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Abstract

There has been much work recently on improving the locality per-
formance of loop nests in scientific programs through the use of
loop as well as data layout optimizations. However, little attention
has been paid to the problem of optimizing locality in whole pro-
grams, particularly in the presence of procedures. Current tech-
niques do not propagate layout optimizations across procedures
boundaries; this is critical for realistic scientific codes, since the
cost of explicitly transforming memory layouts across procedure
boundaries might be very high. In this paper we present a local-
ity optimization framework that uses both loop and data transfor-
mations to improve cache locality program-wide. Our framework
propagates layout (or locality) constraints as a system of equalities
across procedures and involves two traversals in the call graph rep-
resentation of the program. Preliminary experimental results ob-
tained on an R10000 based system demonstrate the power of the
framework.

1 Introduction

A key challenge in achieving high levels of performance on modern
computer systems is the reduction of the time spent stalled waiting
for data from memory as much as possible. Several architectural
advances in memory hierarchy design has led to systems with mul-
tiple levels of memory hierarchy. Exploiting the memory hierarchy
has become the most important problem in realizing the perfor-
mance potential of modern machines. In the area of scientific com-
putation, efforts have been aimed at the development of portable
library routines such as LAPACK [3] in order to alleviate the dif-
ficulty if exploiting the memory hierarchy. Nevertheless, getting
good performance remains difficult and we believe that this task is
best left to optimizing compilers.

There has been much work on cache locality optimization tech-
niques for loop nests. One group of these optimizations aim to
reorder the iterations of a loop to improve both temporal and spa-
tial locality; these include unimodular [31] and non-unimodular
[25] linear loop (iteration space) transformations, loop distribution
[27], fusion [27], and tiling [32, 31, 6, 22, 23]. These are limited
by dependence constraints and are not readily applicable to imper-
fectly nested loops [8]. A second group consists of transformations
that modify the memory storage order [8, 29, 30, 24, 17] of multi-
dimensional arrays, referred to asdata transformations.These are
not constrained by dependences and are applicable to imperfect
nests but have no effect on temporal locality; in addition, the ef-
fect of changing the memory layout of an array is program-wide.
This has led to the use of combined loop and data transformations
[29, 21, 18, 19].

Except for a few papers [10, 30], the impact of data reorgani-
zation necessitated at procedure boundaries has not received much
attention. This is unfortunate, since practical codes contain proce-
dure calls and the cost of data reorganization is very high. In this
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paper we present a locality optimization framework that uses both
loop and data transformations to improve cache locality program-
wide. Our framework propagates layout (or locality) constraints as
a system of equalities across procedures and involves two traversals
in the call graph representation of the program. We also show how
to handle the cases where the callers of the same procedure demand
conflicting memory layouts for the same array. Preliminary exper-
imental results obtained on an R10000 based system demonstrate
the power of the framework.

The rest of this paper is organized as follows. In Section 2
we present an outline of our approach along with details on the
intra-procedural optimization framework. Section 3 describes in
detail our solution—the bottom-up and the top top-down traversal
techniques—to the inter-procedural locality optimization problem.
In Section 4 we report performance results obtained on an SGI Ori-
gin 2000 distributed-shared-memory multi-processor. In Section 5
we review related work on compiler-based locality optimizations.
In Section 6 we present our conclusions which are followed by a
brief outline of on-going work.

2 Our Approach

Our approach performs two traversals on thecall graphrepresenta-
tion of the program. A call graphGc = (Vc; Ec) is a multi-graph
where each nodepi 2 Vc represents a procedure and there is an
edgee 2 Ec betweenpi andpj if pi callspj [2]. In such a graph
the leaves represent the procedures that do not contain any calls. If
desired, the edges can be annotated by suitable information related
to call sites such as the actual parameters passed to the procedure,
the line number where the call occurs and so on.

Before the first traversal, we run an intra-procedural locality
optimization algorithm on each leaf node. The details of this al-
gorithm are explained in Section 2.1. In the first traversal, called
bottom-up, we start with the leaves and process each node in the
call graph if and only if all the nodes it calls have been processed.
After all the callee nodes for a given caller have been processed,
we propagate a system of equalities (called the layout or locality
constraints) to the caller. The caller adds this system to its own
local set of equalities (obtained using the intra-procedural locality
optimization algorithm) and propagates the resulting system to its
callers and so on. This bottom-up traversal is discussed in greater
detail in Section 3.1. When we reach the root (the main program),
we have all the locality constraints of the program. We solve these
constraints at root and determine the layouts of the (global and lo-
cal) arrays accessed by the root. The next step is the top-down
traversal; in this traversal, each caller propagates down the layouts
determined so far to its callees. The algorithm terminates when all
the leaf nodes have been processed. The details of the top-down
traversal are given in Section 3.2. Note that in this paper we as-
sume that either array re-shaping does not occur or when it occurs
it is possible to undo its effect using de-linearization [26].

2.1 Intra-procedural Locality Optimization Algorithm

This subsection presents our intra-proceduralstatic locality opti-
mization algorithm. While it resembles the previous approaches in



spirit [18, 19], it has the advantage of looking at the big picture
before starting to solve the problem; if desired, the previous ap-
proaches can also be represented in our framework. The algorithm
determines static memory layouts in the sense that there is a sin-
gle memory layout for each array throughout the entire procedure
being analyzed.

2.1.1 Background

An n-deep loop nest with loop indicesi1,i2,...,in in the program is
represented by an integer polyhedron bounded by the loop limits.
Each point in this polyhedron is represented by a vector(i01; i

0

2; :::; i
0

n)
T

and corresponds to an execution of the loop body whenik = i0k for
all 1 � k � n; �I = (i1; i2; :::; in)

T is called theiteration vector,
wherei1 is the outermost loop index andin is the innermost loop
index. Similarly the memory storage of anm-dimensional array
can also be viewed as a (rectilinear) polyhedron. The extents of the
array determine the bounds of the polyhedron and each point (array
element) can be indexed using a column vector(j1; j2; :::; jm)T .

We assume that the array subscript expressions and loop bounds
are affine functions of enclosing loop indices and loop-invariant
constants; that is, we are assuming an affine loop nest. Under
this assumption, in ann-deep loop nest, each reference to anm-
dimensional array can be modeled by anaccess matrixL of size
m�n and anm-dimensionaloffset vector�o [25, 31, 33], i.e., mod-
eled asL�I + �o; where�I is the iteration vector. In this paperLuij
(�ouij ) denotes thejth reference matrix (offset vector) for arrayU
in nesti.

For such a loop nest, we consider an iteration space transfor-
mation [31, 25, 33] that can be represented by integern � n non-
singular square transformation matrixT . Such an invertible loop
transformation matrix realizes the following transformationL�I +
�o ! LT�1 �I 0 + �o; where �I 0 = T �I is the new iteration vector (af-
ter the transformation). Similarly, for am-dimensional array, an
m�m non-singular data transformation matrixM has the follow-
ing effect [24, 29, 17]:L�I + �o!ML�I +M �o:

Consequently, applyingboth loop and data transformations to
a reference represented byL and�o gives us the following transfor-
mation:L�I + �o!MLT�1 �I 0 +M �o: Since we are not interested
in shift-type (alignment-like) data transformations in this paper, we
only focus on the transformed access matrixMLT�1. Most of the
previous approaches to loop and data transformations can be cast
as problems of determining either or both of the matricesT andM
(with some legality conditions) such thatMLT�1 will have some
desired form for a given objective such as optimizing locality [31]
or maximizing parallelism [33]. An iteration space transformation
matrix T is legal if it preserves all data dependences in the origi-
nal loop nest [33]. Also, the data transformation matrixM should
be applied to all the references to the array in question and and
to all its aliases [7]. In this paper we useTi to denote the loop
transformation matrix for the nesti; we useMu to refer to the data
transformation matrix for the arrayU in a given procedure.

An element is said to bereusedif it is accessed by more than
once in a loop nest. There are two types of reuses:temporaland
spatial. [31, 25]. Temporal reuse occurs when two references (not
necessarily distinct) access the same memory location; and spatial
reuse arises between two references that access nearby memory lo-
cations (e.g., elements mapped on the same cache line) [33]. In this
paper, we focus primarily on self-reuses (i.e., reuses originating
from individual references [31]); we do not discuss the extension
to handle group-reuses.

It is important to note that the most important reuses (whether
temporal or spatial) are the ones exhibited by theinnermostloop. If
the innermost loop exhibits temporal reuse for a reference (e.g., the
referenceU(i) in a loop nest wherei is not innermost), then the el-
ement accessed by that reference can be kept in a register through-

out the execution of the innermost loop. Similarly, spatial reuse is
most beneficial when it occurs in the innermost loop (as inU(i; j)
assumingU is column-major andi is innermost); because, in that
case itmayenable unit-stride accesses to consecutive locations in
memory.

2.1.2 Problem De�nition for Intra-procedural Optimiza-
tion

LetU be the set of arrays accessed in a procedureP andN1; :::; Nl

are the nests in the said procedure. We want to determine aMu for
eachU 2 U and aTi for eachNi (1 � i � l) such that the overall
cache locality of the procedureP will be improved. We also insist
thatTi should observe the data dependences inNi and eachMu

(U 2 U) should be applied taking legality considerations [7] into
account.

2.1.3 Approach

Our approach to the intra-procedural locality optimization problem
is based on forming a set of locality constraints (equalities) and
solving them using a heuristic so that the solution of the constraints
will produce loop and data transformation matrices that collectively
achieve the desired cache locality. We are mainly interested in ex-
ploiting temporal and spatial locality in theinnermostloops where
they are most useful, although our approach can be extended and/or
integrated with tiling to exploit locality in higher loop levels. As-
suming that the array layouts arecolumn-major, in order to have a
good locality in theinnermostloop

MuLuij �qi = (�; 0; :::; 0; 0)T

should hold for all1 � i � l, U 2 U , and1 � j � sui, where
sui is the number of references to the arrayU in the nestNi. In
this formulation, which we call alayout or locality constraint, �qi
is the last column ofTi�1, the inverse of the loop transformation
matrix for the nestNi. For the rest of the paper we use�c instead of
(�; 0; :::; 0; 0)T for clarity. Notice that if� = 0 we have temporal
reuse in the innermost loop; if� 6= 0 and� <cache-line-size, we
have spatial reuse in the innermost loop. As an example, consider
the procedureP shown in Figure 1(a). For this procedure we have
the following set of layout (or locality) constraints:

fMuLu11 �q1 = �c MvLv11 �q1 = �c

MuLu21 �q2 = �c MwLw21 �q2 = �cg;

whereLu11 =
�

1 0

0 1

�
; Lv11 =

�
0 1

1 0

�
;

Lu21 =
�

1 0 1

0 0 1

�
; andLw21 =

�
0 0 1

0 1 0

�
:

This set of equalities is represented as a bipartite graphG =
(Vl; Va; E), called thelocality (or layout) constraint graph(LCG),
as shown in Figure 1(b). In a locality constrained graphG, Vl is
the set of loop nests in the procedure andVa is the set of arrays
(global or local) accessed by the procedure. There is an edgee 2 E
between ava 2 Va andvl 2 Vl if and only if the array represented
by va is accessed in the nest represented byvl.

Notice that such a set of equations can be solved in a number
of ways and this fact will be used later in the paper to handle dif-
ferent cases. For our current example, six alternative solutions are
shown in Figure 1(c). The numbers associated with arrows indicate
the processing order; the arrows with the same number can be pro-
cessed in any order. For example, on the upper-leftmost solution,
we first apply a loop transformation to the first nest (we start with
the vertex marked1). This loop transformation, in turn, allows us
to determine the layouts ofU andV (step1). Next, using the lay-
out of arrayU , we determine an appropriate loop transformation



for the second nest (step2). In the last step (step3), using the new
loop order of the second nest we find an appropriate memory lay-
out for the arrayW . Of course, different solutions have different
qualities and some solutions can cause potential conflicts. Con-
sider the solution given on the lower-rightmost. We first transform
layouts ofV andW for locality, which in turn determine appropri-
ate transformations for the first and second nests. However, since
both these nests access the same arrayU , in determining its layout
we mayhave a conflict; that is, the two nests may requiredifferent
layouts for the same array. Notice that this is a potential conflict,
not a certain one as it may happen such that the two nests agree
on the same layout. It is also interesting to see how the previous
approaches to procedure-wide locality optimization problem map
on the locality constrained graph. As an example, the solution pro-
posed in [18] first orders the loop nests according to a cost criterion.
It then optimizes the layouts of the arrays accessed by the most-
costly nest. Afterwards using the layouts found so far it optimizes
the next most-costly nest and so on. Assuming that the nest1 in
our example is costlier than the nest2, this solution corresponds to
the one shown on the upper-leftmost of Figure 1(c). If, on the other
hand, the nest2 is the most-costly, the solution is the one shown on
the lower-leftmost of Figure 1(c).

In general, in order to solve the problem, we can adopt the fol-
lowing graph-theoreticalsolution strategy on the LCG.1 First, we
convert each edge in the locality constraint graph to a bidirectional
arc (arrow) so that the end points can be visited in either order.
Then we run amaximum-branching algorithm2 on the resulting
graph and determine all the nodes that can be covered in a conflict-
free manner. For the example LCG shown in Figure 1, the upper-
leftmost figure given in Figure 1(c) depicts one possible solution
obtained using maximum-branching. As another example, con-
sider the locality constraint graph shown in Figure 2(a). After the
edges have been converted to arrows (Figure 2(b)), the maximum-
branching algorithm generates the solution shown in Figure 2(c)
(assume again that the numbers on arrows denote the processing or-
der); note that optimal solution here is not unique. In this solution,
only two edges shown in Figure 2(d) (corresponding to two local-
ity constraints) are left unsatisfied. Of course, whether these two
unsatisfied constraints will really cause any conflict or not depends
on actual access matrices. As a convention, we put the directions of
these unsatisfied edges from nest nodes to array nodes. To sum up,
in this example, two references can go unoptimized. Figure 2(e)
shows the complete solution. We refer to this complete solution as
amaximum-branching solution.

In case we have some edges whose directions have already been
selected (decided), we have arestrictedLCG, or RLCG for short.
In that case, the solution is in general imposed by these selected
edges (corresponding to the locality constraints that have already
been solved so far). Consider Figure 2(a) again, this time assuming
that the layout ofU and the loop transformations for the nests2
and 4 have already been determined; i.e., we have a fixed arrow
going from nodeU to node2 and another arrow fromU to 4. The
problem now is to find a maximum branching solution such that
when combined with the arrows betweenU and2 and betweenU
and4 will lead to minimumnumber of conflicts. Such a solution
is shown in Figure 2(f). As another example, let us assume that
the edge between nodesW and 2 has already been selected. A
maximum-branching solution in that case is given in Figure 2(g).
Figures 2(h) and (i), on the other hand, depict, respectively, the

1Dion, Randriamaro, and Robert [12] uses a similar graph-based strategy for the
automatic data alignment problem.

2An arborescenceis defined as atree in which no two arcs are directed into the
same node. Abranching is defined as aforest in which each tree is an arbores-
cence. Now associate a unitweight to each arc.A maximum-branchingof a graph
is any branching of the same graph with the largest possible weight [28]. Notice that
within our problem domain this corresponds to satisfying as many locality constraints
as possible.

unsatisfied constraints for the solutions shown in Figures 2(f) and
(g). And finally, Figure 2(j) gives the final solution for Figure 2(f).

3 Inter-procedural Locality Optimization

3.1 Bottom-up Traversal

In bottom-up traversal, we take a slightly different approach from
what was described above. In the leaf nodes, we collect all local-
ity constraints, but we do not attempt to solve them immediately.
Instead, for each procedureR which calls procedureP , the local-
ity constraints are propagated fromP to R. Notice that we need
to propagate only the constraints on global variables and formal
parameters. Of course, the latter should bere-written in terms of
actual parameters passed toP (Recall that we donot allow array
re-shaping). As an example, consider the code fragment shown in
Figure 3(a). After the procedureP (the callee) has been processed,
we have the following locality constrains:

fMuLu11 �q1 = �c MxLx11 �q1 = �c

MyLy11 �q1 = �c MzLz11 �q1 = �cg;

where �q1 is the last columns of the inverse of the loop transforma-
tion matrix for the nest inP . Notice that the first constraint is on
the global array variableU and the last constraint is on the local
array variableZ. The second and the third constraints, on the other
hand, are on the formal parametersX andY . When we process
the callerR, the second and the third constraints arere-written in
terms of the actual parametersV andW passed to the calleeP
whereas the first constraint is propagated as it is. There is no need
to propagate the last constraint asZ is a local variable. Thus, the
total constraints inR are as follows:

fMuLu11 �q1 = �c;MvLv11 �q1 = �c;MwLw11 �q1 = �c; and

MuLu21 �q2 = �c;MvLv21 �q2 = �c;MwLw21 �q2 = �cg;

where �q2 is the last columns of the inverse of the loop transfor-
mation matrix for the nest inR. The last three constraints are
the local constraints toR. As can be seen, the call statement in
R is treated as a program construct (e.g., a loop nest) that some-
how generates the first three constraints. Note that our propaga-
tion technique is also able to handle the cases wherealiasing be-
tween the formal parameters occur. For example, consider the pro-
gram fragment shown in Figure 3(b). Notice that in procedureP
we have two constraintsfMxLx11 �q1 = �c; MyLy11 �q1 = �c; g,
where �q1 is the last columns of the inverse of the loop transforma-
tion matrix for the nest inP . This system, if considered alone,
can assume many (equivalently optimized) solutions. (e.g., we
can apply an identity loop transformation and select row-major
layout forX and column-major layout forY or alternatively we
can apply loop interchange and select column-major layout forX
and row-major layout forY ). However, after the propagation of
these constraints (and re-writing), we have a ‘more constrained’
set:fMvLv11 �q1 = �c; MvLv12 �q1 = �c; g; where

Lv11 = Lx11 =
�

1 0

0 1

�
andLv12 = Ly11 =

�
0 1

1 0

�
:

The solution now is toskew[31] the loop nest and assign diagonal
layout forU ; that is, we select

Mv =
�

1 0

1 1

�
andT =

�
1 1

0 �1

�
:

We continue to propagate the constraints from children (callees) to
parents (callers) until we reach the root (the main program). As we
move up the call graph, the locality constraints from callee proce-
dures are propagated to the caller procedures. The static locality



Procedure P(U,V,W)
Arrays U(2N,N),V(N,N),W(N,N)

f
for i = 1, N
for j = 1, N

fU(i,j),V(j,i)g
end for

end for

for i = 1, N
for j = 1, N
for k = 1, N

fU(i+k,k),W(k,j)g
end for

end for
end for

g
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Figure 1: (a) A procedure that contains two nests (ArraysU , V , andW are formal parameters). (b) Locality constraint graph. (c) Example
solution strategies.

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

(j)

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

X

W

V

U 1

2

4

3

1
1

2

2

2 3

3

(a) (b) (c) (d) (e)

(f) (g)  (h) (i)

Figure 2: (a) An example locality constraint graph. (b) After the edges have been converted to bidirectional arcs (arrows). (c) A maximum-
branching solution. (d) Unsatisfied edges (constraints). (e) A complete (maximum-branching) solution. (f) The solution starting from the
vertexU . (g) The solution starting from the vertexW . (h) The unsatisfied edges for the solution shown in (f). (i) The unsatisfied edges for
the solution shown in (g). (j) Complete solution for (f).

optimization algorithm is then run on the caller procedures. After-
wards the relevant locality constraints are passed up the call graph
to their callers and so on.

When we reach the root, we have all the necessary locality con-
straints. In the root node, we construct aglobal layout(locality)
constraint graph(GLCG) and attempt to solve these locality con-
straints using the graph theoretical approach discussed earlier. No-
tice that this GLCG has all the arrays accessible from the root node
and all the nests in the root. It can also have some nests belonging
to the other procedures which also reference the arrays accessed
by the root. When the system has finally been solved, we have (1)
the loop transformation matrices for (some of) the nests in the pro-
gram and (2) the data transformation matrices for the global and
local arrays accessible from the root. For example, consider again
the code given in Figure 3(a). Figures 4(a) and (b) show the LCGs
for the proceduresP andR, respectively, when they are considered
separately. Figure 4(c), on the other hand, illustrates the GLCG af-
ter all locality constraints have been gathered in the rootR. Note
also that the nest inP (numbered1) also appears in this GLCG.
A maximum-branching solution is for this GLCG depicted in Fig-
ure 4(d). Using our convention, Figure 4(e) gives the complete
solution. Notice that this solution determines all memory layouts
as well as the loop transformations for the two nests in the program.

3.2 Top-down Traversal

In this traversal, the layouts found so far are propagated from caller
procedures to callee procedures. In receiving the layouts, a callee
procedure computes the loop transformation matrices for the nests
it contains (if they have not been determined so far) as well as the
memory layouts of itslocal arrays. In the example shown in Fig-
ure 3(a), the callee procedureP takes the layouts ofU , V , and
W from its caller,R. The layouts ofV , andW automatically de-
termine the layouts ofX andY , respectively. Then using these
layouts, the algorithm determines the layout of the local arrayZ.

In terms of our graph-theoretical solution, we represent the con-
straints inherited from a parent as a RLCG. This RLCG contains
the nodes corresponding to all the arrays accessed by the proce-
dure being analyzed, its nests as well as (some of) the nests ac-
cessed by other procedures below this procedure in the call graph.
The problem now is to find a maximum-branching solution on this
RLCG. Returning to the example code shown in Figure 3(a), after
the root procedure (R) has been processed, the locality constraints
solved are transferred toP as an RLCG as shown in Figure 4(f).
The complete maximum-branching solution for the procedureP is
shown in Figure 4(g). The only thing performed when working in
the RLCG ofP was to determine the layout forZ, considering the
loop transformation already found for the nest it contains.

Notice that not all the nests in the program have to appear in
the GLCG built for the root procedure. For example, consider a
program with two procedures,R (main) andP (callee). Assume



Arrays U(N,2N)
Procedure R(V,W)

Arrays V(2N,N),W(N,N)
f
for i = 1, N

for j = 1, N
fU(i,j),W(j,i),V(i+j,i)g
end for
end for

� � �
call P(V,W)
� � �

g

Procedure P(X,Y)
Arrays X(2N,N),Y(N,N)
f
Arrays Z(N,N)
for i = 1, N

for j = 1, N
for k = 1, N

fX(i+k,k),Y(k,j)
Z(i,j),U(i,j+k)g

end for

end for
end for

g
(a)

Procedure R(V)

Arrays V(N,N)
f
� � �
call P(V,V)
� � �

g

Procedure P(X,Y)
Arrays X(N,N),Y(N,N)
f
for i = 1, N
for j = 1, N

fX(i,j),Y(j,i)g
end for

end for
g

(b)

Procedure main(U1,U2,U3,U4)
Arrays U1(N,N),U2(N,N),

U3(N,N),U4(N,N)

f
call P1(U1,U2)

for i = 1, N
for j = 1, N

fU1(j,i),U2(i,j),
U3(i,j),U4(j,i)g

end for

end for
call P2(U2,U3)

g

Procedure P1(V1,V2)

Arrays V1(N,N),V2(N,N)
f
Arrays V3(N,N)
for i = 1, N

for j = 1, N
fV1(i,j),V2(j,i),V3(i,j)g
end for

end for
call P3(V1,V3)

g

Procedure P2(W2,W3)

Arrays W2(N,N),W3(N,N)
f
Arrays W1(N,N)
for i = 1, N

for j = 1, N
fW1(j,i),W2(i,j),W3(i,j)g
end for

end for
call P3(W1,W2)

g

Procedure P3(X,Y)

Arrays X(N,N),Y(N,N)
f
Arrays Z(N,N)
for i = 1, N

for j = 1, N
fX(i,j),Y(j,i),Z(j,i)g

end for

end for
g

(c)
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P

(e)

main

Procedure main(U1,U2,U3,U4)

Arrays U1(N,N),U2(N,N),
U3(N,N),U4(N,N)

f
call P1(U1,U2)
for j = 1, N

for i = 1, N
fU1(i,i),U2(i,j),

U3(i,j),U4(i,i)g
end for

end for

call P2(U2,U3)
g

Procedure P1(V1,V2)

Arrays V1(N,N),V2(N,N)
f
Arrays V3(N,N)

for i = 1, N
for j = 1, N

fV1(j,i),V2(j,i),V3(j,i)g
end for

end for

call P3copy2(V1,V3)
g

Procedure P2(W2,W3)

Arrays W2(N,N),W3(N,N)
f
Arrays W1(N,N)

for j = 1, N
for i = 1, N

fW1(i,j),W2(i,j),W3(i,j)g
end for

end for

call P3copy1(W1,W2)
g

Procedure P3copy1(X,Ycopy1)

Arrays X(N,N),Ycopy1(N,N)
f
Arrays Zcopy1(N,N)

for i = 1, N
for j = 1, N

fX(j,i),Ycopy1(j,i),Zcopy1(j,i)g
end for

end for

g

Procedure P3copy2(X,Y)
Arrays X(N,N),Ycopy2(N,N)

f
Arrays Zcopy2(N,N)
for j = 1, N

for i = 1, N
fX(j,i),Ycopy2(i,j),Zcopy2(i,j)g
end for

end for
g

(d)

Figure 3: (a-d) Example program fragments. (e) Call graph for (c).
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Figure 4: The locality constraint graphs and solutions for the program shown in Figure 3(a).

thatR contains a single nest (nest1) that accesses three arraysU ,
V , andW . Assume further thatR callsP passingV andW as pa-
rameters which, respectively, map toX andY in P . Suppose that
the procedureP contains four nests; the first one (nest2) accesses
X, Y , andZ; the second one (nest3) accessesZ andL; and fi-
nally, the third one (nest4) accessesL andK. Figures 5(a) and (b)
show the LCGs forR andP , respectively. Figure 5(c), on the other
hand, illustrates the GLCG obtained after the bottom-up traversal.
A complete solution to this GLCG is shown in Figure 5(d). No-
tice that this solution satisfies all the constraints but one. Finally,
Figure 5(e) shows a maximum-branching solution on the RLCG
for the procedureP . In this graph, the node2 inherits a constraint
from the solution given in Figure 5(d). This constraint corresponds
to the edge betweenX and2. The rest of the solution in Figure 5(e)
builts upon this constraint, and determine all the remaning layouts
(of L, Z, andK) as well as the loop transformations for the nests
3 and4.

In case there are multiple paths from different callers to the
same callee procedure, there is a possibility that the different callers
may impose conflicting layouts for the same array in the callee.
In this case, our approach usesselective cloning[11]. Selective
cloning is a goal-directed approach that selectively decides which
procedures to clone and how many different instances to create.
Figure 3(c) shows an example program with its call graph given in
Figure 3(e). Figure 3(d) shows the transformed code where the pro-
cedureP3 is cloned. The first and the third nests are transformed
using loop interchange [33] whereas the second nest is left unmod-
ified. For the fourth nest, on the other hand, two copies have been
created with different loop orders.

4 Experiments

In order to validate the approach presented in this paper, we
conducted experiments with four common scientific programs that
contain procedure calls: three programs from SPECfp92 bench-
mark and an alternate direction integral (ADI) code. For each code,
we used three different versions:Base is the code with most clas-
sical locality optimizations (used in commercial compilers) except
tiling and loop unrolling turned off.Intra r is an optimized ver-
sion using the intra-procedural optimization method described in
Section 2.1. However, the arrays arere-mappedexplicitly at pro-
cedure boundaries. Note that most of the published papers on data
layout optimizations do not take this explicit array re-mapping costs
into account. Our performance numbers reported below, however,
indicate that these costs can easily outweigh any gains made by
transforming array layouts for enhancing cache locality. Finally,
Opt inter is the version obtained using the approach described in
this paper.

The experiments are performed on an SGI Origin 2000 archi-
tecture. Each node of the Origin contains two R10000 CPUs which
run at a clock rate of 195 MHz. Each processor has an instruction
cache of 32 Kbytes and a Level-1 (L1) data cache of 32 Kbytes as
well as a 4 Mbyte secondary (L2) unified instruction/data cache.
The node board is configured with 4 Gbytes of main memory. The
R10000 CPUs operate on data that are resident in their caches.
When programs use the caches effectively, the access time to mem-

ory is unimportant because the great majority of accesses are satis-
fied from the caches. The processors can also prefetch data that are
not in cache. Independent work can be carried out while these data
move from memory to cache, thus hiding the access time.

The intra-procedural optimization strategy based on maximum-
branching described in Section 2.1 is currently being implemented
on top of Parafrase-2. The bottom-up and top-down traversals,
however, are performed by hand for the time being. For all three
versions the transformed codes are compiled using the native opti-
mizing compiler with the following optimization flags:-n32 -mips4
-Ofast=ip27 -OPT:IEEE arithmetic=3 -LNO:blocking=off

-LNO:outer unroll=1.
The results are shown in Table 1 for the single-processor and

eight-processor cases; we report Cache Line Reuses as well as
MFLOPS rates (measured by using an outer timing loop). The L1
Cache Line Reuse is the number of times, on the average, that a
primary data cache line is reused after it has been moved into the
cache. It is calculated as ‘graduated loads’ plus ‘graduated stores’
minus ‘primary data cache misses’, all divided by ‘primary data
cache misses’. The L2 Cache Line Reuse is defined similarly for
the L2 Cache. All these values have been collected through the
hardware counters of the R10000. These cache line reuse values
show thatOpt inter is more successful than the other two ver-
sions in exploiting cache locality.

The MFLOPS results show that propagating array layouts across
procedures is very critical in fully exploiting the advantage of mem-
ory layout optimizations. This is true for both the single and eight
processor cases. It should be noted that there is only a marginal
difference in the MFLOPS rates betweenBase andIntra r. Ac-
tually, in theADI code using eight processors, the performance of
Intra r is even worse than that ofBase. Good performance re-
sults are obtained only with the codes optimized using the approach
described in this paper.

5 Related Work

The area of locality optimization has received much attention. Sev-
eral researchers have proposed the use of loop restructuring tech-
niques to improve locality in a loop nest [1, 31, 25, 27, 32, 33,
6, 23]. Recently, some research groups have advocated the use of
memory layout transformations for multi-dimensional arrays [24,
29, 21, 17]. In addition, there have been proposed techniques aimed
at exploiting the benfits of loo as well data transformations by com-
bining the two [8, 4, 21, 18, 29].

Very few papers have addressed the problem of inter-procedural
optimization of locality. Cierniak and Li [10] address the prob-
lem of performing data layout transformations that are propagated
across procedure boundaries. But they do not consider loop trans-
formations at all. Our work also relates to recent work on in-
terprocedural data distribution [5]. Anderson [5] was the first to
perform inter-procedural analysis to derive data distributions. Her
work does not address cache locality explicitly; rather, it is intended
to reduce the inter-processor communication incurred due to data
distribution. In addition, her work on inter-procedural data distri-
bution does not consider general linear loop and data transforma-
tions. It is important to note that the work presented in this paper is
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gives the GLCG and (d) shows a complete maximum-branching solution. (e) shows a solution for the RLCG for the callee.

closest in spirit to Anderson’s work [5]. Our solution mechanism
(using maximum branching) and the type of constraints we handle
are different from hers, though.

6 Conclusions and Future Work

While a large number of recent papers have addressed the use of
loop and data layout optimizations aimed at improving locality,
very few have addressed such locality optimizations that work in
whole program with procedure calls. If data layout decisions are
not propagated across procedures, then either expensive data layout
re-mapping is needed or one has to settle for the resulting poor per-
formance. In this paper we present a locality optimization frame-
work that uses both loop and data transformations to improve cache
locality program-wide. Our framework propagates layout (or lo-
cality) constraints as a system of equalities across procedures and
involves two traversals in the call graph representation of the pro-
gram. We also show how to handle the cases where the callers
of the same procedure demand conflicting memory layouts for the
same array. Preliminary experimental results obtained on a R10000
based system demonstrate the power of the framework.

At this point, our approach does not consider array re-shaping.
We are working on including array re-shaping in our framework.
We note that the problem of inter-procedural data and loop trans-
formations and the problem of inter-procedural data distribution are
closely related in the case of multiprocessors. We are working on
extending our framework to include the effects of parallelism and
false sharing on the locality characteristics of whole programs with
procedure calls.
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