
I/O-Conscious Tiling for Disk-Resident Data Sets

Mahmut Kandemir1, Alok Choudhary2, and J. Ramanujam3

1 EECS Dept., Syracuse University, Syracuse, NY 13244, USA
(mtk@top.cis.syr.edu)

2 ECE Dept., Northwestern University, Evanston, IL 60208, USA
(choudhar@ece.nwu.edu)

3 ECE Dept., Louisiana State University, Baton Rouge, LA 70803, USA
(jxr@ee.lsu.edu)

Abstract. This paper describes a tiling technique that can be used by application
programmers and optimizing compilers to obtain I/O-efficient versions of regu-
lar scientific loop nests. Due to the particular characteristics of I/O operations,
straightforward extension of the traditional tiling method to I/O-intensive pro-
grams may result in poor I/O performance. Therefore, the technique proposed in
this paper customizes iteration space tiling for high I/O performance. The gener-
ated code results in huge savings in the number of I/O calls as well as the data
volume transferred between the disk subsystem and main memory.

1 Introduction

An important problem that scientific programmers face today is one of writing programs
that perform I/O in an efficient manner. Unfortunately, a number of factors render this
problem very difficult. First, programming I/O is highly architecture-dependent, i.e.,
low-level optimizations performed with a specific I/O model in mind may not work
well in systems with different I/O models and/or architectures. Second, there is very
little help from compilers and run-time systems to optimize I/O operations. While op-
timizing compiler technology [6] has made impressive progress in analyzing and ex-
ploiting regular array access patterns and loop structures, the main focus of almost all
the work published so far is the so calledin-corecomputations, i.e., computations that
make frequent use of the cache–main memory hierarchy rather thanout-of-corecompu-
tations, where the main memory–disk subsystem hierarchy is heavily utilized. Third, the
large quantity of data involved in I/O operations makes it difficult for the programmer
to derive suitable data management and transfer strategies.

Nevertheless it is extremely important to perform I/O operations as efficiently as
possible, especially on parallel architectures which are natural target platforms for
grand-challenge I/O-intensive applications. It is widely acknowledged by now that the
per-byte cost (time) of I/O is orders of magnitude higher than those of communication
and computation. A direct consequence of this phenomenon is that no matter how well
the communication and computation are optimized, poor I/O performance can lead to
unacceptably low overall performance on parallel architectures.

A subproblem within this context is one of writing I/O-efficient versions of loop
nests. This subproblem is very important as in scientific codes the bulk of the execu-
tion times is spent in loop nests. Thus, it is reasonable to assume that in codes that

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 430–439, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



I/O-Conscious Tiling for Disk-Resident Data Sets 431

perform frequent I/O, a majority of the execution time will be spent in loop nests that
perform I/O in accessing disk-resident multidimensional arrays (i.e., I/O-intensive loop
nests). Given this, it is important to assess the extent to which existing techniques devel-
oped for nested loops can be used for improving the behavior of the loops that perform
I/O. Although at a first glance, it appears that current techniques easily extend to I/O-
intensive loop nests, it is not necessarily the case as we show in this paper. In particular,
tiling [3, 2, 6], a prominent locality enhancing technique, can result in suboptimal I/O
performance if applied to I/O-performing nests without modification.

In this paper we propose a new tiling approach, calledI/O-conscious tiling, that is
customized for I/O performing loops. We believe that this approach will be useful for
at least two reasons. First, we express it in a simple yet powerful framework so that
in many cases it can be applied by application programmers without much difficulty.
Second, we show that it is also possible to automate the approach so that it can be im-
plemented within an optimizing compiler framework without increasing the complexity
of the compiler and compilation time excessively. Our approach may achieve significant
improvements in overall execution times in comparison with traditional tiling. This is
largely due to the fact that while performing tiling it takes I/O specific factors (e.g., file
layouts) into account, which leads to substantial reductions in the number of I/O calls
as well as the number of bytes transferred between main memory and disk.

The remainder of this paper is organized as follows. Section 2 reviews the basic
principles of tiling focusing in particular on the state-of-the-art. Section 3 discusses
why the traditional tiling approach may not be very efficient in coding I/O-performing
versions of loop nests and makes a case for our modified tiling approach. Section 4
summarizes our experience and briefly comments on future work.

2 Tiling for Data Locality

We say that an array element hastemporal reusewhen it gets accessed more than once
during the execution of a loop nest.Spatial reuse, on the other hand, occurs when nearby
items are accessed [6]. Tiling [3, 2, 7] is a well-known optimization technique for en-
hancing memory performance and parallelism in nested loops. Instead of operating on
entire columns or rows of a given array, tiling enables operations on multidimensional
sections of arrays at a time. The aim is to keep the active sections of the arrays in faster
levels of the memory hierarchy as long as possible so that when an array item (data
element) is reused it can be accessed from the faster (higher level) memory instead
of the slower (lower level) memory. In the context of I/O-performing loop nests, the
faster level is themain memoryand the slower level is thedisk subsystem(or secondary
storage). Therefore, we want to use tiling to enable the reuse of the array sections in
memory as much as possible while minimizing disk activity. For an illustration of tiling,
consider the matrix-multiply code given in Figure 1(a). Let us assume that the layouts
of all arrays arerow-major. It is easy to see that from the locality perspective, this loop
nest does not exhibit good performance; this is because, although arrayZ has temporal
reuse in the innermost loop (thek loop) and the successive iterations of this loop ac-
cess consecutive elements from arrayX (i.e., arrayX has spatial reuse in the innermost
loop), the successive accesses to arrayY touch different rows of this array. Fortunately,



432 Mahmut Kandemir, Alok Choudhary, and J. Ramanujam

for i = 1, N
for j = 1, N
for k = 1, N
Z(i,j) += X(i,k)*Y(k,j)

endfor
endfor

endfor
(a)

for i = 1, N
for k = 1, N
for j = 1, N
Z(i,j) += X(i,k)*Y(k,j)

endfor
endfor

endfor
(b)

for kk = 1, N, B
kkbb = min(N,kk+B-1)
for jj = 1, N, B
jjbb = min(N,jj+B-1)
for i = 1, N
for k = kk, kkbb
for j = jj, jjbb
Z(i,j) += X(i,k)*Y(k,j)

endfor
endfor

endfor
endfor

endfor
(c)

for kk = 1, N, B
kkbb = min(N,kk+B-1)
ioread X[1:N,kk:kkbb]
for jj = 1, N, B
jjbb = min(N,jj+B-1)
ioread Z[1:N,jj:jjbb]
ioread Y[kk:kkbb,jj:jjbb]
for i = 1, N
for k = kk, kkbb
for j = jj, jjbb
Z(i,j) += X(i,k)*Y(k,j)

endfor
endfor

endfor
iowrite Z[1:N,jj:jjbb]

endfor
endfor

(d)

for ii = 1, N, B
iibb = min(N,ii+B-1)
for kk = 1, N, B
kkbb = min(N,kk+B-1)
for i = ii, iibb
for k = kk, kkbb
for j = 1, N
Z(i,j) += X(i,k)*Y(k,j)

endfor
endfor

endfor
endfor

endfor
(e)

for ii = 1, N, B
iibb = min(N,ii+B-1)
ioread Z[ii:iibb,1:N]
for kk = 1, N, B
kkbb = min(N,kk+B-1)
ioread X[ii:iibb,kk:kkbb]
ioread Y[kk:kkbb,1:N]
for i = ii, iibb
for k = kk, kkbb
for j = 1, N
Z(i,j) += X(i,k)*Y(k,j)

endfor
endfor
endfor

endfor
iowrite Z[ii:iibb,1:N]

endfor
(f)

Fig. 1. (a) Matrix-multiply nest (b) Locality-optimized version (c) Tiled version (d)
Tiled version with I/O calls (e) I/O-conscious tiled version (f) I/O-conscious tiled ver-
sion with I/O calls.

state-of-the-art optimizing compiler technology [6] is able to derive the code shown in
Figure 1(b) given the one in Figure 1(a). In this so called optimized code arrayX has
temporal reuse in the innermost loop (thej loop now) and arraysZ andY have spatial
reuse meaning that the successive iterations of the innermost loop touch consecutive
elements from both the arrays.

However, unless the faster memory in question is large enough to hold theN × N
arrayY, many elements of this array will most probably be replaced from the faster
memory before they are reused in successive iterations of the outermosti loop. Instead
of operating on individual array elements, tiling achieves reuse of array sections by
performing the calculations on array sections (in our case sub-matrices). Figure 1(c)
shows the tiled version of Figure 1(b). In this tiled code the loopskk andjj are called
the tile loopswhereas the loopsi, k, andj are theelement loops. Note that the tiled
version of the matrix-multiply code operates onN × B sub-matrices of arraysZ andX,
and aB × B sub-matrix of arrayY at a time. Here it is important to choose theblocking
factorB such that all theB2 + 2NB array items accessed by the element loopsi, k, j fit
in the faster memory. Assuming that the matrices in this example are in-core (i.e., they
fit in main memory) ensuring that theB2 +2NB array elements can be kept in cache will
be help in obtaining high levels of performance. However, in practice, cache conflicts



I/O-Conscious Tiling for Disk-Resident Data Sets 433

occur depending on the cache size, cache associativity, and absolute array addresses in
memory. Consequently, the choice of the blocking factorB is very important but difficult
[3].

One important issue that needs to be clarified ishow to select the loops that are
to be tiled. A straightforward approach of tiling every loop that can be tiled (subject to
dependences [6]) may actually degrade the performance. More sophisticated techniques
attempt to tile only the loops that carry some form of reuse. For example, thereuse-
driven tiling approach proposed by Xue and Huang [7] attempts to tile a given loop
nest such that the outer untiled loops will not carry any reuse and the inner tiled loops
will carry all the reuse and will consist of as few loops as possible. We stress that since
after the linear locality optimizations (a step preceding tiling) most of the inherent reuse
in the nest will be carried by theinnermostloop, almost all tiling approaches tile the
innermostloop, provided it is legal to do so. To sum up, tiling improves locality in
scientific loop nests by capturing data reuse in the innerelementloops. However, a
straightforward application of traditional tiling to I/O-intensive codes may not be very
effective as shown in the following section.

3 Tiling for Disk-Resident Data

3.1 The Problem

At first glance the traditional tiling method summarized above seems to be readily appli-
cable to computations on disk-resident arrays as well. Returning to our matrix-multiply
code, assuming that we have a total in-core memory of sizeH that can be allocated to
this computation and that all the arrays are disk-resident (e.g., out-of-core), we only
need to ensure thatB2 + 2NB ≤ H. This tiling scheme is shown in Figure 1(d). The
call ioread is an I/O routine that reads a section of a disk-resident array from file on
disk into main memory;iowrite performs a similar transfer in the reverse direction.
U[a:b,c:d]denotes a section of(b−a+1)×(d−c+1)elements in a two dimensional
arrayU; the sections for higher-dimensional arrays are defined similarly. It should also
be emphasized that since the sections are brought into main memory by explicit I/O
commands, the conflict problem mentioned above for cache memories does not happen
here.

While such a straightforward adaptation of the state-of-the-art (in-core) tiling leads
to data reusefor the array sections brought into memory, it can causepoor I/O per-
formance. The reason for this becomes obvious from Figure 2(a) which illustrates the
layout of the arrays and representative sections from arrays (bounded by thick lines) that
are active in memory at the same time. The lines with arrows within the arrays indicate
the storage order—assumed to berow-major in our case—and each circle corresponds
to an array element. Let us envision now how a section of arrayZ will be read from
file into main memory. Since the array is row-major, in order to read the16 elements
shown in the section, it requires8 I/O calls to the file system, each for only2 consecu-
tive array elements. Note that even though a state-of-the-art parallel I/O library allows
us to read this rectangular array section using only a single high-level library call, since
the elements in the section to be read are not fully consecutive in the file, it will still
require8 internal I/O calls for the said library to read it. It should also be noted that



434 Mahmut Kandemir, Alok Choudhary, and J. Ramanujam

i

j k

i

j

k

Z X Y

(b)

i

j

i

k

k

j

Z X Y

(a)

Fig. 2. (a) Unoptimized and (b) Optimized tile access patterns for matrix-multiply nest.

the alternative of reading the whole array and sieving out the unwanted array items is,
in most cases, unacceptable due to the huge array sizes in I/O-intensive codes. Similar
situations also occur with arraysX andY. The source of the problem here is that the
traditional (in-core) tiling attempts to optimizewhatto read into the faster memory, not
howto read it. While this does not cause a major problem for the cache–main memory
interface, the high disk access times render“how to read” a real issue. A simple rule
is to always read array sections in alayout conformantmanner. For example, if the file
layout is row-major we should try to read as many rows of the array as possible in a sin-
gle I/O call. In our matrix-multiply example, we have failed to do so due to the tiling of
the innermostj loop, which reduces the number of elements that can be consecutively
read in a single I/O call. Since this loop carries spatial reuse for bothZ andY, we should
use this loop to read as many consecutive elements as possible from the said arrays. For
example, instead of reading anN× B section from arrayZ, we should try to read aB× N
section as shown in Figure 2(b) if it is possible to do so.

3.2 The Solution

Our solution to the tiling problem is as follows. As a first step, prior to tiling, the loops
in the nest in question are reordered (or transformed) for maximum data reuse in the
innermost loop. Such an order can be obtained either by an optimizing compiler or a
sophisticated user. In the second step, we tile all the loops by a blocking factorB except
the innermostloop which isnot tiled. Since, after ordering the loops for locality, the
innermost loop will, hopefully, carry the highest amount of spatial reuse in the nest, by
not tiling it our approach ensures that the number of array elements read by individual
I/O calls will be maximized.

As an application of this approach, we consider once more the matrix-multiply code
given in Figure 1(a). After the first step, we obtain the code shown in Figure 1(b).
After that, tiling thei andk loops and leaving the innermost loop (j) untiled, we reach
the code shown in Figure 1(e). Finally, by inserting the I/O read and write calls in
appropriate places between the tile loops, we have the final code given in Figure 1(f).
The tile access pattern for this code is shown in Figure 2(b). We note that the section-
reads for arraysZ andY, and the section-writes for arrayZ are very efficient since the
file layouts are row-major. It should be stressed that the amount of memory used by
the sections shown in Figures 2(a) and (b) is exactly thesame. It should also be noted
that as compared to arraysZ andY, the I/O access pattern of arrayX is not as efficient.
This is due to the nature of the matrix-multiply nest and may not be as important. Since
the sections of arrayX are read much less frequently compared to those of the other



I/O-Conscious Tiling for Disk-Resident Data Sets 435

two arrays (because, it has temporal reuse in the innermost loop), the impact of the I/O
behavior of arrayX on the overall I/O performance of this loop nest will be less than
that of the other two.

An important issue is the placement of I/O calls in a given tiled nest. There are two
subproblems here: (1)where are the I/O calls placed?and (2)what are the parameters
to the I/O calls?All we need to do is to look at the indices used in the subscripts of the
reference in question, and insert the I/O call associated with the reference in between
appropriate tile loops. For example, in Figure 1(e), the subscript functions of arrayZ
use only loop indicesi andj. Since there are only two tile loops, namelyii andkk,
and onlyii controls the loop indexi, we insert the I/O read routine for this reference
just after theii loop as shown in Figure 1(f). But, the other two references use the
element loop indexk which varies with the tile loop indexkk; therefore, we need to
place the read routines for these references inside thekk loop (just before the element
loops). The write routines are placed using a similar reasoning. For handling the second
subproblem, namely, determining the sections to read and write, we employ the method
of extreme values of affine functions; this method computes the maximum and minimum
values of an affine function using Fourier-Motzkin elimination [6]. The details of this
are omitted for lack of space.

3.3 Automating the Approach

In the matrix-multiply example it is straightforward to tile the loop nest. The reason for
this is the presence of the innermost loop index inat mostone subscript position of each
reference. In cases where the innermost loop index appears inmore than onesubscript
positions we have a problem of determining the section shape. Consider a reference
such asY(j+k,k) wherek is the innermost loop index. Since, in our approach, we do
not tile the innermost loop, when we try to read the bounding box which contains all
the elements accessed by the innermost loop, we may end up having to read almost
the whole array. Of course, this is not acceptable in general as in I/O-intensive routines
we may not have a luxury of reading the whole array into memory at one stroke. This
situation occurs in the example shown in Figure 3(a). Assumingrow-major layouts, if
we tile this nest as it is using the I/O-conscious approach, there will be no problem with
arrayZ as we can read aB×N section of it using the fewest number of I/O calls. However,
for arrayY it is not trivial to identify the section to be read because the innermost loop
index accesses the array in a diagonal fashion. The source of the problem is that this
array reference does not fit our criterion which assumes at most a single occurrence of
the innermost loop index. In our example reference, the innermost loop indexk appears
in both the subscript positions. In general we want each reference to anm-dimensional
row-majorarrayZ to be in either of the following two forms:

Z(f1, f2, ..., fm): In this form fm is an affine function of all loop indices with a co-
efficient of 1 for the innermost loop index whereasf1 throughf(m−1) are affine
functions of all loop indices except the innermost one.

Z(g1, g2, ..., gm): In this form allg1 throughgm are affine functions of all loop indices
except the innermost one.



436 Mahmut Kandemir, Alok Choudhary, and J. Ramanujam

In the first case we havespatial reusefor the reference in the innermost loop and in
the second case we havetemporal reusein the innermost loop. Since, according to our
I/O-conscious tiling, all loops except the innermost one will be tiled using a blocking
factorB, for the arrays which fit in the first form we can accessB× ...× B× N sections
(assumingN is the number of iterations of the innermost loop), which minimizes the
number of I/O calls per array section. As for the arrays that fit into the second form, we
can access sections ofB× ...×B×B as all the loops that determine the section are tiled.
Our task, then, is to bring each array (reference) to one of the forms given above.

Algorithm In the following we propose acompiler algorithmto transform a loop nest
such that the resultant nest will have references of the forms mentioned above. We
assume that the compiler is to determine the most appropriate file layouts for each
array as well as a suitable loop (iteration space) transformation; that is, we assume that
the layouts arenot fixed as a result of a previous computation phase. Our algorithm,
however, can be extended to accommodate those cases as well.

In our framework each execution of ann-deeploop nest is represented using an
iteration vector̄I = (i1, i2, ..., in) whereij corresponds tojth loop from outermost.
Also each reference to anm-dimensionalarrayZ is represented by anaccess(refer-
ence) matrix Lz and anoffset vector̄oz such thatLzĪ + ōz addresses the element
accessed by a specific̄I [6]. As an example, consider a referenceZ(i+j,j-1) to a
two-dimensional array in a two-deep loop nest withi is the inner andj is the outer. We

have,Lz =
[

1 1
0 1

]
andōz =

[
0
−1

]
. Also we know from previous research in optimiz-

ing compilers [6, 4, 5] that (omitting the offset vector) assumingL is an access matrix,
ann × n loop transformation matrixT transforms it toLT−1 and anm × m data trans-
formation matrixM transforms it toML. Given anL matrix, our aim is to find matricesT
andM such that the transformed access matrix will fit in one of our two desired forms
mentioned above. Notice also that whileT is unique to a loop nest, we need to find anM
for each disk-resident array.

Since for a givenL determining bothT andM simultaneously such thatMLT−1 will
be in a desired form involves solving a system of non-linear equations, we solve it using
a two-stepapproach. In the first step we find a matrixT such thatL′ = LT−1 will have
a zero last column except the element in anrth row which is1 (for spatial locality in
the innermost loop) or we find aT such that the last column ofL′ = LT−1 will be zero
column (for temporal locality in the innermost loop). If the reference is optimized for
spatial locality in the first step, in the second step we find a matrixM such that thisrth

row in L′ (mentioned above) will be thelast row in L′′ = ML′.
The overall algorithm is given in Figure 4. In Step 1, we select arepresentative ref-

erencefor each array accessed in the nest. Using profile information might be helpful
in determining run-time access frequencies of individual references. For each array, we
select a reference that will be accessed maximum number of times in a typical execu-
tion. Since for each array we have two desired candidate forms (one corresponding to
temporal locality in the innermost loop and one corresponding to spatial locality in the
innermost loop), in Step 2, we exhaustively try all2s possible loop transformations,
each corresponding to a specific combination of localities (spatial or temporal) for the



I/O-Conscious Tiling for Disk-Resident Data Sets 437

for i =
for j =
for k =
Z(i,k+j)=

Y(k,i+j+k)
endfor
endfor

endfor
(a)

for u =
for v =
for w =
Z(u,v)=
Y(u+v,v-w)

endfor
endfor

endfor
(b)

for u =
for v =
for w =
Z(u,v)=

Y(u+v,v+w)
endfor

endfor
endfor

(c)

for u =
for v =
for w =
Z(u+w,v-w)=

Y(v,u+v)
endfor

endfor
endfor

(d)

for u =
for v =
for w =
Z(u,w)=

Y(u,u+v+w)
endfor

endfor
endfor

(e)

Fig. 3. (a) An example loop nest; (b–e) Transformed versions of (a).

arrays. In Step 2.1, we set the desired access matrixL′i for each arrayi and in the next
step we determine a loop transformation matrixT which obtains as many desired forms
as possible. A typical optimization scenario is as follows. Suppose that in an alternative
v where1 ≤ v ≤ 2s we want to optimize references1 throughb for temporal locality
and referencesb + 1 throughs for spatial locality. After Step 2.2, we typically havec
references that can be optimized for temporal locality andd references that can be opti-
mized for spatial locality where0 ≤ c ≤ b and0 ≤ d ≤ (s− b). This means that a total
of s− (c+ d) references (arrays) will haveno localityin theinnermostloop. We do not
apply any data transformations for thec arrays that have temporal locality (as they are
accessed infrequently). For each arrayj (of maximumd arrays) that can be optimized
for spatial locality, within the loop starting at Step 2.3, we find a data transformation
matrix such that the resulting access matrix will be in our desired form. In Step 2.5 we
recordc, d, ands − (c + d) for this alternative and move to the next alternative. After
all the alternatives are processed we select themost suitableone (i.e., the one with the
largestc + d value). There are three important points to note here. First, in completing
the partially-filled loop transformation matrixT, we use the approach proposed by Bik
and Wijshoff [1] to ensure that the resulting matrixpreservesall data dependences[6]
in the original nest. Second, we also need a mechanism (when necessary) to favor some
arrays over others. The reason is that it may not always be possible to find aT such that
all L′i arrays targeted in a specific alternative are realized. In those cases, we need to
omit some references from consideration, and attempt to satisfy (optimize) the remain-
ing. Again, profile information can be used for this purpose. Third, even an alternative
does not specifically target the optimization of a reference for a specific locality, it may
happen that the resultantT matrix generates such a locality for the said reference. In de-
ciding the most suitable alternative we need also take such (unintentionally optimized)
references into account.

As an example application of the algorithm, consider the loop nest shown in Fig-
ure 3(a) assuming that optimizing arrayZ is more important than optimizing arrayY.

The access matrices areLz =
[

1 0 0
0 1 1

]
andLy =

[
0 0 1
1 1 1

]
. We have four possible opti-

mization alternatives here: (1) temporal locality for both arrays; (2) temporal locality
for Z and spatial locality forY; (3) temporal locality forY and spatial locality forZ; and
(4) spatial locality for both arrays. These alternatives result in the following transfor-
mations.

Alternative(i) : T−1 =

[
1 0 0
0 0 1
0 1 −1

]
, My =

[
0 1
1 0

]
⇒ L′′z =

[
1 0 0
0 1 0

]
andL′′y =

[
1 1 0
0 1 −1

]
.



438 Mahmut Kandemir, Alok Choudhary, and J. Ramanujam

INPUT: access matrices for the references in the nest
OUTPUT: loop transformation matrixT and data transformation matrixMi for each disk-

resident arrayi

(1) using profiling determine a representative access matrix for each arrayi (1 ≤ i ≤ s)
(2) for each of the2s alternativesdo

(2.1) determine targetL′1, L′2,...,L′s
(2.2) usingLiT

−1 = L′i determine aT
(2.3) for each arrayj with the spatial localitydo

(2.3.1) letrk be the row (if any) containing the only non-zero element in the last
column forL′i

(2.3.2) find anMj such thatL′′j = MjL
′
j will be in the desired form (i.e.,rk will be

the last row)
(2.4)endfor
(2.5) record for the current alternative the number of references with

temporal locality, spatial locality, and no locality in the innermost loop
(3) endfor
(4) select the most suitable alternative (see the explanation in the text)
(5) I/O-conscious tilethe loop nest and insert the I/O read/write routines

Fig. 4. I/O-conscious tiling algorithm.

Alternative(ii) : T−1 =

[
1 0 0
0 0 −1
0 1 1

]
, My =

[
0 1
1 0

]
⇒ L′′z =

[
1 0 0
0 1 0

]
andL′′y =

[
1 1 0
0 1 1

]
.

Alternative(iii) : T−1 =

[
1 0 1
0 0 −1
0 1 0

]
⇒ L′′z =

[
1 0 1
0 1 −1

]
andL′′y =

[
0 1 0
1 1 0

]
.

Alternative(iv) : T−1 =

[
0 0 1
0 1 0
1 0 0

]
, Mx =

[
0 1
1 0

]
⇒ L′′z =

[
1 0 0
0 0 1

]
andL′′y =

[
1 0 0
1 1 1

]
.

The resulting programs are shown in Figures 3(b)– 3(e) for alternatives (i), (ii), (iii),
and (iv), respectively (the transformed loop bounds are omitted for clarity). It is easy
to see that the alternatives (i) and (ii) are superior to the other two. Alternative (iii)
cannot optimize arrayZ and alternative (iv) optimizes both arrays for spatial locality.
Our algorithm chooses alternative (i) or (ii) as both ensure temporal locality for the LHS
array and spatial locality for the RHS array in the innermost loop.

4 Conclusions and Future Work

In this paper we have presented an I/O-conscious tiling strategy that can be used by
programmers or can be automated in an optimizing compiler for the I/O-intensive loop
nests. We have shown that a straightforward extension of the traditional tiling strategy
to I/O-performing loop nests may lead to poor performance and demonstrated the nec-
essary modifications to obtain an I/O-conscious tiling strategy. Our current interest is



I/O-Conscious Tiling for Disk-Resident Data Sets 439

in implementing this approach fully in a compilation framework and in testing it using
large programs.

References

[1] A. Bik and H. Wijshoff. On a completion method for unimodular matrices. Technical Re-
port 94–14, Dept. of Computer Science, Leiden University, 1994.

[2] F. Irigoin and R. Triolet. Super-node partitioning. InProc. 15th Annual ACM Symp. Prin-
ciples of Programming Languages, pp. 319–329, January 1988.

[3] M. Lam, E. Rothberg, and M. Wolf. The cache performance of blocked algorithms. In
Proc. 4th Int. Conf. Architectural Support for Programming Languages and Operating Sys-
tems, April 1991.

[4] W. Li. Compiling for NUMA parallel machines. Ph.D. Dissertation, Cornell University,
Ithaca, NY, 1993.

[5] M. O’Boyle and P. Knijnenburg. Non-singular data transformations: Definition, validity,
applications. InProc. 6th Workshop on Compilers for Parallel Computers, pp. 287–297,
1996.

[6] M. Wolfe. High Performance Compilers for Parallel Computing, Addison-Wesley, 1996.
[7] J. Xue and C.-H. Huang. Reuse-driven tiling for data locality. InLanguages and Compilers

for Parallel Computing, Z. Li et al., Eds., Lecture Notes in Computer Science, Volume
1366, Springer-Verlag, 1998.


	Introduction
	Tiling for Data Locality
	Tiling for Disk-Resident Data
	The Problem
	The Solution
	Automating the Approach

	Conclusions and Future Work

