 6(a), it is easy to see that the I/O time in the unopti-
mized program changes drastically with the increasing number of
processors. This, in turn, causes a hump in the execution time when
36 processors are used. The main problem with this application is
that each node performs its I/O independently from the others. For
example, if a node needs 12 chunks of data, it will issue 12 sep-
arate I/O calls, one for each of the chunks. While this approach
simplifies the programming, it incurs a substantial overhead, as the
number of I/O calls is the dominant factor in the I/O time. This
behavior was observed with other classes of inputs as well.

The reference [10] discuss a technique calledtwo-phase I/O(a
form of collective I/O) which means that each processor reads the
portion of the disk data that is least costly for it; and then the pro-
cessors use the available interconnection network to exchange the
parts of the data so that each processor gets what it needs. Al-
though this approach slightly increases the communication time of
the program, it generally minimizes the number of I/O calls which
in turn reduces the execution time significantly. In two-phase I/O,
the processors cooperate in accessing the data on disks. The aim

is to combine several I/O requests into fewer larger granularity re-
quests, and reorder requests such that the file will be accessed in a
close-sequential fashion. Additionally, the total I/O workload can
be partitioned among the processors dynamically [10].

The optimized version ofBTIO uses the two-phase I/O. The
solution vector is completely described by using MPI data types.
Figure 6(a) show that the I/O time is reduced significantly in the
optimized version, and it does not behave unpredictably with the
increasing number of compute nodes. The reason is that in the un-
optimized program, increasing the number of compute nodes will
decrease the volume of data processed by a processor; but, in gen-
eral, does not change the number of I/O calls per processor. Con-
sequently, the total number of I/O calls in the program increases
substantially. On the other hand, in the optimized program, the
increase in the number of I/O calls is equal to the increase in the
number of processors as each processor issues a single I/O request
from the application. The impact of the two-phase I/O in the over-
all performance is shown in Figure 6(b). As an example, with 36
and 64 processors, there is 46% and 49% reduction in the overall
execution time respectively. Similar trend is observed in the Class
B input and other inputs as well.

We also measure the I/O bandwidth of the original and the opti-
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Figure 7: I/O bandwidths of the original and optimized versions ofBTIO on IBM SP-2 for Class A and Class B inputs

mized versions. The results are given in Figure 7 as bar charts. The
I/O bandwidth of the original program is between 0.97 MB/sec and
1.5 MB/sec while the I/O bandwidth of the optimized version is
between 6.6 MB/sec and 31.4 MB/sec. In summary,BTIO is an
example of a class of I/O intensive programs whose the I/O per-
formance can be improved by software optimizations, but since the
I/O does not constitute a large bulk of the execution time, the im-
pact of the optimizations on the overall performance is limited.

4.6 AST: e�ect of collective I/O

The results of astrophysics application for a reasonably large in-
put array size of 2K� 2K elements is presented in the Table 4 for
16 and 64 I/O nodes on the Intel Paragon. As mentioned earlier,
the astrophysics application performs I/O for data analysis, check-
pointing and visualization purposes. At every dump point, data for
the three purposes are written by the various processors onto one
shared file. To be specific, the snapshots of the input array are writ-
ten to disk at fixed dump points for check-pointing and data anal-
ysis. And data are also processed and written out for the purposes
of visualization. We compare two different implementations of the
code: (1) I/O done using the Chameleon library and (2) I/O done
using a run-time system library performing two-phase I/O (which
is a form of collective I/O: please refer toBTIO section of the paper
for further details on two-phase I/O). We see a significant perfor-

Table 4: Execution times forAST. [The I/O amount is 2.2 GBytes].

Num of procs Unoptimized Optimized
16 I/O 64 I/O 16 I/O 64 I/O
nodes nodes nodes nodes

16 2,557 2,546 428 399
32 1,203 1,199 100 97
64 638 628 76 69
128 385 369 86 77

mance improvement in the overall execution time in the optimized
case due to huge reduction in the I/O time. The Chameleon library
makes I/O in smaller non-contiguous chunks and also has a bottle-
neck of all I/O performed by a single node and this adds to the I/O
time. Whereas the two-phase I/O approach eliminates small I/O re-
quests by performing large chunks of sequential I/O. Therefore, in
this application we see that this factor is more important (within our
experimental domain) than increasing of the I/O nodes as shown in
the Table 4.



Table 5: Applications and effective optimization techniques. A
tick-mark is entered in the table on the effective optimization.

Application Optimization techniques
collective file efficient prefetching balanced
I/O layout interface I/O

SCF 1.1
p p

SCF 3.0
p p p

FFT
p

BTIO
p

AST
p

5 Related Work and Conclusions

Several different works have been published in the study of I/O
intensive parallel applications. Three I/O-intensive applications
from the Scalable I/O Initiative Application Suite are studied in [2].
Thakur et. al. [11] evaluate the I/O performance of the IBM SP and
the Intel Paragon using an astrophysics application, and concluded
that IBM SP2 is faster with read operations and Paragon for writes.
In [5], Foster et. al, optimizeBTIO on small number of processors
using remote I/O. In the area of check-pointing, Chen, Plank and Li
in [1], develop a library to implement rollback recovery of parallel
applications.

To summarize, from our experiments we observe the follow-
ing: The I/O intensive applications in our experimental suite deliver
poor performance mostly due to I/O bottleneck. This bottleneck
originates from both hardware and software. From the hardware,
the limited number of I/O nodes in Paragon and SP-2 limits the
performance of such applications. The problem becomes so severe
that beyond a number of compute nodes, the execution times ac-
tually increase. As an example, while the users ofSCF 1.1 , for
small number of compute nodes, use the version of the code which
makes I/O instead of the version which re-computes the integrals;
for large number of compute nodes, they tend to use the re-compute
version, as the I/O version performs very poorly. An obvious solu-
tion to this problem is to increase the number of I/O nodes. In this
paper, we experimentally evaluated the impact of the increase in
number of I/O nodes on the I/O as well as the overall performance
of the applications.

From the software point of view, the I/O software is not easy to
use and is not portable at all. For example, both PFS and PIOFS
have different I/O modes which make the programming for I/O very
difficult for the user. Unfortunately, the compiler techniques for I/O
are not robust enough to attack the problem either. Throughout the
years, several I/O optimization techniques have been developed,
but they have been either tested on specific applications or specific
machines. In this paper, we applied several I/O optimization tech-
niques to the programs in our experimental suite. The results are
summarized in Table 5. We have two main observations to make:
First, different I/O intensive applications are amenable to different
types of optimizations. The second observation is that for up to a
number of compute nodes, the software techniques are competitive
and sometimes more successful than merely increasing the num-
ber of I/O nodes. Beyond a certain point however, we still need to
increase the number of I/O nodes for further improvement.

An important question from the software point of view is how
to select a proper sequence of optimizations, given an application.
Although for the I/O intensive programs it is hard to generalize
the optimization process; from our experiments in this paper, we
infer the following: First, the I/O access pattern of the individual
compute nodes should be improved. That is, instead of doing I/O
whenever they need, each compute node should consider the I/O

requirements of the other nodes as well. Here the techniques like
collective I/O and buffering I/O requests are proven to be useful.
For example, forBTIO and AST, the individual nodes’ I/O pat-
tern are improved by collective I/O substantially. ForSCF 1.1
andSCF 3.0 , the individual nodes first buffer the data that they
are going to write into their private files, minimizing the number
of I/O accesses substantially. After a good access pattern for the
individual compute nodes are obtained, then the performance can
be further improved by determining the most suitable file layouts
for the disk resident data. As an example, assigning different file
layouts to different disk resident arrays in theFFT improves the
performance substantially. In addition, the remaining I/O time can
sometimes be hidden by prefetching one or more data chunks in
advance. BothSCF 1.1 andSCF 3.0 benefit from prefetching
substantially.
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