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Abstract:
Parallel machines are an important part of the scientific application developer’s tool box and the processing demands
placed on these machines are rapidly increasing. Many scientific applications tend to perform high volume data
storage, data retrieval and data processing, which demands high performance from the I/O subsystem. In this paper,
we conduct an experimental study of the I/O performed by the Hartree-Fock (HF) method, as implemented using a
fully distributed data approach in the NWChem parallel computational chemistry package. We use PASSION, a
parallel and scalable I/O library to improve the I/O performance of the application and present extensive experimental
results. The effects of both application-related factors and system-related factors on the application’s I/O performance
are studied in detail. We rank the optimizations based on the significance and impact on the performance of HF’s I/O
phase as: I. efficient interface to the file system, II. prefetching, and III. buffering. The results show that within the
limits of our experimental framework, application-related factors are more effective on the overall I/O behavior of this
application. We obtained up to 95% improvement in I/O time and 43% improvement in the overall application
performance with the optimizations. 
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1 Introduction
Parallel machines are an important part of the scientific application developer’s tool box and the computational and
processing demands placed on these machines are rapidly increasing. Many scientific applications tend to perform high
volume data storage, data retrieval and data processing, which demands high performance from the I/O subsystem. However,
the advancements of I/O systems are much behind compared to processor development and hence resulting in a widening gap
between the two subsystems and as a result I/O-intensive high-performance applications do not perform well. In this paper,
we conduct a detailed experimental study of the I/O performed by the Hartree-Fock (HF) method [11], as implemented using
a fully distributed data approach in the NWChem parallel computational chemistry package [9]. The Hartree-Fock method
describes the electronic structure of a molecule (the wavefunction), and is widely used in quantum chemical calculations. HF
I/O phases contribute up to 62.34% of the total execution time in some of our application inputs and hence make a very
compelling case for the need of I/O optimizations and analysis of its I/O phase. For some application inputs discussed in this
paper, up to 1.9GB of data are read/ written per application phase and this warrants optimizations to the I/O phase to
efficiently utilize the existing I/O system. 

We use PASSION [17], [7], [8], [13], a parallel and scalable I/O library to implement the application’s I/O. Furthermore, we
modify the application to use PASSION’s optimizations such as prefetching. We classify the factors that affect the I/O
performance of the application into two categories, namely, application-related factors and system-related factors and
investigate the impact of each category on the I/O behavior of HF. 

In this paper, we 1) present extensive experimental results related to the I/O behavior of HF which is an I/O-intensive
application using PASSION library, 2) explain the effect of application and system-related factors on HF and 3) rank the
optimizations based on the significance and impact on the performance of HF’s I/O phase as: I. efficient interface to the file
system, II. prefetching optimization, and III. buffering. The results show that within the limits of our experimental
parameters, application-related factors are more effective on the overall I/O behavior of this application. We obtained up to
95% improvement in I/O time and 43% improvement in the overall application performance. 

2 NWChem and the Hartree-Fock Application
  The NWChem computational chemistry package has been developed, mainly at the Pacific Northwest National Laboratory,
with the goal of expanding the time and length scales and improving the accuracy of chemistry simulations by taking
advantage of massively parallel processors (MPPs) [5], [6]. 

The Hartree-Fock method is one of the simplest approaches which include quantum mechanical effects, and is based on
self-consistent field (SCF) theory [11]. At the heart of the Hartree-Fock method is the construction of the Fock matrix F
according to the formula 

where  is the dimension of the basis set, h are one-electron Hamiltonian matrix elements, D is the one-particle density
matrix, and (pq|rs) are two-electron integrals. The iterative procedure starts with an initial guess for the density matrix, D,
which is then used to construct a Fock matrix, which in turn is used to improve the density matrix. The one- and two-electron
integrals, h and (pq|rs) depend on the positions of the atoms in the molecules, and on the specific choice of basis set. Their
values do not change during the iterative procedure. The two-electron integrals are quite numerous, formally .

In a disk-based implementation, the integrals are computed on the first iteration and written to disk, then read from disk
rather than being recomputed for each subsequent iteration. In NWChem each node writes a private file of the integrals it
evaluated during first construction of the Fock matrix. Figure 1 shows a sketch of the I/O activity observed from a single
compute node when the disk-based version of HF is used. The HF application code consists of about 16,500 lines of
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FORTRAN code and about 225,000 lines when supporting libraries are included. 

3 Hardware and Software Details

3.1 Hardware Platform

We use the 512-node Intel Paragon with i860 processors at Caltech for all the experiments discussed in this paper. The
Parallel File System (PFS)  is part of the OSF.R1.4.3 release of the operating system. There are two different parallel file
system configurations that we use, namely a 12 I/O node X 2 GB partition on original Maxtor RAID 3 level disks and a 16
I/O node X 4 GB partition on individual Seagate disks. In both the partitions, the stripe factor is equal to the number of I/O
nodes. The default striping unit size of both the I/O partitions is 64 KB. 

3.2 PASSION Library

PASSION [17], [7], [8], [13], [3] is a parallel run-time system which offers a high-level interface to the underlying parallel
I/O subsystem of a parallel computer. PASSION calls can be used from both in-core and out-of-core programs for I/O
support. In addition, it offers several optimizations such as data prefetching, data sieving, data reuse etc. PASSION calls can
be issued directly from a parallel program through a C or Fortran interface and they can use the underlying native parallel file
system calls. PASSION is supported on a variety of platforms, including Intel Paragon, Touchstone Delta, iPSC/860 and
IBM SP-2. There are two abstract storage models supported by PASSION: Local Placement Model (LPM) and Global
Placement Model (GPM). In the LPM model, each processor stores data on a virtual local disk and only that processor has
access to that disk. Data sharing between processors is done by means of communication. The data distribution amongst the
processors can be seen at the file-level itself. We should emphasize that the LPM model fits the I/O model used in HF, so we
use LPM in our experiments. Also, we use Pablo [15] I/O library to trace the I/O activity of HF both qualitatively and
quantitatively.

3.3 Default Configuration for the Experiments

The default striping configuration for our experiments is fixed at : number of processors = 4; striping unit = 64KB; and
striping factor = 12; and the default PFS partition we use is 12 I/O node X 2 GB partition on original Maxtor RAID disks.
The various HF code implementations we use are 1) Original--the original code with Fortran I/O from Pacific Northwest
Laboratory, 2) PASSION--a modified version which uses PASSION read/write calls, and 3) Prefetch--a modified version
which uses PASSION Prefetch calls. 

4 Overview of I/O Behavior of HF
  As noted above, it is possible either to recompute the integrals for each iteration of the HF procedure, or to use disk storage
to avoid the need to recompute. We will refer to the disk-based (Original) version as DISK, and the (Original) recomputing
implementation as COMP. 

In Table 1, we present the best sequential execution times obtained from several runs of both the COMP version and the
DISK version for several input sizes in the range of =66 to =134. Note that factors such as the nature of the molecule
and the chosen basis set, may result in substantial variations in the computational cost of the integrals and the number of
iterations required to converge the HF solution, so that larger  does not strictly imply a more expensive calculation. We
observe that the DISK version has the best sequential time for all cases except one case. The speedups presented in Figure 2
for these problem sizes are calculated over the best sequential execution times from Table 1. From the curves, we can
conclude that the disk based version of HF is preferable to the version which recomputes the integrals. This result emphasizes
the importance of I/O for HF. 

Proceedings of the ACM/IEEE SC97 Conference (SC’97) 
0-89791-985-8/97 $ 17.00 © 1997 IEEE 



The I/O activity of the HF application consists of two main phases: 

 Write phase (performed only once), where the integrals are calculated and packed in a memory buffer and written to disk
after the buffer is full; 

 Read phase (performed several times), integral values are read from disk to a memory buffer to compute the Fock matrix.
The integral file is resident on the disks and striped across various I/O nodes. 

The other small I/O accesses are to the input file and a run-time database file used for check pointing some values, but these
contribute to an insignificant part of the file activity. We classify the three representative runs as SMALL (  = 108), MEDIUM (

 = 140) and LARGE (  = 285) input sizes, based on the number of basis functions. We present I/O summary tables for the
various experiments and these capture the various I/O operation counts, the time taken, volume of data read or written and
percentages of I/O and execution times for different operations. Note that this includes the I/O activity performed by all the
processors that are executing the application. Along with this, we present tables that give the distribution of the request sizes
that are issued from the application. Also we present graphs that show quantities related to the read and write requests such as
durations of each request, size etc., across the entire execution time of the application. 

In Table 2, we summarize the results of the SMALL input with the various I/O measurements. Firstly, we find reads to be the
dominant operation in operation count, I/O time and volume of data. This is because the reads are repeated several times and
contribute to the bulk of the I/O time. For the SMALL case, 93.76% of the I/O time is read operations and that is 39.28% of the
total execution time. This is followed by writes which are done to write the integrals to files in the write phase and they
contribute to only 4.91% of the total I/O time and 2.06% of the total execution time. All the other operations such as open,
close, seek and flush take less than 2% of the total I/O time. We clearly see that, for this input the HF code is I/O intensive
and specifically read operation-intensive. In Table 3, we present the distribution of the read and write request sizes. The small
reads and writes in the range of (< 4 K) corresponds to the initial reads to the input file and writes to the run-time database
file for check pointing some calculations. The larger writes and reads (64K <= Sz < 256K) correspond to the integral file
writes and reads. We used the the default buffer size set in the program of 8192 8-byte elements. 

In Figure 3, we present the durations of the read and write operations performed in SMALL, over the entire execution time of
the program. We can clearly identify the write phase of integral values (performed just once) followed by the read phase
(performed many times). Also the small reads at the very beginning, where the small input files are read and some scarce
small writes to the run-time database file sprinkled about. We see that the average duration of read operations is 0.1 second
and the average write operations is 0.03 second. Figure 4, on the other hand presents the read and write sizes of SMALL which
shows the read and write request sizes issued from the application. 

Tables 4 and 5 show the I/O summary of MEDIUM and the read and write size distribution respectively. We see that the I/O
time corresponds to 62.34% of the total execution time. Reads and writes contribute to 59.01% and 3.31% of the total
execution time. The trend of the operation distribution is maintained as in SMALL. Figure 5 gives the read and write operation
durations across the entire execution time of the program. The average read operation duration is 0.12 second and the average
write duration is 0.087 second. Tables 6 and 7 and Figure 6 present the I/O information for LARGE. We note that the I/O
behavior of the application is similar for all inputs. 

5 I/O Optimizations
  There are several factors that can affect the I/O performance of an application. Specifically, we divide them into two
categories, namely application related parameters and system related parameters. Application related parameters are those
that can be altered from the application by the user. The system related parameters are those that are dependent on the parallel
machine on which the application is executed and its configuration on which the user has limited control and/or is generally
reluctant to change. The application related parameters are interface to the parallel file system, prefetching, and buffering,
whereas the system related parameters are number of processors, number of I/O nodes and stripe factor, and size of striping
unit.

5.1 Effect of Application Related Parameters

We study the effect of each one of the application-related parameters on the I/O performance of HF. Recall that all the

Proceedings of the ACM/IEEE SC97 Conference (SC’97) 
0-89791-985-8/97 $ 17.00 © 1997 IEEE 



experiments are performed on the default configuration unless otherwise specified. 

5.1.1 Software Interface to File System

The interface to the file system plays an important role as it adds a layer between the application and the I/O subsystem and
hence can either further increase the I/O latency if not well implemented or play a role in reducing the I/O time observed by
the application by performing optimizations. PASSION provides a convenient high-level interface for the user. PASSION
library is implemented in C with wrappers so that it can be called both from Fortran and C and can use the underlying parallel
file system efficiently. Recall that original HF implementation uses Fortran I/O calls. 

Table 8 and 9 give the I/O summary of the PASSION version of HF and the read and write size distribution for the SMALL
problem. The ratio among the operations and the operation counts (except that of seek) have remained almost the same as the
Original case. However, the I/O time now constitutes only 27% as opposed to the 41.90% of the Original case. Out of this
14.9% reduction, almost 14% is due to the reduction in the read times. We note that the number and the order of the I/O calls
remain the same. The mere change to the library which uses C calls and a better interface to the file system have brought up
this significant reduction. The PASSION library does not have any knowledge of where the file pointer is from a previous I/O
call and so a fresh seek has to be performed for every call. Hence, the increase in the number of seeks. We show the results of
PASSION implementation in Figure 7 for the SMALL input. We see that the average read request duration has reduced by one
order of magnitude (0.05 second) and the average write request duration reduced to 0.01 second from 0.03 second. When the
average request durations reduce, the total execution time also reduces as can also be observed from Figure 7. We present the
results for the PASSION version of MEDIUM input in Table 10. We see that there is a reduction in the total I/O time from
62.34% in the Original version to 43.81% in the PASSION version. From Figure 8, we see that the average read and write
durations are 0.05 second and 0.06 second, respectively. In Table 11, we show the I/O summary of the PASSION version for
LARGE and in Figure 9 we see the read and write duration distributions. The total I/O time for LARGE has reduced from 54.96%
to 39.56% due to PASSION. 

In summary, we observe that a more efficient software interface to the file system has resulted in a significant reduction
(23%-28%) in the total execution time for all the input sizes. 

5.1.2 Prefetching

  A typical application of prefetching is shown in Figure 10. Prefetching has been shown to hide the I/O latency significantly
in [1], [14]. HF is iterative in nature with computation and I/O part of each iteration and hence lends itself well to pipelined
prefetch accesses. 

Tables 12 and 13 present the I/O summary and distribution of I/O request sizes of the prefetching version of HF for SMALL.
We use the PASSION prefetch routines to prefetch the group of integrals required for the next iteration in the current
iteration of the program. Unlike the case of the software interface, I/O time is not reduced but is effectively hidden by
overlapping I/O with computation. A majority of the reads are asynchronous reads, which correspond to the prefetch
operations. The total read time contributed to 93.23% of the I/O time in the PASSION case and now contributes to a much
smaller fraction (36.83%) of the total I/O time. We see that the I/O time is reduced very significantly (from 785.72 seconds to
95.20 seconds) in the entire program. We note the fact that the computation time is sufficient to hide or overlap only some
percentage of the the time spent on I/O. Due to this, when computation is completed for the current iteration, the prefetch
request for the data needed in the next iteration is not complete and the execution of the program is stalled till the prefetch is
completed. (at the wait() command in Figure 10) 

We also note that prefetching did not produce results as we expected. PASSION uses the file system’s non-blocking or
asynchronous reads for prefetching and because of this it has to translate a single request to a logically contiguous chunk of
data access into multiple requests to physically contiguous chunks of data accesses. This book-keeping contributes to a big
percentage of the prefetching overhead. Posting of individual requests also adds to the overhead as each request needs to
obtain a token to be entered in the queue of asynchronous requests to a given file. Copying data from the prefetch buffer to
the application buffer also contributes to the prefetch overhead. (see Figure 10). 

Figure 11 shows the I/O activity of SMALL with prefetching across the execution time. Table 14 and Figure 12 give the I/O
summary and read and write duration activity of MEDIUM respectively and those for LARGE are given in Table 15 and and
Figure 13. Figure 14 summarizes the read and write durations of SMALL and MEDIUM and we see that there is approximately a
50% reduction in all the cases except one case. These explain the reduction in I/O time. 
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Figure 15 summarizes the execution times of the Original version, PASSION version and Prefetch version for our inputs. We
see that there is a significant reduction in the execution time due to the change of the file system interface. We find a
moderate reduction in the execution time going from the PASSION version to the Prefetch version. PASSION produces a
23%, 28% and 23% reduction in total time for SMALL, MEDIUM and LARGE respectively and 51%, 43% and 44% reduction in
I/O time for SMALL, MEDIUM and LARGE respectively. Prefetch produces a 32%, 43% and 39% reduction in execution times for
SMALL, MEDIUM and LARGE respectively and 94%, 94% and 95% reduction in I/O time for SMALL, MEDIUM and LARGE,
respectively.

5.1.3 Buffering

In this experiment, we modify the available memory (buffer) to the integral calculations (also called ‘‘slab’’ in PASSION).
Recall, from earlier discussion on the DISK version of HF, that both the write and read operations to the integral files are
performed through a memory buffer. When integrals are computed, a buffer of a certain size is filled up and then written to
the disk. We observe from Table 16 that the total and I/O times decrease with the increase in the memory buffer size
available for the application. The default buffer size of HF is set to 8192 doubles or 64K bytes. A larger memory buffer
enables more integrals to be stored on memory. As an example, when we move from 64K to 256K, there is a 8%, 27% and
50% reduction in the I/O times for Original, PASSION and Prefetch, respectively. 

5.2 Effect of System Parameters

In this section, we study the effect of system parameters on the application which are dependent on the machine configuration
available.

5.2.1 Number of Processors

We study the scalability of the application both overall as well as the I/O part of the application. All the three problem sets
are run on 4, 16 and 32 processors. The speedups shown in Figure 16 with respect to the four processor Original case. The
I/O scalability improves when moving from the Original version to the PASSION version and it reflects in the total
scalability of the program. The increase in the speedups when moving from the PASSION version to the Prefetch version is
significant. In fact, the I/O speedups are super-linear in the case of the prefetching version and this can be explained based on
the fact that the algorithm has been somewhat changed due to the introduction of prefetching calls. We see that the PASSION
version and the Prefetch version scale better compared to the Original version. To gain more insight into the scalability of the
application, we also conducted experiments with many other input sizes. Figure 17 shows the generic I/O speedup curves for
a typical input for HF. The I/O speedup of PASSION and Prefetch are generally always better than that of the Original. Up to
the point , I/O scales well for all the versions with the Prefetch version scaling the best, because of the parallel access to

the I/O nodes. Beyond  however, the contention in the I/O nodes dominates and speedups degrade for all the version. The

real value of  depends on the problem size and number of I/O nodes. 

5.2.2 Stripe Factor

Table 17 shows that there is a reduction in the average time to service a read or write request when the stripe factor increases
to a value of 16 from a value of 12. We see that this reduction is reflected in the total execution times and I/O times (Table
18). This is an expected result, because when the number of compute nodes remains a constant and the number of I/O nodes
is increased, the average number of requests received by an I/O node (and consequently the contention in the I/O subsystem)
decreases.

5.2.3 Size of Striping Unit

Table 19 presents the execution times and I/O times for the striping units of 32K, 64K and 128K. We see that the effect of
striping unit size is minimal and unpredictable. In HF, each processor accesses a unique file that is striped across the various
I/O nodes and there will be interfering requests to I/O nodes based on the position at which striping is started. We observe
from Table 19 that, for the Original case, 128K is the best striping unit size among our experimental values whereas for the
PASSION and Prefetch cases 64K is the best. 
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6 Relative Significance of Optimizations
  In this section, we present an incremental evaluation of the I/O optimizations performed in this paper. The optimizations
performed fell into application-related and system-related categories. We will consider the SMALL only as the results were
similar in the cases of MEDIUM and LARGE.

We represent each combination in the Figure 18 with a five-tuple of (V,P,M,Su,Sf), where V is the version used (O -
Original, P - PASSION, F - Prefetch); P is the number of processors; M is the buffer size (in KB); Su is the stripe unit size (in
KB); and Sf is the stripe factor; V and M being the application-related factors and P, Su and Sf are the system-related factors.
Note that (O,4,64,64,12) corresponds to the default configuration. In Figure 18 we present the percentage reductions with
respect to original execution and original I/O times. 

We see that just by changing the Fortran I/O calls to PASSION calls, we get a reduction of 23.24% in total execution time
and 50.52% in I/O time and the reduction in I/O time is fully reflected (in terms of seconds) in the execution time.
Prefetching version additionally reduces execution time and I/O time by 8.73% and by 43.48% respectively. The reduction in
the I/O time is not fully reflected in the reduction in execution time, in the case of prefetching. When the number of
processors is increased, the computation performed per processor also scales down, but the I/O contention increases as the
number of I/O nodes still remains the same. When the number of processors is increased to 32, we see that there is a
reduction in I/O time and also increased contention in the I/O nodes. There is an additional reduction of 44.03% and 4.4% in
the total time I/O time respectively. However, we speculate that increasing the number of processors to large values will
increase the contention on the I/O subsystem. When the buffer size of the application is increased there is a further reduction
of an additional 1% and 0.6% in execution time and I/O time respectively. When the stripe unit is increased to 128KB, we see
that there is an additional decrease of 1% and 0.3% in execution time and I/O time respectively. When the stripe factor is
increased to 16, we find that there is no reduction in execution time and 0.5% additional decrease in I/O time. To summarize,
we argue that the application-related factors are more important for the overall performance of HF on Intel Paragon. From
these observations, within our experimental parameters, we can order the parameters as efficient interface, prefetching,
buffering, number of processors, striping factor and striping unit size, according to their impact on the I/O performance of
this application. 

7 Related Work and Conclusions
  There are several works on I/O characterization of large applications. Three I/O-intensive applications from the Scalable I/O
Initiative Application Suite are studied in [4]. An I/O-intensive three-dimensional parallel application code is used to evaluate
the I/O performances of the IBM SP and Intel Paragon in [12]. They found IBM SP to be faster with read operations and
Paragon for writes. del Rosario and Choudhary [16] discuss several grand-challenge problems and the demands that they
place on the I/O performance of parallel machines. Significant amount of work has been done in the areas of out-of-core
compilation [2], [3], [14]. In [10], Smirni et.al, discuss two different algorithms of the Hartree-Fock SCF method, namely,
MESSKIT and NWChem. They too point out the importance of an efficient interface. In comparison, we evaluated the
NWChem both from application and system related parameters point of view. We modified NWChem to work with
PASSION library and experimented with prefetching. 

In this paper we studied an I/O-intensive application, namely, the disk-based version of HF in detail in its original form. HF
has two phases, namely the write phase where the integral calculations are computed and written to disk through an
application buffer and several read phases where the integrals are read from disk. Together they contribute to a significant
part of the total execution time. We used PASSION, a parallel and scalable run-time I/O library to reduce the I/O time
significantly. We studied the I/O behavior by experimenting with both application-related and system-related parameters. We
found out that the application-related parameters play a major role in determining the I/O performance. We ordered the
parameters according to the contribution they made to I/O behavior as efficient interface, prefetching and buffering. 
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Table 1: Best sequential Execution times

Table 2: I/O Summary of the Original version of SMALL: 4 processors 

Table 3: Read and Write Size distribution of the Original version of SMALL : 4 processors 

Table 4: I/O Summary of the Original version of MEDIUM: 4 processors

Table 5: Read and Write Size distribution of the Original version of MEDIUM : 4 processors 

Table 6: I/O Summary of the Original version of LARGE: 4 processors 

Table 7: Read and Write Size distribution of the Original version of LARGE : 4 processors

Proceedings of the ACM/IEEE SC97 Conference (SC’97) 
0-89791-985-8/97 $ 17.00 © 1997 IEEE 



Table 8: I/O Summary of PASSION version of SMALL: 4 processors 

Table 9: Read and Write Size distribution of PASSION version of SMALL : 4 processors 

Table 10: I/O Summary of PASSION version of MEDIUM : 4 processors 

Table 11: I/O Summary of PASSION version of LARGE : 4 processors

Table 12: I/O Summary of Prefetch version of SMALL : 4 processors

Table 13: Read and Write Size distribution of Prefetch version of SMALL: 4 processors 
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Table 14: I/O Summary of Prefetch version of MEDIUM : 4 processors 

Table 15: I/O Summary of Prefetch version of LARGE : 4 processors 

Table 16: Execution(right) and I/O times(left) for different buffer sizes of SMALL

Table 17: Average Read (left) and Write (right) times of SMALL

Table 18: Execution times (left) and I/O times (right) of SMALL : Varying stripe factors

Table 19: Execution times (left) and I/O times (right) of SMALL : Varying stripe units

Figure 1: Sketch of I/O Activity in HF
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Figure 2: Hartree-Fock Speedups for COMP Vs. DISK versions (A) =66. (B) =75. (C) =91. (D)  =108. (E)
=119. (F) =134. (p - number of processors)

Figure 3: Read and Write Operation Durations of the Original version of SMALL.
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Figure 4: Read and Write Sizes on SMALL.

Figure 5: Read and Write Operation Durations of the Original version of MEDIUM

Figure 6: Read and Write Operation Durations of the Original version of LARGE
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Figure 7: Read and Write Operation Durations of PASSION version of SMALL

Figure 8: Read and Write Operation Durations of PASSION version of MEDIUM

Figure 9: Read and Write Operation Durations of PASSION version of LARGE
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Figure 10: General Outline of Prefetching

Figure 11: Read and Write Operation Durations of Prefetch version of SMALL

Figure 12: Read and Write Operation Durations of Prefetch version of MEDIUM
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Figure 13: Read and Write Operation Durations of Prefetch version of LARGE

Figure 14: Normalized Average Read and Write Durations for SMALL and MEDIUM

Figure 15: Performance Summary of PASSION and Prefetch for SMALL, MEDIUM and LARGE
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Figure 16: Total and I/O speedups of the three versions for SMALL, MEDIUM and LARGE (p - number of processors)
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Figure 17: I/O speedup curves for Original, PASSION and Prefetch
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Figure 18: Impact of Optimizations on SMALL

...(PFS)
PFS performs striping, that is partitioning of data into equal-sized chunks, each of which is interleaved onto a fixed

number of storage areas in a round-robin fashion. Stripe unit is the unit of data interleaving and stripe is a group of logically
contiguous stripe units that are stored in separate I/O nodes. The number of the stripe units in a stripe is called stripe factor.
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