
An Experimental Evaluation of I/O
Optimizations on Different Applications

Meenakshi A. Kandaswamy, Mahmut Kandemir, Member, IEEE,

Alok Choudhary, Senior Member, IEEE, and David Bernholdt

Abstract—Many large scale applications have significant I/O requirements as well as computational and memory requirements.

Unfortunately, the limited number of I/O nodes provided in a typical configuration of the modern message-passing distributed-memory

architectures such as Intel Paragon and IBM SP-2 limits the I/O performance of these applications severely. In this paper, we examine

some software optimization techniques and evaluate their effects in five different I/O-intensive codes from both small and large

application domains. Our goals in this study are twofold. First, we want to understand the behavior of large-scale data-intensive

applications and the impact of I/O subsystems on their performance and vice versa. Second, and more importantly, we strive to

determine the solutions for improving the applications’ performance by a mix of software techniques. Our results reveal that different

applications can benefit from different optimizations. For example, we found that some applications benefit from file layout

optimizations whereas others take advantage of collective I/O. A combination of architectural and software solutions is normally

needed to obtain good I/O performance. For example, we show that with a limited number of I/O resources, it is possible to obtain good

performance by using appropriate software optimizations. We also show that beyond a certain level, imbalance in the architecture

results in performance degradation even when using optimized software, thereby indicating the necessity of an increase in I/O

resources.

Index Terms—I/O optimizations, parallel architectures, I/O intensive applications, disk layout, collective I/O.

æ

1 INTRODUCTION

LARGE scale parallel scientific applications in general
tend to be computationally-intensive as well as data-

intensive. The advances in I/O systems, both in hardware
and1 software, lag behind those in processors and
interconnection networks, resulting in poor performance
for I/O-intensive applications [13]. In this paper, we
investigate the I/O performance of five different I/O-
intensive applications. Our experiments confirm that, for
all of these applications, poor I/O performance limits the
overall performance of the application. This impact is
sometimes so severe that when a certain number of
compute nodes (processors) is reached, the execution time
starts to increase. Although, such a situation can some-
times occur with computationally-intensive applications

as well, in I/O-intensive applications such poor scalability
occurs with even very few processors such as six or eight.
We believe that two main obstacles to high performance
of I/O-intensive applications are

1. limited number of I/O resources (e.g., I/O nodes,
disks), and

2. unoptimized I/O software.

The first problem severely affects the I/O scalability;

beyond a certain point, increasing the number of compute

nodes (processors) has a negative impact on the I/O

performance and consequently the execution time increases.

The second problem, on the other hand, is more deeply-

rooted and operating system (OS) writers, compiler writers,

and even application writers can be blamed for that. An

additional difficulty associated with this second problem is

that the unoptimized I/O software of one domain can affect

all other domains that depend on it. For example, insufficient

compiler analysis for out-of-core computations (i.e., compu-

tations that heavily work on large disk-resident arrays) will

eventually prevent application level software from taking full

advantage of the underlying I/O subsystem.
A typical high-performance parallel computer consists of

compute nodes and I/O nodes (which have disks and/or disk

arrays attached to them). A combination of architectural and

software solutions is normally needed to obtain good I/O

performance. Since continuously increasing the I/O hard-

ware is prohibitively expensive, we eventually need to design

smart software optimizations to improve the I/O perfor-

mance of scientific codes.
In this paper, we evaluate five real I/O-intensive

applications to have a better insight into the I/O problem.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002 1303

. M. Kandaswamy is with the Enterprise Server Group, Intel Corporation,
Hillsboro, OR 97124-6497. E-mail: meeena.a.kandaswamy@intel.com.

. M. Kandemir is with the Microsystems Design Group, Department of
Computer Science and Engineering, Pennsylvania State University,
University Park, PA 16802. E-mail: kandmir@cse.psu.edu.

. A. Choudhary is with the Department of Electrical and Computer
Engineering, Northwestern University, Technological Institute, 2145
Sheridan Road, Evanston, IL 60208-3118. E-mail: choudhar@ece.nwu.edu.

. D. Bernholdt is with the Northeast Parallel Architecture Center, Syracuse
University, 111 College Place, Syracuse, NY 13244.
E-mail: bernhold@npac.syr.edu.

Manuscript received 16 Oct. 1998; revised 12 Aug. 2000; accepted 12 Dec.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 108073.

1. EDITOR’S NOTE: This paper originally appeared in TPDS, Vol. 13,
No. 7. Unfortunately, due to extraordinary circumstances, errors were
introduced into the figure captions of the paper. We are reprinting the
paper in its entirety here.

1045-9219/02/$17.00 ß 2002 IEEE

On one side, we investigate I/O performance of these

applications on message-passing parallel machines; and on

the other side, we study the impacts of different optimiza-

tions, which have been developed by previous research, on

these applications. Although, we believe that these optimi-

zations can be automated in a compilation framework or

can be structured as a runtime layer, in this paper we apply

them from within the applications in an attempt to make

our conclusions more accessible to application program-

mers. Our objectives in this study are manifold:

1. To understand I/O behavior of real scientific codes,
2. To evaluate different I/O optimizations available on

different applications and try to see which optimiza-
tions are appropriate for a given application,

3. To see at what point the software optimizations
become ineffective and to try to see whether
increasing hardware resources sparingly will solve
the problem, and finally,

4. To reach a general guideline (rule of thumb) that can
be applied by the end user (or can be automated)
which aims at improving I/O performance of the
applications.

We show that with a limited number of I/O resources, it is

possible to obtain good performance by using appropriate

software optimizations including layout transformations,

collective I/O, and I/O prefetching. We also show that

beyond a certain level, imbalance in the architecture results in

performance degradation even when using optimized soft-

ware. In the course of this work, we also acknowledge the

importance of an I/O characterization tool, Pablo [27], which

provides invaluable information to the user regarding I/O

access patterns of the program. Finally, we focus on two

applications and report some performance numbers on a

Linux-based cluster environment.
The remainder of this paper is organized as follows: In

Section 2, we introduce the applications in our experimental

suite. In Section 3, we describe the I/O optimizations that we

have chosen to evaluate. In Section 4, we present the

experimental data obtained from original (unoptimized) as

well as optimized programs, discuss the individual I/O

optimizations and explain how they improve the I/O as well

as the overall performance of the applications. In Section 5, we

discuss (using our experimental results and experience) a

systematic approach for optimizing I/O performance of a

given application. In Section 6, we discuss the related work

and, finally, in Section 7, we present conclusions and future

research avenues along this direction.

2 OVERVIEW OF APPLICATIONS

In this study, we focus on five different I/O-intensive
parallel applications written in Fortran by using message-
passing constructs, ranging from 500 lines of code to
19,000 lines (up to 538,000 lines if accompanying libraries
are included). The important characteristics of these
applications are given in Table 1. SCF 1.1 and SCF 3.0

are from the computational chemistry domain and are very
large applications [25]. AST is an astrophysics code from
Univ. of Chicago, BTIO is a disk-based version of a flow-
solver program from NAS benchmarks [14], and FFT is a 2D
out-of-core FFT program written by the authors.

We have chosen SCF 1.1 and SCF 3.0, as they represent
I/O requirements of typical large computational chemistry
applications. The AST code, on the other hand, performs
check-pointing, an I/O-intensive activity that would be
beneficial to explore. These three codes are very large
programs. In order to strike a balance, we have also
included one small-sized and one medium-sized program.
We have implemented the FFT code ourselves, paying
special attention not to optimize it aggressively in an
attempt to leave room for measuring the impact of the I/O
optimizations on it. Our medium-sized code, BTIO, has
several versions; one of them is written in MPI-IO [9], an
emerging parallel I/O standard. Appendix A contains a
brief explanation of these applications; more details can be
found in the PhD thesis of the first author [16].

3 OVERVIEW OF I/O OPTIMIZATIONS

In this section, we briefly discuss the I/O optimizations
used in this work. Most of these optimizations can be
applied from within the application or can be automated in
a compilation framework or an optimization tool. In this
paper, we focus on collective I/O, prefetching, file layout,
efficient I/O interface, and balanced I/O optimizations.
While there are many other I/O optimizations proposed by
previous research (e.g., file caching [15]), our applications
get the most benefit from these five optimizations, so we
focus only on them.

3.1 Collective I/O

Collective I/O is a term used generally to define a technique
where a processor can perform I/O on behalf of other
processors. This technique is especially useful in the cases
where the logical layout of data is different from its physical
layout on disks [12], [31].

Suppose, for example, an application divides a large disk-
resident column-major array of size N �N across four
processors in such a way that each processor has a square

1304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

TABLE 1
Applications in Our Experimental Suite and Their Important Characteristics

portion of N=2�N=2 to work on. If, in a read operation, all
the processors try to access their own portions independently,
every processor may need to issueN=2 I/O requests, each of
which for a vector of sizeN=2. Instead of doing it this way, we
can let each processor access a contiguous portion of the array
of size N �N=4. Then, in order to have the correct elements
on correct processors, we need a communication phase where
processors exchange data. Note that, by performing I/O on
behalf of other processors, we optimize the disk accesses at
the expense of some extra communication, which is generally
all-to-all type.

Del Rosario et al. [12] are among the first ones who
discuss such a technique where each processor reads the
portion of the disk data that is least costly for it; and then
the processors use the available interconnection network to
exchange the parts of the data so that each processor gets
what it needs. Although, this approach slightly increases
the communication time of the program, it generally
minimizes the number of I/O calls which in turn reduces
the execution time significantly as I/O, in general, is much
more costly than communication on modern message-
passing parallel architectures. In this approach, which they
call two-phase I/O, the processors cooperate in accessing the
data on disks. The aim is to combine several I/O requests
into fewer larger granularity requests and reorder requests
such that the file will be accessed in a close-sequential
fashion. Additionally, the total I/O workload can be
partitioned among the processors dynamically [31]. Collec-
tive I/O has successfully been implemented in the
PASSION library for out-of-core parallel applications [8].

It should be noted that collective I/O is on its way to
becoming an important I/O optimization and has found its
way to MPI-IO [9], an emerging I/O programming
standard.

3.2 Prefetching

It has been shown that prefetching can be very useful for
I/O-intensive applications whose access patterns can be
predicted, that is, the I/O access patterns exhibit
regularity [23]. In such cases, before starting to work on
the nth data block we can issue a prefetch request for the
ðnþ 1Þth data block. In this way the computation of the
nth block can overlap with the I/O of the ðnþ 1Þth block.
In fact, an experienced programmer or an optimizing
compiler can choose to prefetch more than one block at a
time depending on the relative costs of computation and
I/O of a block.

Notice that this optimization is highly amenable to
compiler analysis. Since the compiler has a global view of
access patterns of a given application, it can schedule
prefetch requests ahead of time to utilize the disk
bandwidth as effectively as possible. Mowry et al. [24]
automated the prefetching optimization within a compila-
tion framework whereas Arunachalam et al. [1] used
prefetching in the system software level.

We should emphasize that as compared with collective
I/O, which is a latency eliminating technique, the prefetching
optimization is a latency hiding technique and is useful only if
there is additional disk bandwidth to utilize. Most im-
plementations of the prefetch optimization use the asyn-
chronous I/O calls of the underlying parallel file system.

3.3 File Layout Optimization

This is another high-level I/O optimization technique
which can be automated in a compiler or in an optimization
tool. It is especially suitable in I/O-intensive applications
where the bulk of the execution time is spent in a couple of
loop nests.

Traditionally, file layouts of multidimensional arrays are
fixed at a specific form and correspond to memory layout
adopted by the language used. However, in some (e.g., out-
of-core) applications fixing the file layout to the same form
for all arrays can hurt the performance severely. Suppose,
for example, that we would like to take the transpose of one
disk-resident array into another. Due to the characteristic of
the transpose operation, the first row of the source array
should be transferred to the first column of the target array
and so forth. It is easy to see that in this example, instead of,
lets say, fixing layouts of both arrays to column-major (or
row-major), it might be beneficial to set one of the layouts to
row-major and the other to column-major. In this way,
accesses to both the arrays will span to consecutive
locations in file. Kandemir et al. [21] showed that such
optimizations can be automated with a little additional help
from the current optimizing compiler technology.

Notice that although collective I/O is meaningful for
only multiprocessor cases, prefetching and file layout
optimizations can be used in both multiprocessor and
uniprocessor cases.

3.4 Efficient I/O Interface

Ideally an I/O interface should contain sufficient in-
formation such that the underlying software level should
be able to optimize the I/O operation requested. A simple
form of this is to convert a Fortran interface to a C
interface where appropriate. Although, it looks simple at
first glance, Smirni et al. [30] report that in an
implementation of the Hartree-Fock code, they obtained
impressive speedups just by changing the interface to the
file system from Fortran to C.

More recently, Thakur et al. [33] observed the impor-
tance of using efficient interfaces provided by the MPI-IO
library [9], instead of more intuitive interfaces that one
might prefer. For example, suppose that a number of
processors will access disjoint but interleaved parts of a
shared array. Such an access pattern can be coded in a
number of ways. One way is to set up a loop in which every
iteration identifies a portion of accesses of each processor.
Although, considering all iterations such a loop will cover
all accesses by all processors, by looking at just one iteration
it is difficult to say what the global access pattern looks like.
Or, alternatively, we can use a single MPI-IO call which
contains the entire access pattern of all the processors. Then,
the underlying implementation can take advantage of that
and use, for example, collective I/O instead of naive I/O
accesses.

3.5 Balanced I/O

This is a more specialized optimization technique which can
be used by an experienced programmer, who is highly
familiar with the application in question.

The performance of many I/O-intensive applications can
depend on an interplay between factors such as available

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1305

in-core node memory, program access pattern, and avail-
able I/O resources. Smart management of memory can lead
to huge savings in the time spent in I/O subsystem.
Unfortunately, this management is, in general, highly
application dependent and in some cases, even within the
same application, it is input dependent. Some sophisticated
applications such as the SCF 3.0 code considered in this
paper give the user the ability to define what percentages of
available memory will be used for what purposes. Using
such a fine-grain control over memory, which is an
important resource in I/O-intensive computations, the
end user can make several experiments and can determine
the best memory allocation and partitioning for a given
program and input set.

We should stress that these I/O optimizations are by no
means exhaustive. There are many other I/O optimization
techniques, some of which are similar to those explained
above and some of which are quite different (see for
example [29], [2], [3], [4], [17], [34], [16] and the references
therein). Since it is not possible to evaluate all the
optimizations in this work, we have selected the five
representative optimizations mentioned. Also, in some
cases, experimenting with those optimizations on a specific
program can give a rough idea of how the other optimiza-
tions will perform on the same program. As a case in point,
in principle disk-directed I/O proposed by Kotz [22] and
server-directed I/O proposed by Seamons et al. [29] are
similar to two-phase I/O [12]. Therefore, it is reasonable to
think that they will be useful for the types of applications
for which the two-phase I/O is useful.

4 EVALUATION OF I/O OPTIMIZATIONS

In this section, we present experimental results on our
program suite and explain how some of the I/O optimiza-
tion techniques improve the I/O performance of the
applications.

4.1 Methodology

Our experimental methodology is as follows: For each
application, we applied (where possible) several software
optimizations, but due to lack of space we present only the
results of the most effective optimizations. Based on the
platform on which we ran the application, we also changed
the number of I/O nodes to observe its impact on the
application’s I/O behavior. In the small Paragon machine,
we used two and four I/O node configurations, the only
available partitions. In the large Paragon, we used 12, 16,
and 64 I/O node partitions. In the SP-2, on the other hand,
the number of I/O nodes is fixed at four, which is the only
available partition.

4.2 Platforms

In this section, we summarize some of the salient
characteristics of our platforms, Intel Paragon and IBM
SP-2, emphasizing their I/O capabilities.

Intel Paragon. The small Intel Paragon that we used for the
FFT experiments consists of 56 compute nodes and four I/O
nodes. The compute nodes are arranged in a two-dimensional
mesh comprised of 14 rows and four columns. The compute
nodes use the Intel i860 XP microprocessor and have

32 MBytes of memory each. The i860 has a peak performance

of 75 MFlops, yielding a system peak speed of 4.2 GFlops. The

total memory capacity of the compute partition is around

1.8 GBytes. For the other experiments (except BTIO), we used

a larger Paragon machine with 512 compute nodes and that

has service (I/O) partitions of sizes 12, 16, and 64. The

compute node topology is mesh and the processor character-

istics are the same as the small Paragon mentioned above. In

the experiments, we use 12, 16, and 64 node I/O partitions. In

both machines, the parallel file system, PFS [28], stripes the

user files across the available I/O nodes in a round-robin

fashion. The default stripe unit size, which is 64 KB in the PFS,

is used in all of our experiments, except SCF 1.1 where we

make experiments with different stripe unit sizes.
IBM SP-2. For the BTIO application, we used an SP-2

with 80 nodes. All nodes that are used in the experiments

were RS/6000 Model 390 nodes with 256 MB memory. The

parallel file system, PIOFS [11], distributes the files across

multiple I/O nodes. Only four out of the five I/O nodes are

available for the user files and each such node has four 9 GB

SSA disks attached to it. The fifth node is the directory

server. The striping unit (called BSU in the PIOFS

terminology) is 32 KB. The IBM SP-2 that we used in our

experiments was running version 1.2 of the PIOFS software

and there were four I/O nodes or servers that were part of

the I/O subsystem. A PIOFS file is stored by striping data

across the various servers in a round-robin fashion.

4.3 SCF 1.1: Effect of Efficient Interface and
Prefetching

We investigated the performance of SCF 1.1 for small as

well as large numbers of compute nodes separately. Our

analysis for small numbers of compute nodes is more

detailed and uses the Pablo traces, whereas in large

numbers of nodes, we were more interested in the

scalability-related issues. Also, in large numbers of nodes,

the huge disk space requirements and time constraints

prevented us from using Pablo. An important observation

about this application is that the programmers reasonably

optimized its I/O-related parts. They first packed the data

to be written onto disk in larger chunks and then wrote the

packed chunk in a single I/O call. While this effort renders

further I/O optimizations difficult; it makes the applica-

tions’ I/O pattern amenable to prefetching. In these

experiments, we evaluated three versions of the application:

1. The original version [25] that uses Unix I/O with a
Fortran interface (to the underlying parallel file
system) as provided by the Pacific Northwest Lab
(PNL),

2. an optimized version that uses the PASSION [8]
library’s read/write calls, and

3. an optimized version that uses PASSION prefetch
calls instead of read calls.

Essentially, the second version improves the interface to the

file system (by using the PASSION’s optimized I/O techni-

ques) and the third version applies prefetching optimization.
As mentioned earlier, the I/O activity of the SCF 1.1

code comprises two main phases:

1306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

1. Write phase (performed only once); integrals are
calculated and packed in a memory buffer and
written to disk after the buffer is full.

2. Read phase (performed in every iteration); integral
values are read from disk to a memory buffer to
compute Fock matrix; integral file is resident on
disks, striped across various I/O nodes and accessed
through the parallel file system.

The other small I/O accesses are to the input file and a
runtime database file used for check-pointing some values,
but these constitute an insignificant part of the total I/O
activity.

We consider three representative inputs which we call
SMALL (N ¼ 108), MEDIUM (N ¼ 140), and LARGE (N ¼ 285).
Problems as large as 2,500 basis functions as input can be
successfully executed, but they require a lot of processor-
hours, perhaps even processor-days. Due to the lack of
resources of such magnitude available to us, we had to scale
down our problem sizes. Nevertheless, we believe that these
inputs capture all the I/O issues faced by larger input sizes
and, hence, can be considered as representative.

In the following, we will present some I/O summary
tables (obtained using Pablo [27]) for the various experi-
ments, these will capture the various I/O operation counts,
time required, volume of data read or written, and
percentages of I/O and execution times for different
operations. Note that this includes the I/O activity
performed by all the compute nodes executing the applica-
tion. Along with these, we give information about the
distribution of the request sizes issued from the application.
All of the above information is useful in understanding the
dynamics of the I/O activity and the actual I/O bandwidth
experienced by the application.

In Table 2, we summarize the results of the SMALL input
with the various I/O measurements. First, we find reads to
be dominant in operation count, I/O time, and volume of
data, because the reads are repeated over several iterations
of the HF calculations. 93.76 percent of the I/O time consists
of read operations, which is 39.28 percent of the total

execution time. This is followed by writes, which are done
to write the integrals to files in the write phase and they
contribute to 4.91 percent of the total I/O time or
2.06 percent of the total execution time. All other operations
such as open, close, seek, and flush take less than 2 percent
of the total I/O time. We clearly see that, for this input, I/O
plays a major role in the HF code. In Table 3, we present the
distribution of the read and write request sizes. The small
reads and writes in the range of (< 4K) correspond to the
initial reads to the input file and writes to the runtime
database file for check-pointing some calculations. The
larger writes and reads (64K � Size < 256K) correspond to
the integral file writes and reads. We also made experi-
ments with the MEDIUM and LARGE inputs. The results are
similar to those given for the SMALL input and indicate that
the I/O time constitutes 62.34 percent (54.06 percent) of the
total execution time for the MEDIUM (LARGE) input (on four
processors). We have also found that the majority of the I/O
requests are of size 64K - 256K.

In Fig. 1, we present the durations of the read and write
operations performed in SMALL over the entire execution
time of the program. We can clearly identify the write phase
of integral values (performed just once), followed by the
read phase (performed many times), and the small reads at
the very beginning, where the small input files are read and
some scarce small writes to the runtime database file
sprinkled about. We found that the average duration of
read operations is 0.1 second and that of write operations is
0.03 second. Although, the actual values naturally differ, the
I/O behavior of the original code with the MEDIUM and
LARGE inputs is very similar to that with the SMALL input.

Table 4 gives the I/O summary of the second version of
HF (with the PASSION read/write calls) for the SMALL

input size. The I/O time now constitutes only 27 percent as
opposed to the 41.9 percent of the original case (refer to
Table 2). Out of this 14.9 percent reduction, almost
14 percent is due to the reduction in the read times. Note
that the number and order of I/O calls remain the same;
that is, all the benefit is coming from efficient interface

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1307

TABLE 2
I/O Summary of the Original Version for SMALL: 4 Compute Nodes

TABLE 3
Read and Write Size Distribution of the Original Version for SMALL: 4 Compute Nodes

between PASSION and the PFS. The PASSION library is
highly optimized for the underlying parallel file system and
uses smart buffering strategies to optimize the I/O accesses
as much as possible. In this program, the reduction in I/O
time equals the reduction in execution time. Since the
PASSION library has no knowledge of where the file
pointer is from a previous I/O call, a fresh seek must be
performed for every call. This increase in the number of
seeks contributes only to a small fraction of the I/O time.

Table 5 presents the I/O summary of the third version of
HF (with PASSION prefetch calls) for SMALL. The I/O times
here measure only the time spent on issuing the calls. They
neither take into account the waiting time nor the copy time.
While in the current iteration of the program, we use the
PASSION prefetch routines to prefetch the next group of
integrals required for the successive iteration. It should be
noted that PASSION prefetch is implemented using the
underlying file system’s asynchronous I/O support and its
success depends largely on how efficiently it has been

implemented. A majority of the reads are asynchronous

reads, that correspond to the prefetch operations. The total

read time contributed to 93.23 percent of the I/O time in the

PASSION case and now contributes to a much smaller

fraction (36.83 percent) of the total I/O time. The reduction

is so significant that the time has become less than that

taken by the write operations, which contributed to only

4.81 percent of the total I/O time in the case of the

PASSION version (see Table 4). We see that the I/O time is

reduced very significantly (from 785.72 seconds to 95.20 sec-

onds) in the entire program. The I/O time only contributes

to 3.69 percent of the execution time, as opposed to

27 percent in the PASSION version. However, there is only

an 11 percent reduction in the total execution time, which

shows that the reduction in I/O time is not equal to the

reduction in execution time. This is due to the fact that there

is insufficient overlap between the computation time and

the time to complete a read operation.

1308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

Fig. 1. Read and write operation durations of the original version for SMALL: 4 compute nodes.

TABLE 4
I/O Summary of the PASSION Version for SMALL: 4 Compute Nodes

TABLE 5
I/O Summary of the Prefetch Version for SMALL: 4 Compute Nodes

We also note that prefetching did not produce the results
we expected and we argue that this is due to:

1. The PASSION library uses the file system’s non-
blocking or asynchronous reads for prefetching and
because of this, it has to translate a single request to a
logically contiguous chunk of data access into
multiple requests to physically contiguous chunks
of data accesses. This bookkeeping contributes to a
big percentage of the prefetching overhead. Posting
of individual requests also adds to the overhead, as
each request needs to obtain a token to be entered in
the queue of asynchronous requests to a given file.

2. Copying data from the prefetch buffer to the
application buffer also contributes to a nonnegligible
percentage of the prefetch overhead.

Fig. 2 summarizes the execution times of the Original
version, the PASSION version and the Prefetch version for
our inputs. We see that there is a significant reduction in the
execution time due to the change of the file system interface.
We find a moderate reduction in the execution time going
from the PASSION version to the Prefetch version.
PASSION produces a 23 percent, 28 percent, and 23 percent
reduction in total time for SMALL, MEDIUM and LARGE,
respectively; and 51 percent, 51 percent, and 44 percent
reduction in I/O time for SMALL, MEDIUM and LARGE,
respectively. Prefetch produces a 32 percent, 43 percent, and
29 percent reduction in execution times for SMALL, MEDIUM,

and LARGE, respectively; and 94 percent, 94 percent, and
95 percent reduction in I/O time for SMALL, MEDIUM, and
LARGE, respectively.

The impact of the different factors for the small number
of compute nodes are summarized in Fig. 3. This figure
presents a summary of an incremental evaluation of the I/O
optimizations that we performed for small processor sizes.
As detailed in Table 6, we represent each optimization
combination in Fig. 3 with a five-tuple of (V,P,M,Su,Sf),
where V is the version used (O—original version with
Fortran I/O calls, P—optimized version with PASSION
read/write calls, F—optimized version with PASSION
prefetch calls); P is the number of processors (compute
nodes); M is the memory available to the application (in
MB); Su is the stripe unit size (in KB); and Sf is the stripe
factor (number of I/O nodes in this case). Notice that the
tuple (O, 4, 64, 64, 12) corresponds to our default
configuration. For the measurement of the I/O times in
the prefetching versions, we take into account the I/O, wait
and copy times also. The important point to note is that the
effect of the optimizations is quite similar in all three input
sizes. It is easy to see that the factors that can be modified
from within the software are much more effective than the
system-related factors like number of compute nodes and
number of I/O nodes within this experimental domain. In
general, we can conclude that when the number of compute
nodes is small, the application-related factors have a high
impact on the execution and I/O times of the application.

The results for the larger processor case are presented in
Figs. 4 and 5 (using the LARGE input). We notice from
Fig. 4b) that up to 64 processors, the software optimizations
are more effective in the overall performance, however,
beyond 64 processors, the lack of I/O resources dominates,
and the unoptimized version with 64 I/O nodes starts to
outperform the optimized versions with 16 I/O nodes.
From Fig. 5, we infer that as the number of compute nodes
used increases so does the contention at the I/O nodes. We
observe that the increase in I/O nodes (Sf) translates into
reduced I/O contention and results in improved total
execution times, especially when we use larger number of
compute nodes.

4.4 SCF 3.0: Effect of Balanced I/O

We evaluated the I/O and overall performance of the
SCF 3.0 from both hardware and software points of view.
As in SCF 1.1, we have found efficient interface and
prefetching quite useful. Since we discussed those issues

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1309

Fig. 3. Impact of different parameters on different input sizes for SCF 1.1 on the Intel Paragon. The number of basis functions (N—problem size) for

SMALL, MEDIUM and LARGE are 108, 140, and 285, respectively. The configuration tuples are given in Table 6.

Fig. 2. Performance summary of the PASSION and prefetch versions for

SMALL, MEDIUM, and LARGE inputs.

with SCF 1.1, due to lack of space, we do not elaborate on
them in this section. Instead, we focus on another optimiza-
tion technique, which we call balanced I/O, that is based on the
efficient use of available memory. In contrast to SCF 1.1, the
application programmers of the SCF 3.0 give the user the
opportunity of balancing I/O versus computation. That is,
the user can specify what percentage of the integrals are to be
cached on disk and what percentage are to be recomputed
when necessary. We found that the ratio can make a critical
difference in the overall performance of the application. The
problem, however, is that the best ratio is dependent on the
input size.

Fig. 6 shows the overall performance of the application
(times in seconds) on 16 and 64 I/O nodes for different
processor sizes and percentages of cached integrals. The
first observation is that the number of I/O nodes is not very
effective on the overall performance. The other two factors,
however, namely the number of compute nodes and
percentage of cached integrals do make a difference as
shown in the figures. This is in contrast to SCF 1.1 where
the number of I/O nodes is a critical factor. One reason for
this is that, in SCF 3.0, I/O is not as dominant as in
SCF 1.1. Another point to note is that changing the number
of compute nodes makes a big difference, especially with
the low percentages of cached data. This can be expected as
in low percentages of cached data, there is really little I/O
activity going on within the application.

The capability of changing the percentage of the cached
integrals presents the user with some opportunities. In
order to improve the performance, either the number of

processors or the percentage of the cached integrals can be

increased. The choice depends on the availability of extra

disk space versus additional number of compute nodes. For

the platform on which these experiments were conducted

(the Intel Paragon), we found that increasing the percentage

of integrals stored on the disk gave better performance. For

example, when the percentage of integrals cached is around

90 percent or so, (for the 64 I/O nodes case), we found that

increasing the number of processors from 32 to 256 did not

give any observable performance gain in the execution time.

But if the disk space is limited and can only partially fit the

1310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

TABLE 6
The Configuration (Optimization) Tuples Used in the Experiments

Fig. 4. Performance summary for SCF 1.1 for LARGE input on the Intel Paragon. (Up to 64 compute nodes optimized versions perform well; beyond

64 compute nodes the unoptimized version with larger number of I/O nodes performs better.)

Fig. 5. Effect of increasing the number of I/O nodes on SCF 1.1 on the

Intel Paragon.

integrals, then using larger number of processors to reduce

the load of recomputation per processor is beneficial in

decreasing the total execution times. From the results, we

can conclude that for SCF 3.0 on the Intel Paragon, the

amount of disk space available for caching is more

important followed by the number of compute nodes. Only

in the event of less disk space, would increasing the number

of processors be desirable.
At this point, we would like to explain why the other

optimizations do not perform well for both the SCF codes.

First, we cannot take advantage of the file layout optimiza-

tions, because these optimizations mainly work for multi-

dimensional arrays [21], whereas the main data arrays used

in the SCF codes are one-dimensional as the implementors

linearized the multidimensional arrays in order to take

better advantage of software level buffering. Unfortunately,

we cannot employ collective I/O optimization either,

because collective I/O is, in general, useful for the

applications where each node’s data are interleaved in file

with the other nodes’ data. In the SCF codes, this is not the

case; so, the nodes can access their portion of the data by

issuing minimum number of I/O calls, obviating the need

for collective I/O.

4.5 FFT: Effect of Layout Optimization

Fig. 7a shows the I/O times (in seconds) for three different
versions of the FFT code on the Intel Paragon: two versions
of the original program with 2 and 4 I/O nodes, and an
optimized version on 2 I/O nodes. The results show that the
I/O performance of the unoptimized program is very poor.
In the original unoptimized (2 I/O node case) version, the
I/O time actually increases when we use more than
4 compute nodes. When we increase the number of I/O
nodes to 4, the increase in the I/O time happens after
8 compute nodes. (Recall that on the small Paragon machine
where these experiments are performed we can use
maximum 4 I/O nodes and 16 compute nodes). We note
that this trend in the I/O time almost identically reflects the
total execution time (see Fig. 7b). The reason for this is that
the I/O time for this application constitutes 90 percent-
95 percent of the execution time and therefore is the
dominant factor in the overall behavior of the application.

The most costly operation in the 2D out-of-core FFT is a
2D out-of-core local transpose performed by each processor
using two disk-resident arrays. In the original program, file
layout for these two arrays is column-major. The transpose is
performed by reading a rectangular chunk from one of the
files (size of which depends on the available local node
memory), transposing it in the local memory, and writing it
in the other file. Since both the files are column-major,

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1311

Fig. 6. Performance of SCF 3.0 for different percentages of cached integrals for MEDIUM input on the Intel Paragon (a) with 16 I/O nodes and (b) with

64 I/O nodes. (Note that for the full recompute version (0 percent cached), increasing the number of processors is very effective whereas for the full

disk version (100 percent cached) increasing the number of processors does not make a significant difference. All times are in seconds.)

Fig. 7. Performance of the FFT code on Intel Paragon. (Total I/O amount is 1.5 GB and all reported times are in seconds.)

optimizing the block accesses for one array has a negative
impact on I/O performance of the other array (due to the
transpose operation), resulting in poor I/O performance
observed in Fig. 7. On the other hand, if we store one of the
arrays in row-major order, the I/O performance of both the
arrays improves. This is evident from Fig. 7 where the
optimized version of the program on two I/O nodes
outperforms the unoptimized program on four I/O nodes
for all processor sizes. For this example, within this
experimental domain, we can conclude that the layout
optimizations are effective and the optimized version
outperforms the unoptimized version which uses a greater
number of I/O nodes.

An important point about those types of layout optimi-
zations is that they can be detected by parallelizing
compilers using suitable linear algebraic techniques. For
example, Kandemir et al. [21] shows how the data layout
optimizations can be automated within a parallelizing
compiler targeting out-of-core computations. The main idea
is to choose the appropriate file layouts for disk-resident
arrays referenced in an I/O-intensive program. To achieve
this goal, an optimizing compiler employs a suitable
analysis to detect the access pattern of the individual loop
nests in the program at compile-time, then depending on
the collected information, it decides which file layout to
choose for each disk-resident array.

There is a potential problem, however, with the file
layout optimizations explained above. If a program contains
a number of consecutive loop nests, the different loop nests
accessing the same array may require different optimal file
layouts for the array. Fortunately, in most of the cases
where these conflicts occur, we can apply loop (iteration
space) transformations to mitigate the negative impact of
the new layout in different loop nests. We refer the
interested reader to [19] and [20] for an in-depth discussion
of the file layout transformations.

We now discuss why the other optimizations were not
effective for this application. First, collective I/O was not
required as each processor could read its portions of both
arrays in an efficient manner without the involvement of
the other processors. Since we have used the PASSION
library in implementing the application, the interface to the

file system was able to capture the high-level view of the
application’s access pattern.

Someone might think that prefetching might be useful
for such an application. But, due to the amount of the
computation and to the amount of the associated I/O in a
single iteration of the program, we found that the
prefetching was not very useful. However, since these costs
largely depend on our specific implementation, we believe
that in some other (more efficient) implementations pre-
fetching can prove useful for such an access pattern.

4.6 BTIO: Effect of Collective I/O

As mentioned earlier, the base version of this application uses
MPI-IO as the interface and contains a lot of seek operations.
The I/O performance of BTIO for the input Class A is shown
in Fig. 8a and the overall performance is shown in Fig. 8b,
respectively, (as usual all the reported times are in seconds).
In contrast to FFT, the BTIO code is not as I/O dominant.
From Fig. 8a, it is easy to see that the I/O time in the
unoptimized program changes drastically with the increas-
ing number of processors. This, in turn, causes a hump in the
execution time when 36 processors are used. The main
problem with the I/O performance of this application is that
each node performs its I/O independently from the others.
For example, if a node needs 12 chunks of data, it will issue
12 separate I/O calls, one for each of the chunks. While this
approach simplifies the programming, it incurs a substantial
overhead, as the number of I/O calls is the dominant factor in
the I/O time. This behavior was observed with other classes
of inputs as well.

The reference [8] discusses a technique called two-phase I/O

(a form of collective I/O) which means that each processor
reads the portion of the disk data that is least costly for it; and
then the processors use the available interconnection network
to exchange the parts of the data so that each processor gets
what it needs. Although, this approach increases the
communication time of the program, it generally minimizes
the number of I/O calls which in turn reduces the execution
time significantly. In two-phase I/O, the processors coop-
erate in accessing the data on disks. The aim is to combine
several I/O requests into fewer larger granularity requests

1312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

Fig. 8. Performance of BTIO on IBM SP-2 for Class A input. (a) I/O time and (b) Total time. (Total I/O amount is 408.9 MB and all times are in

seconds.)

and reorder requests such that the file will be accessed in a
close-sequential fashion.

The optimized version of BTIO uses the two-phase I/O.

The solution vector is completely described by using MPI

data types. Fig. 8a shows that the I/O time is reduced

significantly in the optimized version and it does not

behave unpredictably with the increasing number of

compute nodes. The reason is that in the unoptimized

program, increasing the number of compute nodes will

decrease the volume of data processed by a processor; but,

in general, does not change the number of I/O calls per

processor. Consequently, the total number of I/O calls in

the program increases substantially. On the other hand, in

the optimized program, the increase in the number of I/O

calls is equal to the increase in the number of processors as

each processor issues a single I/O request from the

application. The impact of the two-phase I/O in the overall

performance is shown in Fig. 8b. As an example, with 36

and 64 processors, there is 46 percent and 49 percent

reduction in the overall execution time, respectively. A

similar trend is observed in the other input classes as well.
We also measured the I/O bandwidth of the original and

the optimized versions. The results are given in Fig. 9. The
I/O bandwidth of the original program is between 2.8 MB/
sec and 3.4 MB/sec while the I/O bandwidth of the
optimized version is between 16.4 MB/sec and 35.2 MB/
sec. In summary, BTIO is an example of a class of I/O
intensive programs in which the I/O performance can be
improved by collective I/O optimization, but since the I/O
does not constitute a large bulk of the execution time, the
impact of the optimizations on the overall performance is
limited.

We now briefly discuss the impacts of other optimiza-
tions on the performance of this application. Since the
application is written using MPI-IO, there was not a severe
interface problem. Moreover, in this application, we have
found that for the best I/O performance all the disk-
resident arrays should have the same file layout whether it
is row-major or column-major. We believe that the
programmers paid enough attention to successively order
the computations in costly loop nests to avoid any file

layout transformation. As with the previous application, we

did not observe any marked difference on the I/O

performance when we applied prefetching.

4.7 AST: Effect of Collective I/O

The I/O characteristics of this application are very similar

to those of the previous application. We have included this

application in our suite, however, as it is much larger than

the BTIO code.
The results for this application (in terms of execution

times in seconds) with a reasonably large input array size of

2K � 2K elements is presented in Table 7 for 16 and 64 I/O

nodes on the Intel Paragon. As mentioned earlier, the

astrophysics application performs I/O for data analysis,

check-pointing, and visualization purposes. At every dump

point, data for the three purposes are written by the various

processors onto a shared file. To be specific, the snapshots

of the input array are written to disk at fixed dump points

for check-pointing and data analysis. Data are also

processed and written out for the purposes of visualization.

We compare two different implementations of the code:

1. Unoptimized version: I/O done using the Chameleon
library and

2. Optimized version: I/O done using a runtime system
library performing two-phase I/O.

We see a significant performance improvement in the overall

execution time in the optimized case due to huge reduction in

the I/O time. The Chameleon library makes I/O in smaller

noncontiguous chunks and also has a bottleneck of all I/O

performed by a single node and this adds to the I/O time. The

two-phase I/O approach, on the other hand, eliminates small

I/O requests by performing large chunks of sequential I/O.

Therefore, in this application we see that this factor is more

important (within our experimental domain) than increasing

the number of I/O nodes as shown in Table 7.
To evaluate the performance of collective I/O further, we

made experiments with the Spec/Nasa7 (from SpecFP92)

using 16 nodes SP2. For this purpose, the procedures in the

Spec/Nasa7 have been modified such that they read and

write disk-resident multidimensional arrays. Fig. 10 gives

the execution times in seconds for both unoptimized (left

bars) and optimized (right bar) version for different set of

experiments (called setups in the figure). These results

show that collective I/O improves the performance

significantly.

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1313

Fig. 9. I/O bandwidths of the original and optimized versions of BTIO on

the IBM SP-2 for Class A and Class B inputs.

TABLE 7
Execution Times (in Seconds) for AST

(The I/O amount is 2.2 GBytes.)

4.8 Results on Clusters

Recent trends in computer architecture show that networks
of workstations (also referred to as clusters) are emerging as
a cost-effective solution for high performance. Clusters are
expected to gradually phase out the conventional parallel
machines/supercomputers. In this section, we focus on two
applications, FFT and BTIO, and evaluate the impact of our
optimizations on an 8-node Pentium/Linux based cluster
environment. Each node on this cluster has a 750 MHz Intel
Coppermine microprocessor and equipped with a 20GB
Maxtor hard disk drive and a 32bit PCI 10/100Mbps 3-Com
3c59x network interface card. All the nodes are connected
through a Linksys Etherfast 10/100Mbps 16 port hub.

Fig. 11 gives the percentage I/O time improvements
brought by our optimizations over the original versions of
the applications. From these results, we can observe two
things. First, our optimizations are effective even in a
modern cluster-based environment (in addition to a super-
computer environment). In fact, we see that the improve-
ments in the Linux cluster are higher (in most cases) than
the improvements in the supercomputer environment when
the same number of processors are used. Second, the

effectiveness of our optimizations increase with the in-
creased number of processors. This is because the original
codes perform extremely poor when the number of
processors is increased. Note that this last result is very
significant as the current trend in high performance
computing is to employ larger and large clusters. In general,
we expect our I/O optimizations to be effective in a cluster
environment as well.

5 SYSTEMATIC APPROACH

In this section, we discuss our results from a general
perspective and try to reach some guidelines which might
be beneficial for application programmers as well as library
and compiler writers. First, from our experiments (whose
results are summarized in this paper), we observe the
following: the I/O intensive applications in our experimental
suite (in their original form) deliver very poor performance
mostly due to the I/O bottleneck. This bottleneck originates
from both hardware and software perspectives. From the
hardware perspective, the limited number of I/O nodes on
the Intel Paragon and the IBM SP-2 limits the performance of
such applications. The problem becomes so severe that
beyond a number of compute nodes, the execution times
actually increase. As an example, while the users of SCF 1.1,
for small number of compute nodes, use the version of the
code which makes I/O instead of the version which
recomputes the integrals; for large number of compute nodes,
they tend to use the recompute version, as the I/O version
performs very poorly. Although, an obvious solution to this
problem is to increase the number of I/O nodes, we cannot
indefinitely increase the I/O resources and at some point we
need to resort to efficient I/O optimizations from within the
software.

From the software point of view, the I/O software is not
easy to use and is not easily portable. For example, both PFS
and PIOFS have different I/O modes which make the
programming for I/O very difficult for the user. Unfortu-
nately, the compiler techniques for I/O are not robust
enough to attack the problem either. Throughout the years,
several I/O optimization techniques have been developed,
but they have been either tested on specific applications or
specific machines. In this paper, we applied several I/O
optimization techniques found in the literature to the
programs in our experimental suite.

We summarize our results in Table 8. An entry ðx; yÞ in
this table is marked with

p
if we observe a significant impact

of optimization y on the I/O performance of application x.

1314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

Fig. 10. The execution times for the unoptimized (left bars) and

optimized (right bars) on the IBM SP-2.

Fig. 11. Percentage improvements in I/O time for the FFT and BTIO

applications on a Linux cluster. x-axis corresponds to the number of

nodes.

TABLE 8
Applications and Effective Optimization Techniques

A tick-mark (
p

) is entered in the table on the effective optimization.

An obvious fact is that different I/O-intensive applications
are amenable to different types of I/O optimizations.

We now discuss what types of applications can benefit
from what types of optimizations. We can broadly divide
the I/O optimizations into two classes:

1. Optimizations that target access pattern of a number
of processors and

2. Optimizations that target access pattern of a single
node.

The class 1) optimizations include collective I/O. These
optimizations will be most useful in applications in which
each processor accesses noncontiguous parts of a global
data structure. In such cases, for example, collective I/O can
modify the global access pattern to enable more efficient
(contiguous) disk accesses at the expense of some extra
communication. In cases where

Unoptimized I=O > Optimized I=O

þ Extra Communication

holds, this optimization will be useful. The class 2) optimiza-
tions include, for example, prefetching and caching. If each
processor will be accessing consecutive parts of a disk-
resident structure, we can consider prefetching provided that
there is sufficient extra disk bandwidth. In that case, each
processor can overlap computation with I/O, leading to high
performance. Similarly, in cases where I/O calls issued from a
processor exhibit temporal locality, we can consider caching.
Of course, orthogonal to all these optimizations, the users of
the I/O-intensive applications must try to take advantage of
different interfaces to the next level software and application
specific optimizations.

Given all these, an important question from the software
point of view is how to select a proper subset of
optimizations given an application. Although, for the I/O-
intensive programs, it is hard to generalize the optimization
process, from our experiments in this paper and from our
previous experience on I/O software, we can infer a
systematic approach that can be adopted by application
programmers. The overall optimization scheme for a given

data set (array) is sketched in Fig. 12. Normally this process
should be repeated for each data set. However, some steps
can be performed for multiple data sets simultaneously
(e.g., loop transformations).

Our approach starts with optimizing I/O parallelism.
This in general involves modifying the access pattern of
loop nests to enhance data parallelism. Depending on the
application at hand, an optimizing compiler [20] can also be
used to maximize the data access parallelism. Following
this step, the global access and storage patterns are
optimized. We consider two different scenarios. If the data
set has already been created on disk, we need to compare
the access pattern and the storage pattern. If these two
patterns are the same, that means each processor can access
its portion of the file in question independently and we do
not need to perform collective I/O. Otherwise, collective
I/O (e.g., two-phase I/O or a variant of it) should be
performed in order to maximize the number of consecutive
elements accessed by each processor in a single I/O call.
This step completes the global I/O access pattern optimiza-
tion. If, on the other hand, the data set has not been created
yet, an important task is to determine a suitable storage
pattern so that the future I/O accesses to the said array will
have low I/O latency. This goal can be achieved if the
potential future accesses to the data set are considered first.
In other words, we can select a suitable storage pattern by
looking at possible use (i.e., access pattern) of the data set.
Note that depending on the application under considera-
tion, these future access patterns can be as close as those of
the first nest that would use the data set, or as far as those of
other procedures in the same application or even of code
from other applications that share the data set with the
current application. This step corresponds to layout
optimizations. Once the storage pattern has been deter-
mined, we can check each access pattern with the storage
pattern and perform collective I/O if necessary.

After an improved global access pattern has been
obtained, then we can try to enhance the I/O perfor-
mance of individual nodes; this step is called local
optimization. In this step, we can use optimizations such

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1315

Fig. 12. A systematic approach for optimizing I/O.

as prefetching/caching and data sieving. Data sieving is
an optimization where a processor reads a superset of
the required data if doing so reduces the total number of
I/O calls needed [8]. Finally, additional optimizations
([3]) that interact with I/O such as communication
optimizations can be applied.

Returning to our example applications, in BTIO and AST,
this systematic approach can detect that collective I/O is
required. Similarly, in the FFT code, it successfully detects
that assigning different file layouts to different disk-
resident arrays would be beneficial. For our computational
chemistry codes, on the other hand, since the global access
pattern is very well optimized by the application program-
mers, the approach focuses on local optimizations and
employs I/O prefetching as explained in the paper.

Finally, when we have an improved view of the I/O
access pattern for all the nodes, we should consider
different interfaces (where available) to convey as much
information as possible to the underlying software about
what the application is intended to do. We hope that in the
future libraries and runtime systems will be able to take
better advantage of semantic information provided to them
through sophisticated interfaces.

6 RELATED WORK

In this section, we summarize the related software work in
optimizing performance of the I/O-intensive codes.
Throughout the years, researchers have handled the I/O
problem in several levels including but not limited to
applications, file systems and operating systems, runtime
libraries, languages, and compilers. In the following, we
discuss the work most relevant to our study.

6.1 Application I/O

In addition to requiring significant amounts of processing
power, parallel applications also require high-capacity I/O
subsystems that can sustain high bandwidths. In [13], Del
Rosario and Choudhary present the various problems and
prospects in achieving high-performance I/O. They discuss
the I/O requirements of Grand Challenge applications—a list
of scientific and technical applications that range from
500 MBytes to 500 GBytes and can reach the range of
Terabytes with the advent of Teraflops machines. Three I/
O-intensive applications from the scalable I/O initiative’s
application suite are studied by Crandall et al. [10] using
Pablo [27], a performance analysis tool. Their recommenda-
tions to parallel file systems are to support various access
patterns, request sizes and orderings efficiently through
optimizations such as prefetching and caching. They found
that the applications exhibited a wide variety of temporal
and spatial access patterns. Smirni et al. [30] compare two
different applications implementing the Hartree-Fock (HF)
method and use a high-level I/O library called the PPFS
[15] and determine appropriate caching and prefetching
policies. They discuss two different algorithms for the SCF
method, namely, MESSKIT and NWChem. They point out
the importance of the C interface to the I/O subsystem as
one reason that the MESSKIT version performs smaller
duration I/O accesses than NWChem, which uses the
Fortran interface. Thakur et al. [32] use an I/O-intensive,

three-dimensional parallel application code to evaluate the
I/O performances of the IBM SP-2 and the Intel Paragon.
They experiment with different input sizes and for large
inputs they find the IBM SP-2 to be faster for read
operations and Paragon for writes. In comparison with
those studies, we evaluated a larger set of applications and
a larger set of I/O optimization techniques and tried to
reach some guidelines that can be useful to application
programmers as well as library and compiler writers.

6.2 Parallel File Systems and Runtime Libraries

Commercial file systems such as PFS [28] and PIOFS [11]
support various access patterns in defined modes and hints
that the user can specify at the time of using a parallel file.
The PASSION (Parallel and Scalable Support for Input/
Output) library [8] performs collective I/O using a two-
phase method. SOLAR [34] is another out-of-core library
that supports dense matrix computations that provide out-
of-core functionality similar to the in-core BLAS and
LAPACK for shared-memory machines and the in-core
ScaLAPACK for distributed-memory machines. The
PANDA library [29] uses server directed I/O, which imple-
ments a form of collective I/O similar to the two-phase I/O
except that it is a server-side implementation. PPFS [15] is a
portable user-level parallel I/O library that uses a client/
server model. PPFS clients consisting of the user application
linked with the PPFS library are spawned across the
processors and servers are spawned on each logical disk
managed by PPFS. In addition to portability, the MPI-IO
standard [9] provides optimizations in a high-level inter-
face. PVFS [6] is a parallel file system for Linux clusters that
presents three different APIs and accommodates frequently
used UNIX shell-commands. Its optimizations for noncon-
tiguous data are perhaps less powerful than MPI-IO’s
optimizations.

6.3 Compiler Optimizations

Current work in the compilation of out-of-core computa-
tions uses techniques based on explicit file I/O. In [5],
Brezany et al. design directives that can be used in a high-
level language to give hints to the compiler and runtime
system about the intended use of disk resident data.

From a compiler perspective, an I/O-intensive program
can be optimized in three ways: 1) Computation transfor-
mations [26], [3], 2) data (file layout) transformations [19],
and 3) unified transformations [21], [20]. The techniques
based on computation transformations attempt to choreo-
graph I/O, given the high-level compiler directives men-
tioned above. The computation transformations used by the
compiler for handling disk resident arrays can be roughly
divided into two categories: 1) approaches based on tiling
2) approaches based on loop permutations. We have found
in our study that file layout transformations can be very
useful for some codes and hinted at where unified
transformations might be necessary.

7 CONCLUSIONS

In this paper, we have studied the impact of several I/O
optimization techniques found in the literature on the I/O
performance of five I/O-intensive applications. We have

1316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

first analyzed the I/O behavior of the original version of
each application and then attempted to apply the optimiza-
tions in our suite. We have found that although different
applications benefit most from different optimization(s), a
rough guideline can be adopted to select a reasonable
sequence for applying optimizations. Our experience, albeit
limited, suggests first optimizing global I/O pattern to force
processors to make as many accesses to consecutive
locations as possible and then improving the individual
access patterns further using techniques such as file layout
transformations and prefetching.

We intend to extend this work in several ways. First, we
would like to increase the size of our application suite and
optimization techniques. Second, we plan to investigate
more the interactions between different optimizations and
third, we want to design and implement an optimization
tool which, given I/O characteristics of an application in a
specific well-defined format, can output a suitable order for
optimizations.

APPENDIX

EXPLANATION OF APPLICATIONS

SCF 1.1: The Hartree-Fock (HF) method obtains the energy
and wave function of a molecular system by iterating over
two basic steps until self-consistency (SCF) is obtained. At
the heart of the Hartree-Fock method is the construction of
the Fock matrix F according to the formula,

Fpq ¼ hpq þ
XN
r¼1

XN
s¼1

Drs ðpqjrsÞ ÿ 12ðprjqsÞ½ �;

where N is the dimension of the basis set, h’s are one-
electron Hamiltonian matrix elements, D is the one-particle
density matrix, and ðpqjrsÞ are two-electron integrals. The
iterative procedure starts with an initial guess for the
density matrix, D, which is then used to construct a Fock
matrix, which in turn is used to improve the density matrix.
The one- and two-electron integrals, h and ðpqjrsÞ depend
on the positions of the atoms in the molecules and on the
specific choice of basis set. Their values do not change
during the iterative procedure. The two-electron integrals in
particular are quite numerous, formally OðN4Þ. In addition,
evaluating each integral is a nontrivial computation invol-
ving 300 to 500 floating-point operations, on average.
Compared to the integral evaluation and Fock matrix
construction, other phases of the HF calculation are
relatively inexpensive.

While the initial implementations of the HF method
preferred recomputing the integrals whenever needed, recent
improvements in high-performance I/O subsystems and in
supporting software have made it possible to reconsider the
decision to focus on recomputing methods and the majority
of quantum mechanical methods in NWChem now include
some kind of disk-based algorithm. In the HF algorithm, the
two-electron integrals constitute the largest volume of data
and a sizable computational expense. In a disk-based
implementation, the integrals are computed on the first
iteration and written to disk, then read from disk rather
than being recomputed for each subsequent iteration. In

NWChem, each compute node writes a private file of the
integrals it evaluated during the first construction of the
Fock matrix.

SCF 3.0: The SCF 3.0 parallel computational chemistry
package encompasses a broad range of functionality,
including the self-consistent field (SCF) module. In
SCF 1.1, calculations could be either direct, meaning that
integrals are recomputed for every iteration of the SCF
algorithm, or disk-based, meaning that integrals are
evaluated once and written to disk during the first iteration,
then read from disk on every subsequent iteration (as
explained above). The semidirect integral calculation ap-
proach adopted by the SCF 3.0 implementors is a
compromise between these two extremes, where limits
may be specified on the size of disk files and any integrals
which are not stored on disk are recomputed. This is the
fundamental difference between SCF 1.1 and SCF 3.0 and
will be studied in detail later in the paper. Some attempt is
also made to arrange the integral evaluation from most to
least expensive, so that those integrals which must be
recomputed on every iteration are generally less expensive
than those kept on disk. Taken together, the changes
between SCF 1.1 and SCF 3.0 mean that SCF calculations
with the two can, in some cases, have marked differences in
performance due to changes in both computational and I/O
components of the code. Consequently, we consider
SCF 1.1 and SCF 3.0 as two separate applications.

FFT: The Fast Fourier Transform (FFT) is widely used in
many areas such as digital signal processing, partial
differential equation solutions and various other scientific
and engineering problems. We implemented a 2D out-of-
core FFT on the Intel Paragon. The 2D out-of-core FFT
consists of three steps: 1) 1D out-of-core FFT, 2) 2D out-of-
core transpose, and 3) 1D out-of-core FFT. The 1D FFT steps
consist of reading data from a two-dimensional out-of-core
array and applying 1D FFT on each of the columns. In order
to perform 1D out-of-core FFTs, the data on disk is strip-
mined into memories of compute nodes. This step is highly
parallel, limited in general only by the size of the available
memory, individual processor speeds, and the load on the
I/O subsystem. After this step, the processed columns are
written to file. In the transpose step, the out-of-core array is
staged into memory, transposed and written to a file. This
step is very expensive in terms of both I/O and commu-
nication.

BTIO: This application simulates the I/O required by a
pseudo-time-stepping flow solver. It is a disk-based version
of a program from the NAS parallel benchmark suite [14].
The main operation in the code is periodic writes performed
by all processors to a multidimensional array stored in a
disk-resident file. Basically after every k iterations, a three-
dimensional solution vector of size N3 is written to a shared
disk file, where N is the input size. Note that periodic write
operations are used by such applications for check-pointing
and/or offline visualization and analysis of data. An
important characteristic of this application is the large
number of small-sized write operations, which can be very
costly on a typical architecture. No file read operation is
performed; that is, this code represents the class of write
and seek dominant I/O-intensive applications.

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1317

AST: The astrophysics application [32] performs an
analysis of highly turbulent convective layers of late-type
stars such as the sun. The application simulates the gravita-
tional collapse of self-gravitating gaseous clouds due to the
Jeans instability process. This is the fundamental mechanism
through which intergalactic gases condense to form stars. It
uses the piecewise parabolic method to solve the compres-
sible Euler equations and a multigrid elliptic solver to
compute the gravitational potential. The application uses
several distributed arrays and processes them and writes
them on to the disk to one common shared file.

ACKNOWLEDGMENTS

This work was suported in part by the US National Science
Foundation Grant CCR-0097998 and by the Department of
Energy ASCI Adademic Strategic Alliance Program (ASAP)
Level 2 under subcontract W-7405-ENG-48 from Lawerence
Livermore National Laboratories.

REFERENCES

[1] M. Arunachalam, A. Choudhary, and B. Rullman, “A Prefetching
Prototype for the Parallel File System on the Paragon,” Proc. Joint
Int’l Conf. Measurement and Modeling of Computer Systems, ACM
Sigmetrics ’95/Performance ’95, May 1995.

[2] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz, “Jovian: A
Framework for Optimizing Parallel I/O,” Proc. 1994 Scalable
Parallel Libraries Conf., 1994.

[3] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and M.
Paleczny, “A Model and Compilation Strategy for Out-of-Core
Data-Parallel Programs,” Proc. Fifth ACM Symp. Principles and
Practice of Parallel Programming, July 1995.

[4] R. Bordawekar, A. Choudhary, and J. Ramanujam, “Automatic
Optimization of Communication in Out-of-Core Stencil Codes,”
Proc. 10th ACM Int’l Conf. Supercomputing, pp. 366-373, May 1996.

[5] P. Brezany, T. Mueck, and E. Schikuta, “Language, Compiler and
Parallel Database Support for I/O Intensive Applications,” Proc.
High Performance Computing and Networking Conf., 1995.

[6] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur, “PVFS: A
Parallel File System for Linux Clusters,” Preprint ANL/MCS-P804-
0400, submitted to the 2000 Extreme Linux Workshop April 2000.

[7] Y. Chen, J. Plank, and K. Li, “CLIP: A Check-Pointing Tool for
Message-Passing Parallel Programs,” Proc. Supercomputing ’97,
1997.

[8] A. Choudhary, R. Bordawekar, S. More, K. Sivaram, and R.
Thakur, “The PASSION Runtime Library for the Intel Paragon,”
Proc. Intel Supercomputer User’s Group Conf., June 1995.

[9] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J. Prost,
M. Snir, B. Traversat, and P. Wong, “Overview of the MPI–IO
Parallel I/O Interface,” Proc. Third Workshop I/O in Parallel and
Distributed Systems, Apr. 1995.

[10] P. Crandall, R. Aydt, A. Chien, and D. Reed, “Input/Output
Characteristics of Scalable Parallel Applications,” Proc. Super-
computing ’95, 1995.

[11] P. Corbett, D. Feitelson, J. Prost, G. Almasi, S. Baylor, A.
Bolmarcich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. Herr, J.
Kavaky, T. Morgan, and A. Zlotek, “Parallel File Systems for the
IBM SP Computers,” IBM Systems J., vol. 34, no. 2, pp. 222-248, Jan.
1995.

[12] J. Del Rosario, R. Bordawekar, and A. Choudhary, “Improved
Parallel I/O via A Two-Phase Run-Time Access Strategy,” Proc.
1993 IPPS Workshop Input/Output in Parallel Computer Systems, Apr.
1993.

[13] J.D. Rosario and A. Choudhary, “High Performance I/O for
Parallel Computers: Problems and Prospects,” Computer, pp 59-68,
Mar. 1994.

[14] S. Fineberg, “Implementing the NHT-1 Application I/O Bench-
mark,” Proc. Int’l Parallel Processing Symp. (IPPS ’93) Workshop
Input/Output in Parallel Computer Systems, pp. 37-55, 1993, Also
published in Computer Architecture News, vol. 21, no. 5, pp. 23-30,
Dec. 1993.

[15] J. Huber, C. Elford, D. Reed, A. Chien, and D. Blumenthal, “PPFS:
A High Performance Portable Parallel File System,” Proc. Int’l
Conf. Supercomputing, July 1995.

[16] M. Kandaswamy, “Design and Evaluation of Optimizations in I/
O-Intensive Applications,” PhD Thesis, EECS Dept., Syracuse
Univ., Syracuse New York, May 1998.

[17] M. Kandaswamy, M. Kandemir, A. Choudhary, and D. Bernholdt,
“Optimization and Evaluation of Hartree-Fock Application’s I/O
with PASSION,” Proc. SC ’97 Conf., (formerly known as Super-
computing), Nov. 1997.

[18] M. Kandemir, “A Collective I/O Scheme Based on Compiler
Analysis,” Proc. Fifth Workshop Languages, Compilers, and Run-Time
Systems for Scalable Computers, May 2000.

[19] M. Kandemir, A. Choudhary, J. Ramanujam, and R. Bordawekar,
”Compilation Techniques for Out-of-Core Parallel Computa-
tions,” Parallel Computing, vol. 24, nos. 3-4, pp. 597-628, June 1998.

[20] M. Kandemir, A. Choudhary, J. Ramanujam, and M. Kandaswa-
my, “A Unified Compiler Algorithm for Optimizing Locality,
Parallelism and Communication in Out-of-Core Computations,
Proc. Workshop I/O in Parallel and Distributed Systems (IOPADS ’97),
pp. 79-92, Nov. 1997.

[21] M. Kandemir, J. Ramanujam, and A. Choudhary, “Improving the
Performance of Out-of-Core Computations,” Proc. 1997 Int’l Conf.
Parallel Processing, pp. 128-136, Aug. 1997.

[22] D. Kotz, “Expanding the Potential for Disk-Directed I/O,” Proc.
1995 IEEE Symp. Parallel and Distributed Processing, pp. 490-495,
Oct. 1995.

[23] D. Kotz and C. Ellis, “Practical Prefetching Techniques for
Multiprocessor File Systems,” J. Distributed and Parallel Databases,
vol. 1, no. 1, pp. 33-51, Jan. 1993.

[24] T. Mowry, A. Demke, and O. Krieger, “Automatic Compiler-
Inserted I/O Prefetching for Out-of-Core Applications,” Proc.
Second Symp. Operating Systems Design and Implementations
(OSDI’96), Oct. 1996.

[25] “NWChem, A Computational Chemistry Package for Parallel
Computers, Version 1.1,”High Performance Computational
Chemistry Group, Pacific Northwest Laboratory (PNL), 1995.

[26] M. Paleczny, K. Kennedy, and C. Koelbel, “Compiler Support for
Out-of-Core Arrays on Parallel Machines,” CRPC Technical
Report 94509-S, Rice Univ., Houston Tex., Dec. 1994.

[27] D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields, B. Schwartz, and L.
Tavera, “Scalable Performance Analysis: the Pablo Performance
Analysis Environment,” Proc. Scalable Parallel Libraries Conf.,
pp. 104-113, 1993.

[28] B. Rullman Paragon Parallel File System, External Product
Specification, Intel Supercomputer Systems Division. 1996.

[29] K.E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett,
“Server-Directed Collective I/O in Panda,” Proc. Supercomputing
’95, Dec. 1995.

[30] E. Smirni, C. Elford, A. Laevry, D. Reed, and A. Chien,
“Algorithmic Influences on I/O Access Patterns and Parallel File
System Performance,” Technical Report, Pablo Group, Univ. of
Illinois at Urbana-Champaign, 1996.

[31] R. Thakur and A. Choudhary, “An Extended Two-Phase Method
for Accessing Sections of Out-of-Core Arrays,” Scientific Program-
ming, vol. 5, no. 4, pp. 301-317, Winter 1996.

[32] R. Thakur, W. Gropp, and E. Lusk, “An Experimental Evaluation
of the Parallel I/O Systems of the IBM, SP, and Intel Paragon
Using a Production Application, Proc. Third Int’l Conf. Austrian
Center for Parallel Computation (ACPC), pp. 24-35, Sept. 1996.

[33] R. Thakur, W. Gropp, and E. Lusk, “A Case for Using MPI’s
Derived Data Types to Improve I/O Performance, Preprint, ANL/
MCS-P717-0598, Math. and Computer Science Division, Argonne
Nat’l Laboratory, May 1998.

[34] S. Toledo and F. Gustavson, “The Design and Implementation of
SOLAR, a Portable Library for Scalable Out-of-Core Linear
Algebra Computations, Proc. Fourth Ann. Workshop I/O in Parallel
and Distributed Systems, May 1996.

1318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 12, DECEMBER 2002

Meenakshi A. Kandaswamy received the BE
(Honors) degree in computer science and
engineering from Regional Engineering College,
Trichy, India in 1989. She received the MS and
PhD degrees from the Department of Electrical
Engineering and Computer Science at Syracuse
University in 1998 and 1995, respectively. She
currently works in the Enterprise Architecture
Labs, Intel Corporation as a senior software
engineer. Her research interests include high-

performance I/O, parallel applications and benchmarks, multiprocessor
file systems, performance modeling, and simulation.

Mahmut Kandemir received the BSc and MSc
degrees in control and computer engineering
from Istanbul Technical University, Istanbul,
Turkey, in 1988 and 1992, respectively. He
received the PhD degree from Syracuse Uni-
versity, Syracuse, New York in electrical en-
gineering and computer science, in 1999. He
has been an assistant professor in the Computer
Science and Engineering Department at the
Pennsylvania State University since August

1999. His main research interests are optimizing compilers, I/O intensive
applications, and power-aware computing. He is a member of the IEEE
and the ACM.

Alok Choudhary received the BE (Hons.)
degree from Birla Institute of Technology and
Science, Pilani, India in 1982, the MS degree
from the University of Massachusetts, Amherst,
in 1986 and the PhD degree from the University
of Illinois, Urbana-Champaign, in electrical and
computer engineering. He is a professor of
electrical and computer engineering at North-
western University. He received the US National
Science Foundation’s Young Investigator Award

in 1993 (1993-1999). He has also received an IEEE Engineering
Foundation award, an IBM Faculty Development award, and an Intel
Research Council award. His main research interests are in high-
performance computing and communication systems and their applica-
tions in many domains including multimedia systems, information
processing and scientific computing. He is a senior member of the
IEEE and a member of the ACM. He also serves in the High-
Performance Fortran Forum, a forum of Academia, Industry and
Government Labs working on standardizing programming languages
for portable programming on parallel computers.

David Bernholdt received the PhD in chemistry from University of
Florida in 1993. He is currently a research assistant professor in the
Department of Chemistry at Syracuse University and a research
scientist at the Northeast Parallel Architectures Center. He is also
affiliated with the Pacific Northwest National Laboratory. His main
research interests are methods for large-scale correlated electronic
structure calculations, efficient use of MPPs in quantum chemistry, and
general problems in computational science. He is a member of
American Chemical Society, American Physical Society, and Associa-
tion for Computing Machinery.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib/.

KANDASWAMY ET AL.: AN EXPERIMENTAL EVALUATION OF I/O OPTIMIZATIONS ON DIFFERENT APPLICATIONS 1319

