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Abstract paper we present a locality optimization framework that uses both
loop and data transformations to improve cache locality program-
There has been much work recently on improving the locality per- wide. Our framework propagates layout (or locality) constraints as
formance of loop nests in scientific programs through the use of a system of equalities across procedures and involves two traversals
loop as well as data layout optimizations. However, little attention in the call graph representation of the program. We also show how
has been paid to the problem of optimizing locality in whole pro- to handle the cases where the callers of the same procedure demand
grams, particularly in the presence of procedures. Current tech-conflicting memory layouts for the same array. Preliminary exper-
niques do not propagate layout optimizations across proceduresimental results obtained on an R10000 based system demonstrate
boundaries; this is critical for realistic scientific codes, since the the power of the framework.
cost of explicitly transforming memory layouts across procedure The rest of this paper is organized as follows. In Section 2
boundaries might be very high. In this paper we present a local- we present an outline of our approach along with details on the
ity optimization framework that uses both loop and data transfor- intra-procedural optimization framework. Section 3 describes in
mations to improve cache locality program-wide. Our framework detail our solution—the bottom-up and the top top-down traversal
propagates layout (or locality) constraints as a system of equalitiestechniques—to the inter-procedural locality optimization problem.
across procedures and involves two traversals in the call graph rep-In Section 4 we report performance results obtained on an SGI Ori-
resentation of the program. Preliminary experimental results ob- gin 2000 distributed-shared-memory multi-processor. In Section 5
tained on an R10000 based system demonstrate the power of theve review related work on compiler-based locality optimizations.
framework. In Section 6 we present our conclusions which are followed by a
brief outline of on-going work.

1 Introduction

2  Our Approach
A key challenge in achieving high levels of performance on modern
computer systems is the reduction of the time spent stalled waiting Our approach performs two traversals onc¢h# graphrepresenta-
for data from memory as much as possible. Several architecturaltion of the program. A call grapt¥, = (V¢, E.) is a multi-graph
advances in memory hierarchy design has led to systems with mul-where each nodp; € V. represents a procedure and there is an
tiple levels of memory hierarchy. Exploiting the memory hierarchy edgee € E. betweerp; andp; if p; callsp; [2]. In such a graph
has become the most important problem in realizing the perfor- the leaves represent the procedures that do not contain any calls. If
mance potential of modern machines. In the area of scientific com- desired, the edges can be annotated by suitable information related
putation, efforts have been aimed at the development of portableto call sites such as the actual parameters passed to the procedure,
library routines such as LAPACK [3] in order to alleviate the dif- the line number where the call occurs and so on.

ficulty if exploiting the memory hierarchy. Nevertheless, getting Before the first traversal, we run an intra-procedural locality
good performance remains difficult and we believe that this task is optimization algorithm on each leaf node. The details of this al-
best left to optimizing compilers. gorithm are explained in Section 2.1. In the first traversal, called

There has been much work on cache locality optimization tech- bottom-up we start with the leaves and process each node in the
niques for loop nests. One group of these optimizations aim to call graph if and only if all the nodes it calls have been processed.
reorder the iterations of a loop to improve both temporal and spa- After all the callee nodes for a given caller have been processed,
tial locality; these include unimodular [31] and non-unimodular we propagate a system of equalities (called the layout or locality
[25] linear loop (iteration space) transformations, loop distribution constraints) to the caller. The caller adds this system to its own
[27], fusion [27], and tiling [32, 31, 6, 22, 23]. These are limited local set of equalities (obtained using the intra-procedural locality
by dependence constraints and are not readily applicable to imper-optimization algorithm) and propagates the resulting system to its
fectly nested loops [8]. A second group consists of transformations callers and so on. This bottom-up traversal is discussed in greater
that modify the memory storage order [8, 29, 30, 24, 17] of multi- detail in Section 3.1. When we reach the root (the main program),
dimensional arrays, referred to data transformationsThese are we have all the locality constraints of the program. We solve these
not constrained by dependences and are applicable to imperfeciconstraints at root and determine the layouts of the (global and lo-
nests but have no effect on temporal locality; in addition, the ef- cal) arrays accessed by the root. The next step is the top-down
fect of changing the memory layout of an array is program-wide. traversal; in this traversal, each caller propagates down the layouts
This has led to the use of combined loop and data transformationsdetermined so far to its callees. The algorithm terminates when all
[29, 21, 18, 19]. the leaf nodes have been processed. The details of the top-down

Except for a few papers [10, 30], the impact of data reorgani- traversal are given in Section 3.2. Note that in this paper we as-
zation necessitated at procedure boundaries has not received mucbume that either array re-shaping does not occur or when it occurs
attention. This is unfortunate, since practical codes contain proce- it is possible to undo its effect using de-linearization [26].
dure calls and the cost of data reorganization is very high. In this
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spirit [18, 19], it has the advantage of looking at the big picture out the execution of the innermost loop. Similarly, spatial reuse is
before starting to solve the problem; if desired, the previous ap- most beneficial when it occurs in the innermost loop (a5 {i, 7)
proaches can also be represented in our framework. The algorithmassuming’ is column-major and is innermost); because, in that
determines static memory layouts in the sense that there is a sin-case itmayenable unit-stride accesses to consecutive locations in
gle memory layout for each array throughout the entire procedure memory.

being analyzed.

2.1.2 Problem Definition for Intra-procedural Optimiza-
2.1.1 Background tion

An n-deep loop nest with loop indicés,is,... i, in the program is Let/ be the set of arrays accessed in a proceduaad N, ..., N;
represented by an integer polyhedron bounded by the loop limits. are the nests in the said procedure. We want to determidg for
Each point in this polyhedron is represented by a ve@tgtis, ..., i%,)T  eachU € U and aT; for eachN; (1 < 4 < I) such that the overall
and corresponds to an execution of the loop body when i, for cache locality of the procedur will be improved. We also insist
alll <k <mn;I=(i1,is,..,in)7T is called theteration vector thatT; should observe the data dependenced/jrand eachi/,,
wherei; is the outermost loop index arid is the innermost loop (U € U) should be applied taking legality considerations [7] into
index. Similarly the memory storage of an-dimensional array account.
can also be viewed as a (rectilinear) polyhedron. The extents of the
array determine the bounds of the polyhedron and each pc%int (arrayp 1.3 Approach
element) can be indexed using a column ve€jor jo, ..., jm )" -

We assume that the array subscript expressions and loop bound©ur approach to the intra-procedural locality optimization problem
are affine functions of enclosing loop indices and loop-invariant is based on forming a set of locality constraints (equalities) and
constants; that is, we are assuming an affine loop nest. Undersolving them using a heuristic so that the solution of the constraints

this assumption, in an-deep loop nest, each reference toran will produce loop and data transformation matrices that collectively
dimensional array can be modeled by agtess matrix of size achieve the desired cache locality. We are mainly interested in ex-
m x n and anm-dimensionabffset vectob [25, 31, 33], i.e., mod- ploiting temporal and spatial locality in thenermostioops where

eled asCT + o6, wherel[ is the iteration vector. In this papét,;; they are most useful, although our approach can be extended and/or
(owi;) denotes thath reference matrix (offset vector) for arréy integrated with tiling to exploit locality in higher loop levels. As-

in nesti. suming that the array layouts atelumn-major in order to have a

For such a loop nest, we consider an iteration space transfor-good locality in theénnermostoop
mation [31, 25, 33] that can be represented by integern non-
singular square transformation matffx Such an invertible loop My Lyij @ = (X,0, ..., O,O)T
transformation matrix realizes the following transformatidh +
6 — LT~'I" 4+ 5, wherel’ = T is the new iteration vector (af-  should hold for alll < i <[, U € U, andl < j < su;, Where
ter the transformation). Similarly, for m-dimensional array, an  su: iS the number of references to the aridyin the nestv;. In

m x m non-singular data transformation matfix has the follow-  this formulation, which we call éayoutor locality constraint g;

ing effect [24, 29, 17]L] + 6 — M LI + Ma. is the last column of;~*, the inverse of the loop transformation
Consequently, applyingoth loop and data transformations to  matrix for the nesiV:. For the rest of the paper we usestead of

a reference represented Byanda gives us the following transfor- (0, ...,0,0)" for clarity. Notice that ifx = 0 we have temporal

mation: LT + 6 — MLT~'I' + Mo. Since we are not interested ~ reuse in the innermost loop; i # 0 andx <cache-line-sizewe
in shift-type (alignment-like) data transformations in this paper, we have spatial reuse in the innermost loop. As an example, consider
only focus on the transformed access malhCT . Most of the the proceduré” shown in Figure 1(a). For this procedure we have
previous approaches to loop and data transformations can be casthe following set of layout (or locality) constraints:
as problems of determining either or both of the matrifemnd M
(with some legality conditions) such thaf LT~ will have some {MuLungr=c¢ MyLonqr =¢
desired form for a given objective such as optimizing locality [31] MLz =¢C My Luw21¢2 = ¢},
or maximizing parallelism [33]. An iteration space transformation
matrix T is legal if it preserves all data dependences in the origi- \ narer. | — ( 1o ) L1l = ( 0 1 )
nal loop nest [33]. Also, the data transformation mafvixshould ¢ 0 1 )= o)
be applied to all the references to the array in questionandand, , — (L 0 1) opqp (0 01
to all its aliases [7]. In this paper we ugé to denote the loop N0 0 1) 01 0/
transformation matrix for the nestwe useM, to refer to the data This set of equalities is represented as a bipartite gGph
transformation matrix for the arrdy in a given procedure. (Vi, Va, E), called theocality (or layouf) constraint graph(LCG),
An element is said to beeusedif it is accessed by more than @S Shown in Figure 1(b). In a locality constrained grapht; is
once in a loop nest. There are two types of reusesiporaland the set of loop nests in the procedure dndis the set of arrays
spatial. [31, 25]. Temporal reuse occurs when two references (not (9lobal orlocal) accessed by the procedure. There is anedge
necessarily distinct) access the same memory location; and spatiaP&Ween . € V, andv; € Vi if and only if the array represented
reuse arises between two references that access nearby memory IgYY Ve iS accessed in the nest represented;by )
cations (e.g., elements mapped on the same cache line) [33]. In this _Notice that such a set of equations can be solved in a number
paper, we focus primarily on self-reuses (i.e., reuses originating of ways and this fact will be used later in the paper to han(_:ile dif-
from individual references [31]); we do not discuss the extension ferent cases. For our current example, six alternative solutions are
to handle group-reuses. shown in Flgure 1(c). The numbers_ associated with arrows indicate
It is important to note that the most important reuses (whether the processing order; the arrows with the same number can be pro-
temporal or spatial) are the ones exhibited byitimermostoop. If cessed in any order. For example, on the upper-leftmost solution,
the innermost loop exhibits temporal reuse for a reference (e.g., theWe first apply a loop transformation to the first nest (we start with
referencel/ (i) in a loop nest wheréis notinnermost), then the el- the vertex marked). This loop transformation, in turn, allows us

ement accessed by that reference can be kept in a register throught® determine the layouts &f andV’ (stepl). Next, using the lay-
out of arrayU, we determine an appropriate loop transformation



for the second nest (st@). In the last step (step), using the new unsatisfied constraints for the solutions shown in Figures 2(f) and
loop order of the second nest we find an appropriate memory lay- (g). And finally, Figure 2(j) gives the final solution for Figure 2(f).
out for the arrayi. Of course, different solutions have different
qualities and some solutions can cause potential conflicts. Con-3
sider the solution given on the lower-rightmost. We first transform
layouts ofV” andWW" for locality, which in turn determine appropri- 3 1 Bottom-up Traversal

ate transformations for the first and second nests. However, since

both these nests access the same diran determining its layout In bottom-up traversal, we take a slightly different approach from
we mayhave a conflict; that is, the two nests may requiiféerent what was described above. In the leaf nodes, we collect all local-
layouts for the same array. Notice that this is a potential conflict, ity constraints, but we do not attempt to solve them immediately.
not a certain one as it may happen such that the two nests agrednstead, for each procedufe which calls proceduré, the local-

on the same layout. It is also interesting to see how the previous ity constraints are propagated frafhto R. Notice that we need
approaches to procedure-wide locality optimization problem map to propagate only the constraints on global variables and formal
on the locality constrained graph. As an example, the solution pro- parameters. Of course, the latter shouldrdevrittenin terms of
posed in [18] first orders the loop nests according to a cost criterion. actual parameters passedRo(Recall that we daot allow array

It then optimizes the layouts of the arrays accessed by the most-re-shaping). As an example, consider the code fragment shown in
costly nest. Afterwards using the layouts found so far it optimizes Figure 3(a). After the procedut® (the callee) has been processed,
the next most-costly nest and so on. Assuming that the hest we have the following locality constrains:

our example is costlier than the n&sthis solution corresponds to L o

the one shown on the upper-leftmost of Figure 1(c). If, on the other {MuLunqr=¢ M:Langr =¢

hand, the nes2 is the most-costly, the solution is the one shown on M,Lyiqi=¢ M.L..1q1 = ¢},

the lower-leftmost of Figure 1(c). ) )

In general, in order to solve the problem, we can adopt the fol- Whereqi is the last columns of the inverse of the loop transforma-
lowing graph-theoreticalsolution strategy on the LC&First, we tion matrix for the nest inP. Notice that the first constraint is on
convert each edge in the locality constraint graph to a bidirectional the global array variablé” and the last constraint is on the local
arc (arrow) so that the end points can be visited in either order. array variableZ. The second and the third constraints, on the other
Then we run amaximum-branching algorithfon the resulting ~ hand, are on the formal parametefsandY’. When we process
graph and determine all the nodes that can be covered in a conflict-the caller®, the second and the third constraints eravrittenin
free manner. For the example LCG shown in Figure 1, the upper- terms of the actual paramete¥Sand IV passed to the calle?
leftmost figure given in Figure 1(c) depicts one possible solution Whereas the first constraint is propagated as it is. There is no need
obtained using maximum-branching. As another example, con- t0 propagate the last constraint &ss a local variable. Thus, the
sider the locality constraint graph shown in Figure 2(a). After the total constraints it are as follows:
edges have been converted to arrows (Figure 2(b)), the maximum- o o o
branching algorithm generates the solution shown in Figure 2(c) {MyLyiqi = & MyLy11gi = & My Ly11qi = ¢; and
(assume again that the numbers on arrows denote the processing or- I I e
der); note that optimal solution here is not unique. In this solution, MyLuzqz = & MyLy21g2 = & My Lu2 gz = ¢},
only two edges shown in Figure 2(d) (corresponding to two local- Wheregz is the last columns of the inverse of the loop transfor-
ity constraints) are left unsatisfied. Of course, whether these two mation matrix for the nest ifR. The last three constraints are
unsatisfied constraints will really cause any conflict or not depends the local constraints td. As can be seen, the call statement in
on actual access matrices. As a convention, we put the directions of is treated as a program construct (e.g., a loop nest) that some-
these unsatisfied edges from nest nodes to array nodes. To sum ug]ow generates the first three constraints. Note that our propaga-
in this example, two references can go unoptimized. Figure 2(e) tion technique is also able to handle the cases whakasing be-
shows the complete solution. We refer to this complete solution as tween the formal parameters occur. For example, consider the pro-
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amaximum-branching solution gram fragment shown in Figure 3(b). Notice that in procedBre
In case we have some edges whose directions have already beewe have two constraintfM, Lo11¢i = ¢ MyLy11gi = G},
selected (decided), we haveestrictedLCG, or RLCG for short. whereq; is the last columns of the inverse of the loop transforma-

In that case, the solution is in general imposed by these selectedtion matrix for the nest in”. This system, if considered alone,
edges (corresponding to the locality constraints that have alreadycan assume many (equivalently optimized) solutions. (e.g., we
been solved so far). Consider Figure 2(a) again, this time assumingcan apply an identity loop transformation and select row-major
that the layout o/ and the loop transformations for the negts  layout for X and column-major layout fok” or alternatively we
and4 have already been determined; i.e., we have a fixed arrow can apply loop interchange and select column-major layoukfor

going from nodel/ to node2 and another arrow frorty to 4. The and row-major layout fo”). However, after the propagation of
problem now is to find a maximum branching solution such that these constraints (and re-writing), we have a ‘more constrained’
when combined with the arrows betweEhand2 and betweert/ set{M,Lo11¢1 =& M,Ly12q1 = ; }, where

and 4 will lead to minimumnumber of conflicts. Such a solution 1 o 01
is shown in Figure 2(f). As another example, let us assume that (£,;1 = L,11 = ( 0 1 ) andLyi12 = Ly11 = ( 10 )
the edge between nod&E and2 has already been selected. A

maximum-branching solution in that case is given in Figure 2(9). The solution now is t@kew{31] the loop nest and assign diagonal
Figures 2(h) and (i), on the other hand, depict, respectively, the |ayout forU; that is, we select

1 Dion, Randriamaro, and Robert [12] uses a similar graph-based strategy for the 1 0 1 1
automatic data alignment problem. M, = ( 11 ) andT = ( 0 1 )
2An arborescencds defined as #reein which no two arcs are directed into the

same node. Abranchingis defined as dorestin which each tree is an arbores- Wi i t te th traints f hild I t
cence. Now associate a umitightto each arc.A maximum-branchingf a graph e continue to propagate the constraints from children (callees) to

is any branching of the same graph with the largest possible weight [28]. Notice that parents (callers) until we reach the root (the main program). As we
within our problem domain this corresponds to satisfying as many locality constraints move up the call graph, the locality constraints from callee proce-
as possible. dures are propagated to the caller procedures. The static locality



Procedure P(U,V,W)

Arrays U(2N,N),VQW,N) W (N,N) U1 U@l U 2
{ 1 1 1 1
for i =1, N
for j =1, N Ve 2 \% \J
{UG,$,vG, D} U 2 2 2 2
end for W 3 w W 4
end for 1
fori =1, N v . U 2 U 3 U@
for j =1, N 2 1 1 1
for k =1, N W v v v
{UGi+k,k),W(k,j)} 1
end for (b) 2 2 1 2
end for w 1 w 1 w
end for
}
(@) (c)

Figure 1: (a) A procedure that contains two nests (Ariidy$”, andW are formal parameters). (b) Locality constraint graph. (c) Example
solution strategies.
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Figure 2: (a) An example locality constraint graph. (b) After the edges have been converted to bidirectional arcs (arrows). (c) A maximum-
branching solution. (d) Unsatisfied edges (constraints). (e) A complete (maximum-branching) solution. (f) The solution starting from the
vertexU. (g) The solution starting from the verték. (h) The unsatisfied edges for the solution shown in (f). (i) The unsatisfied edges for
the solution shown in (g). (j) Complete solution for (f).

optimization algorithm is then run on the caller procedures. After- 3.2 Top-down Traversal
wards the relevant locality constraints are passed up the call graph
to their callers and so on.

When we reach the root, we have all the necessary locality con-
straints. In the root node, we construcglabal layout(locality)
constraint graph(GLCG) and attempt to solve these locality con-

straints using the graph theoretical approach discussed earlier. No
tice that this GLCG h Il th ible f th t node Ure 3(a),_ the callee procedure takes the layouts oU,_ Vv, and
o8 that 11 as al e arays accessipie rom e foor noce W from its caller,R. The layouts ofi’, andWW automatically de-

and all the nests in the root. It can also have some nests belongin ine the | & and Y velv. Th ! h
to the other procedures which also reference the arrays accesse%erm'ne the layouts ol and Y, respectively. en using these
ayouts, the algorithm determines the layout of the local affay

by the root. When the system has finally been solved, we have (1) In terms of our graph-theoretical solution, we represent the con
the loop transformation matrices for (some of) the nests in the pro- L . i Ui o
P ( 0 P straints inherited from a parent as a RLCG. This RLCG contains

gram and (2) the data transformation matrices for the global and th d ding 1o all th d by th
local arrays accessible from the root. For example, consider again € nodes corresponding 1o all the arrays accessed by the proce-
dure being analyzed, its nests as well as (some of) the nests ac-

the code given in Figure 3(a). Figures 4(a) and (b) show the LCGs cessed by other procedures below this procedure in the call graph.

forthe procedure# andF, respectively, when they are considered The problem now is to find a maximum-branching solution on this
ly. Fi 4 he other h ill he GL f- ) ) g
separately. Figure 4(c), on the other hand, illustrates the GLCG a RLCG. Returning to the example code shown in Figure 3(a), after

ter all locality constraints have been gathered in the fotote the root procedureR) has been processed, the locality constraints
also that the nest it (numberedl) also appears in this GLCG. ' o
( ) iy solved are transferred t8 as an RLCG as shown in Figure 4(f).

A maximum-branching solution is for this GLCG depicted in Fig- The complete maximum-branching solution for the procedaiie

ure 4(d). Using our convention, Figure 4(e) gives the complete L : o
solution. Notice that this solution determines all memory layouts shown in Figure 4(g). The on_Iy thing performed Wh(_an worklng in
as well as the loop transformations for the two nests in the program. the RLCG ofP was to determine the layout fdf, considering the
loop transformation already found for the nest it contains.
Notice that not all the nests in the program have to appear in
the GLCG built for the root procedure. For example, consider a
program with two procedures? (main) andP (callee). Assume

In this traversal, the layouts found so far are propagated from caller
procedures to callee procedures. In receiving the layouts, a callee
procedure computes the loop transformation matrices for the nests
it contains (if they have not been determined so far) as well as the
‘memory layouts of itdocal arrays. In the example shown in Fig-



Arrays U(N,2N)
Procedure R(V,W)
Arrays V(2N,N),W(N,N)
{
for i =1, N
for j =1, N
{U@i,3),W(,1),VE+],1)}
end for
end for

call P(V,W)
}

Procedure P(X,Y)
Arrays X(2N,N),Y(N,N)
{
Arrays Z(N,N)
for i =1, N
for j =1, N
for k =1, N
{X(i+k,k),Y(k,j)
Z(1,3),U(i, j+k) }
end for
end for
end for

(@

Procedure R(V)
Arrays V(N,N)

call P(V,V)
}

Procedure P(X,Y)
Arrays X(N,N),Y(N,N)
{

for i =1, N

for j =1, N

{X(1,7),Y(G,1}
end for
end for

}
(b)

Procedure main(U;,Uz,Us,Us)
Arrays U; (N,N),Us (N,N),
Us (N,N), Us (N, 1)

call Py (U;,Us)
for i =1, N
for j =1, N
{U1(3,1),U2(3,3),
U3 (i,3),Ua(j,1)}
end for
end for
call P5(Us,Us)

}

Procedure Pq(Vy,V2)
Arrays Vi (N,N),Vs (N,N)

Arrays V3 (N,N)
for i =1, N
for j =1, N
{V1(i,3),V2(3,1),Vs(i,j)}
end for
end for
call P3(Vy,V3)

}

Procedure Ps(W2,W3)
Arrays Wy (N,N),Ws3 (N,N)

Arrays Wi (N,N)
for i =1, N
for j =1, N
{W1(j,1),W2(i,3),Ws(i,j)}
end for
end for
call P3(Wy,Ws)

}

Procedure P3(X,Y)
Arrays X(N,N),Y(N,N)

Arrays Z(N,N)
for i =1, N
for j =1, N
{X(i,3),Y(,1),2(j,i)}
end for
end for

()

main
R B
B
(e)

Procedure main(Uy,Us,Us,Us)
Arrays U; (N,N),U2(N,N),
Us (N, N) ,Uq (N, N)

call Py (Uy,Us)

for j =1, N

for i =1, N

{Ul(i,i),Uz(i,j),
Us(i,j),Us(i,i)}

end for

end for

call P5(Uz,U3)

}

Procedure P; (V1,V2)
Arrays V; (N,N),V2(N,N)

Arrays V3 (N,N)
for i =1, N
for j =1, N
{Vi1(3,1),V2(3,1),V3(j,i)}
end for
end for
call P3copy2(Vy,V3)

Procedure P (W2,W3)
Arrays Wa (N,N),W3 (N,N)

Arrays Wi (N,N)
for j =1, N
for i =1, N
{Wi(i,3),W2(i,3),Wa (i, )}
end for
end for
call P3copyl(W;,Ws)

Procedure P3copyl(X,Ycopyl)

Arrays X(N,N),Ycopyl(N,N)

{

Arrays Zcopyl(N,N)

for i =1, N

for j =1, N

{X(j,1i),Ycopyl(j,i),Zcopyl(j,i)}
end for
end for

}

Procedure P3copy2(X,Y)
Arrays X(N,N),Ycopy2(N,N)

Arrays Zcopy2(N,N)
for j =1, N
for i =1, N
{X(j,1),Ycopy2(i,j),Zcopy2(i,j)}
end for
end for

}
()

Figure 3: (a-d) Example program fragments. (e) Call graph for (c).
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Figure 4: The locality constraint graphs and solutions for the program shown in Figure 3(a).

that R contains a single nest (netthat accesses three arrdys ory is unimportant because the great majority of accesses are satis-
V', andW. Assume further thaR calls P passingl” andW as pa- fied from the caches. The processors can also prefetch data that are
rameters which, respectively, mapXandY in P. Suppose that not in cache. Independent work can be carried out while these data
the procedureP contains four nests; the first one (n8siaccesses move from memory to cache, thus hiding the access time.
X, Y, andZ; the second one (ne8) accesses andL; and fi- The intra-procedural optimization strategy based on maximum-
nally, the third one (nest) accesse& and K. Figures 5(a) and (b) branching described in Section 2.1 is currently being implemented
show the LCGs folk and P, respectively. Figure 5(c), on the other on top of Parafrase-2. The bottom-up and top-down traversals,
hand, illustrates the GLCG obtained after the bottom-up traversal. however, are performed by hand for the time being. For all three
A complete solution to this GLCG is shown in Figure 5(d). No- versions the transformed codes are compiled using the native opti-
tice that this solution satisfies all the constraints but one. Finally, mizing compiler with the following optimization flagsn32 -mips4
Figure 5(e) shows a maximum-branching solution on the RLCG -0fast=ip27 -0PT:IEEE_arithmetic=3 -LNO:blocking=off
for the procedureP. In this graph, the nod® inherits a constraint -LNO:outer_unroll=1.
from the solution given in Figure 5(d). This constraint corresponds The results are shown in Table 1 for the single-processor and
to the edge betweel and2. The rest of the solution in Figure 5(e)  eight-processor cases; we report Cache Line Reuses as well as
builts upon this constraint, and determine all the remaning layouts MFLOPS rates (measured by using an outer timing loop). The L1
(of L, Z, and K) as well as the loop transformations for the nests Cache Line Reuse is the number of times, on the average, that a
3and4. primary data cache line is reused after it has been moved into the
In case there are multiple paths from different callers to the cache. Itis calculated as ‘graduated loads’ plus ‘graduated stores’
same callee procedure, there is a possibility that the different callersminus ‘primary data cache misses’, all divided by ‘primary data
may impose conflicting layouts for the same array in the callee. cache misses’. The L2 Cache Line Reuse is defined similarly for
In this case, our approach useslective clonind11]. Selective the L2 Cache. All these values have been collected through the
cloning is a goal-directed approach that selectively decides which hardware counters of the R10000. These cache line reuse values
procedures to clone and how many different instances to create.show thatOpt_inter is more successful than the other two ver-
Figure 3(c) shows an example program with its call graph given in sions in exploiting cache locality.
Figure 3(e). Figure 3(d) shows the transformed code where the pro-  The MFLOPS results show that propagating array layouts across
cedurePs is cloned. The first and the third nests are transformed procedures is very critical in fully exploiting the advantage of mem-
using loop interchange [33] whereas the second nest is left unmod-ory layout optimizations. This is true for both the single and eight
ified. For the fourth nest, on the other hand, two copies have beenprocessor cases. It should be noted that there is only a marginal
created with different loop orders. difference in the MFLOPS rates betwek#se andIntra_r. Ac-
tually, in theADI code using eight processors, the performance of
Intra_r is even worse than that @ase. Good performance re-
sults are obtained only with the codes optimized using the approach
described in this paper.

4 Experiments

In order to validate the approach presented in this paper, we
conducted experiments with four common scientific programs that
contain procedure calls: three programs from SPECfp92 bench-5 Related Work
mark and an alternate direction integral (ADI) code. For each code,
we used three different versiorBase is the code with most clas-  The area of locality optimization has received much attention. Sev-
sical locality optimizations (used in commercial compilers) except eral researchers have proposed the use of loop restructuring tech-

tiling and loop unrolling turned offIntra_r is an optimized ver- niques to improve locality in a loop nest [1, 31, 25, 27, 32, 33,
sion using the intra-procedural optimization method described in 6, 23]. Recently, some research groups have advocated the use of
Section 2.1. However, the arrays aeemappedexplicitly at pro- memory layout transformations for multi-dimensional arrays [24,

cedure boundaries. Note that most of the published papers on dat9, 21, 17]. In addition, there have been proposed techniques aimed
layout optimizations do not take this explicit array re-mapping costs at exploiting the benfits of loo as well data transformations by com-
into account. Our performance numbers reported below, however, bining the two [8, 4, 21, 18, 29].
indicate that these costs can easily outweigh any gains made by  Very few papers have addressed the problem of inter-procedural
transforming array layouts for enhancing cache locality. Finally, optimization of locality. Cierniak and Li [10] address the prob-
Opt-inter is the version obtained using the approach described in lem of performing data layout transformations that are propagated
this paper. across procedure boundaries. But they do not consider loop trans-
The experiments are performed on an SGI Origin 2000 archi- formations at all. Our work also relates to recent work on in-
tecture. Each node of the Origin contains two R10000 CPUs which terprocedural data distribution [5]. Anderson [5] was the first to
run at a clock rate of 195 MHz. Each processor has an instruction perform inter-procedural analysis to derive data distributions. Her
cache of 32 Kbytes and a Level-1 (L1) data cache of 32 Kbytes as work does not address cache locality explicitly; rather, itis intended
well as a 4 Mbyte secondary (L2) unified instruction/data cache. to reduce the inter-processor communication incurred due to data
The node board is configured with 4 Gbytes of main memory. The distribution. In addition, her work on inter-procedural data distri-
R10000 CPUs operate on data that are resident in their cachesbution does not consider general linear loop and data transforma-
When programs use the caches effectively, the access time to memtions. It is important to note that the work presented in this paper is
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Figure 5: An example scenario which contains a main procedure whose LCG is shown in (a) and a callee whose LCG is shown in (b).
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gives the GLCG and (d) shows a complete maximum-branching solution. (e) shows a solution for the RLCG for the callee.

closest in spirit to Anderson’s work [5]. Our solution mechanism
(using maximum branching) and the type of constraints we handle
are different from hers, though.

6 Conclusions and Future Work

(4]

(5]

While a large number of recent papers have addressed the use of

loop and data layout optimizations aimed at improving locality,
very few have addressed such locality optimizations that work in
whole program with procedure calls. If data layout decisions are

(6]

not propagated across procedures, then either expensive data layout

re-mapping is needed or one has to settle for the resulting poor per-
formance. In this paper we present a locality optimization frame-
work that uses both loop and data transformations to improve cache
locality program-wide. Our framework propagates layout (or lo-

(7]

cality) constraints as a system of equalities across procedures and

involves two traversals in the call graph representation of the pro-
gram. We also show how to handle the cases where the callers
of the same procedure demand conflicting memory layouts for the
same array. Preliminary experimental results obtained on a R10000
based system demonstrate the power of the framework.

At this point, our approach does not consider array re-shaping.
We are working on including array re-shaping in our framework.
We note that the problem of inter-procedural data and loop trans-
formations and the problem of inter-procedural data distribution are
closely related in the case of multiprocessors. We are working on
extending our framework to include the effects of parallelism and
false sharing on the locality characteristics of whole programs with
procedure calls.
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