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Abstract—This paper presents a data layout optimization technique for sequential and parallel programs based on the theory of
hyperplanes from linear algebra. Given a program, our framework automatically determines suitable memory layouts that can be
expressed by hyperplanes for each array that is referenced. We discuss the cases where data transformations are preferable to loop
transformations and show that under certain conditions a loop nest can be optimized for perfect spatial locality by using data
transformations. We argue that data transformations can also optimize spatial locality for some arrays without distorting
temporal/spatial locality exhibited by others. We divide the problem of optimizing data layout into two independent subproblems:
1) determining optimal static data layouts, and 2) determining data transformation matrices to implement the optimal layouts. By
postponing the determination of the transformation matrix to the last stage, our method can be adapted to compilers with different
default layouts. We then present an algorithm that considers optimizing parallelism and spatial locality simultaneously. Our results on
eight programs on two distributed shared-memory multiprocessors, the Convex Exemplar SPP-2000 and the SGI Origin 2000, show
that the layout optimizations are effective in optimizing spatial locality and parallelism.

Index Terms—Data reuse, locality optimizations, spatial locality, memory performance, parallelism, array restructuring.
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1 INTRODUCTION

N most modern parallel machines, the accesses to a
nearby memory location are much faster than accesses

to a farther location. This encourages programmers and
compiler writers to modify the access patterns of a program
so that a majority of accesses is made to nearby memory
locations. Previous research on optimizing compilers has
generally been on iteration space transformations and
scheduling techniques to improve locality. Among the tech-
niques used are unimodular [5] and nonunimodular [26],
[34] iteration space transformations, tiling [43], loop fusion
[30], and affinity scheduling [1]. These techniques focus on
improving data locality indirectly as a result of modifying
the iteration space traversal order.

In this paper, we take a more direct approach to the data
locality optimization problem. Unlike traditional compiler
techniques, we focus directly on the data space and attempt
to change the data layouts so that better locality is obtained.
There are several observations that motivate our approach.

•� Some programs are not amenable to loop transforma-
tions. Data dependences [44] in a loop nest may not
allow a loop transformation to improve locality. On

the other hand, data space transformations are not af-
fected by and do not place any restrictions on the
data dependences; thus, in principle, they have
wider applicability.

•� For some programs, even though an iteration space
transformation is legal, there may be a data space
transformation which results in better locality.

•� While loop transformations affect all the arrays ac-
cessed in a given loop nest (sometimes adversely),
data transformations do not.

•� Imperfectly nested loops and explicitly parallelized
loops are in general more difficult to optimize using
loop transformations, whereas in many cases data
transformations can be successfully applied to the ar-
rays referenced in such loops.

•� These two transformation techniques can be com-
bined in a unified way. In fact, it has already been re-
ported [8], [21], [22] that some programs are best im-
proved by a unified transformation approach.

Based on these observations, we present a framework that
uses data transformations to optimize locality. It should be
emphasized that both the problem of finding optimal data
layouts [19], [20] and that of finding optimal data distri-
butions [23] are NP-complete. Mace [28] has shown that
the problem of finding optimal data storage patterns for
parallel processing is also NP-complete. For parallel ma-
chines, our framework attempts to find optimal memory
layouts under static array distributions. The layouts that
we find may not be optimal under dynamic array distri-
butions across processors. Our framework is fairly general
in the sense that it works on a large search space and con-
siders various memory layouts that can be expressed by
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hyperplanes. Specifically, in this paper we make the fol-
lowing contributions:

•� We show how the hyperplane theory can be used for
optimizing cache locality.

•� A method that determines the optimal layouts for all
arrays referenced in a given a loop nest is presented.

•� It is shown that for a single loop nest, under specific
conditions, data layout transformations can optimize
the nest for perfect locality.

•� We discuss how our method can optimize multiple
loop nests simultaneously and how it can be used to
improve locality taking into account parallelism.

•� We present experimental results on two distributed
shared-memory machines, namely, the Convex Ex-
emplar SPP-2000 and the SGI Origin 2000, to validate
our theoretical results.

In this paper, when we talk about loop transformations, we
mean linear transformations of the iteration space that can
be expressed by square nonsingular transformation matri-
ces [44]. Similarly, the data transformations we consider can
be expressed as linear nonsingular square transformation
matrices. It should be noted that data transformations may
be useful in other areas besides optimizing for spatial local-
ity. For example, the shift transformation can prove useful
in dealing with alignment of data on page or cache line
boundaries [31]. In this paper, we do not consider the shift
type of layout transformations.

The remainder of this paper is organized as follows: In
Section 2, we outline the notation used and review con-
cepts, such as reuse and locality. Section 3 presents an over-
view of hyperplane theory and Section 4 shows how to use
that theory to optimize memory layouts of arrays refer-
enced in loop nests. In Section 5, we present a layout opti-
mization algorithm specifically designed for shared mem-
ory multiprocessors. In Section 6, we explain how to obtain
a suitable data transformation matrix to generate optimized
code. In Section 7, we present experimental results on de-
riving optimal data layouts for the Convex Exemplar and
the SGI Origin. Section 8 discusses the interaction between
data distribution and memory layouts on distributed
shared memory (DSM) systems. In Section 9, we discuss the
related work and conclude the paper with a summary in
Section 10.

2 TECHNICAL PRELIMINARIES

We view the iteration space of an n-deep loop nest as an
n-dimensional polyhedron where each point is denoted by

an n × 1 column vector I i i in
T

= 1 2, , ,K2 7 ; here, each ik de-

notes a loop index with i1 as the outermost loop and in the

innermost. In this paper, we will use (i1, i2, ..., in) to denote a
loop nest as well as a point in the iteration space. We show
the lower and upper limits for a loop i as li and ui, re-
spectively. We assume that the loops are normalized such
that the step size is one. Also, we assume that all the loop
bounds and subscript expressions are affine functions of
enclosing loop indices. Many regular scientific programs
exhibit such structure. Thus, the polyhedron corresponding

to the iteration space is bounded by linear inequalities im-
posed by the loop bounds. Similarly, every array declared
in the program defines a polyhedron, each point of which
represents an array element; the bounds for this polyhedron
are constants and are derived from the array declaration
statements. Using these representations of iteration and
data spaces, a reference to an array in such a loop nest can
be represented by the pair A o,0 5  where A is the access (or
reference) matrix and o  is the offset vector [43], [26]. Essen-
tially, such a reference is an affine mapping f I AI o3 8 = + ,

where I  is the iteration vector. For example, for the reference
X(i − 2j, j + 3) occurring in a two-deep loop nest (i, j), we
have

A = −�� ��
1 2
0 1

and

o = �� ��
0
3 .

In general, for a reference to an m-dimensional array inside
an n-dimensional loop nest, the access matrix is of size m × n
and the offset vector is m-element vector. An important
class of references is the class of uniformly generated refer-
ences (UGR), first defined by Gannon et al. [10].

DEFINITION 1. Two references A o1 1,2 7 and A o2 2,2 7  to the same

array are said to be uniformly generated if A1 = A2.

An important characteristic of uniformly generated refer-
ences from the spatial locality point of view is that the
memory layout determination process needs to be carried
out only once for each set of such references.

In order to obtain high levels of performance from pro-
grams running on a sequential or parallel machine that
contains some sort of cache memory hierarchy, cache local-
ity should be exploited. That is, a datum brought into the
cache should be reused as much as possible before it is re-
placed. The reuse of the same data while it is still in the
cache is termed as temporal locality, whereas the use of the
nearby data in a cache line is called spatial locality [43]. We
stress that a program may reuse data, but if that data has
been replaced between reuses, we say that it does not ex-
hibit locality. Consider the example shown below.
do i = li, ui

do j = lj, uj
U(j) = V(i) + W(j, i) + X(i, j) +

 Y(i + j, j)
enddo

enddo

Assuming a column-major memory layout as the default
(as, for example, in Fortran), in this loop nest array U has
temporal reuse in the i loop and spatial reuse in the j loop.
Array V has temporal reuse in the j loop and spatial reuse
in the i loop. Array W has only spatial reuse in the j loop.
Similarly, arrays X and Y have only spatial reuses in the i
loop. Assuming that the trip count (number of iterations)
for both the loops is large, only the reuses associated with
the j loop will exhibit locality during execution. Therefore,
the exploitable reuses for this nest are the temporal reuse
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for V, and the spatial reuses for U and W. A large portion of
the previous compiler research has focused on locality.
Some of the previous research along that direction will be
discussed in Section 9. For this example, interchanging [44]
two loops will improve the spatial locality for array X but
destroy the spatial locality for array W. Alternatively, if ar-
ray X is stored in memory as row-major, without loop inter-
change the spatial locality will be exploited for both W and
X. Fig. 1a shows the original access pattern assuming a col-
umn-major layout for array X. The rectangular shape on the
left denotes iteration space, whereas that on the right de-
notes data space. The data accessed by two consecutive
iterations fall into different columns, which causes the spa-
tial locality to be poor for this reference. Instead, as shown
in Fig. 1b, converting the memory layout of this array into
row-major causes two consecutive iterations to access the
same row. The situation for array Y, however, is more com-
plicated, as neither a column-major (Fig. 1c) nor a row-
major (Fig. 1d) layout storage improves locality. Instead,
this array should be stored diagonally in memory so that
two consecutive iterations access elements on the same di-
agonal as shown in Fig. 1e.

In this paper, we are interested in deriving data trans-
formations for different arrays accessed in a loop nest such
that the innermost loop exhibits maximum spatial locality.

DEFINITION 2. Two iteration points I i i in= 1 2, , ,K2 7 and

J j j jn= 1 2, , ,K2 7 are said to have “proximity in time” if,

for all k (1 ≤ k ≤ n − 1), ik = jk.

Under this definition, for a two-dimensional iteration space
given by (i, j) and bounded by 1 ≤ i ≤ 20 and 1 ≤ j ≤ 20, it-
erations (2, 3) and (2, 10) have proximity in time, whereas

iterations (2, 20) and (3, 5) do not. It should be noted that
this definition of proximity in time is coarse grained and
does not hold in the boundaries of the iteration space. But
as will be shown later, it is very suitable for our purposes.
While optimizing the loop nests for spatial locality, we will
concentrate only on two successive iterations of the inner-
most loop and omit the bounds of the iteration space.

3 OVERVIEW OF HYPERPLANES

In an m-dimensional space, a hyperplane can be defined as a
set of tuples

a a a g a g a g a cm m m1 2 1 1 2 2, , ,K K2 7= B+ + + = ,

where g1, g2, ..., gm are rational numbers called hyperplane
coefficients and c is a rational number called hyperplane

constant [16], [33], [36]. A hyperplane vector (g1, g2, ..., gm)
defines a hyperplane family where each member hyperplane
has the same hyperplane vector but a different c value. For
convenience, we use a row vector g g g gT

m= 1 2, , ,K2 7  to
denote such a hyperplane family, whereas g  corresponds to
the column vector representation of the same hyperplane

family. When there is no confusion, we use gT instead of gT .
We say that two data points (array elements) d1 and d2

(in a multidimensional array) belong to the same data hy-
perplane g  if

g d g dT T
1 2= .   (1)

For example, in a two-dimensional array space, a hyper-
plane vector such as (0, 1) indicates that two array elements

Fig. 1. Different access patterns on two-dimensional iteration and data spaces. Two consecutive iterations access (a) two different columns; (b) the
same row; (c) the elements in a diagonal (different columns); (d) the elements in a diagonal (different rows); (e) two consecutive elements in the
same diagonal. (In each figure, the rectangular shape on the left denotes iteration space whereas that on the right denotes data space.)
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belong to the same hyperplane as long as they have the
same value for the column index (i.e., the second dimen-
sion); the value for the row index does not matter.

Two data elements may belong to more than one hyper-
plane as well. For example, in a three-dimensional array
space, two data elements may belong to a hyperplane (0, 0, 1)
as well as to another hyperplane (0, 1, 0).

DEFINITION 3. Two data points d1 and d2  are said to have
“proximity in space” or “spatial locality” for a given data

hyperplane gT if (1) holds for them.

As an example, let us focus on hyperplane family defined
by gT = (0, 1). Such a hyperplane family defines column
hyperplanes on the data space (see Fig. 1a). An array ele-
ment (a, b) belongs to a column (hyperplane) with constant
c if and only if b = c. In that case, we can say, for instance,
that the array elements (3, 4) and (5, 4) have spatial locality
(because they are on the same hyperplane), whereas the
elements (3, 4) and (3, 5) do not. In other words, as long as
the two elements have the same value for the column index
they have spatial locality. As with the previous definition,
this spatial locality notion is coarse grained and does not
hold at the array boundaries. Notice that if we do not care
about the relative order of hyperplanes, we can use the hy-
perplane (0, 1) to denote column-major memory layout in a
two-dimensional data space. A few possible memory lay-
outs and their associated hyperplane vectors for two-
dimensional case are given in Table 1.

In a two-dimensional space, if we ignore the relative or-
der of hyperplanes, a single hyperplane family is sufficient
to define a memory layout partially. In three- or higher-
dimensional cases, we may have to take into account more
than one hyperplane families. As explained later, two data
elements in a three-dimensional array stored as column-
major have spatial locality if they have spatial locality with
respect to (0, 0, 1) and (0, 1, 0), that is, if they have the same
indices except for the first dimension. The idea can be gen-
eralized to higher dimensions as well.

With our definitions of “proximity in time” (for iteration
space) and “proximity in space” (for data space) we are
now ready to give our locality definition for a loop nest.

DEFINITION 4. Ignoring the loop and array bounds, a loop nest
has “spatial locality” for a given reference R if two iteration
points that have proximity in time access data points (both
using R) that have proximity in space.

DEFINITION 5. Ignoring the loop and array bounds, a loop nest
has “perfect spatial locality” if it has “spatial locality” for
each reference R that it encloses.

It should be noted that our definition of spatial locality is
broader than the usual meaning of the word as used by pre-
vious researchers. We also note that our spatial locality defi-
nition is only with respect to the innermost loop in the nest.

Finally, we only consider self-spatial reuses (i.e., reuses that
originate from a single reference). If a spatial reuse originates
from distinct references, we call it group-spatial reuse [43].
Since the cases where group-spatial reuse introduces an
added dimension to the self-spatial reuse vector space are
very rare, in this paper, we focus only on self-spatial reuses.

4 OPTIMIZING SPATIAL LOCALITY BY USING DATA
LAYOUT TRANSFORMATIONS

4.1 Problem Definition
Traditionally, arrays are stored in either of two forms: row-
major (as in C) and column-major (as in Fortran). Each such
representation implies a “fastest changing” or “innermost”
dimension, that is, a dimension whose index changes faster
than any other dimension in a given sequence of consecu-
tive elements. As an example, for a multidimensional array
stored in row-major, the last dimension is the fastest
changing dimension. This fact can be seen by simply ob-
serving indices of a sequence of elements stored in memory
such as … (2, 3), (2, 4), (2, 5) … for a two-dimensional row-
major array. Similarly, for a multidimensional column-
major array, the first dimension is the fastest changing di-
mension. This storage scheme can easily be generalized by
selecting a dimension and making it the fastest changing
dimension, then selecting a second fastest changing dimen-
sion, and so on. In this way, an m-dimensional array can be
stored in memory in m! different ways, each corresponding
to a predetermined ordering of dimensions. Although such a
scheme is quite general, it does not handle all possible mem-
ory layouts such as diagonal (skewed) layouts. An example
that requires a diagonal layout is the reference Y(i + j, j) in
the loop nest given above. Assuming that the default layout
is column-major in this example, the layout of array Y
should be skewed along the diagonal, as shown in Fig. 1e,
for the best locality to be obtained; that is, the elements on a
diagonal should be contiguously stored in memory. The
relative order of diagonals with respect to each other is of
secondary importance provided that the array sizes are
large enough in each dimension. Of course, for a reader,
concluding that the skewed layout is optimal for this case is
easy, but the general question of determining the required data
layouts automatically for the arrays referenced in a given loop
nest is an open research problem. This paper addresses this
problem and offers an automatic strategy based on the current
parallelizing compiler technology and hyperplane theory dis-
cussed earlier for determining the suitable memory layouts
and data transformations to obtain them. We divide the prob-
lem of optimizing locality into two separate subproblems:

1)�determination of optimal memory layouts that are de-
fined by hyperplanes, and

2)�data space transformations to obtain (or implement)
optimal layouts.

Each subproblem can be solved independently. Previously,
[8], [21], [22], and [25] offered algorithms to handle the first
subproblem, whereas [31] and [25] offered methods to han-
dle the second problem. In fact, the second problem arises
because there is no way of specifying the array layouts in
conventional languages like Fortran and C.

TABLE 1
A FEW POSSIBLE LAYOUTS AND THE ASSOCIATED
HYPERPLANES FOR TWO-DIMENSIONAL ARRAYS
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We note that since a one-dimensional array can only be
stored in one way (using linear layout mappings), the data
space transformations are only meaningful for two or
higher dimensional arrays. It should also be stressed, how-
ever, that in some cases, data layout transformations can be
applied to one-dimensional arrays as well, provided that
the arrays can be delinearized first [29].

Our main objective in this paper is to solve the first
subproblem mentioned above, namely, finding optimal
memory layouts for each array referenced in a single
nest. Once the compiler decides a suitable layout for
each array, it is a mechanical process to find the corre-
sponding data transformation matrices to implement the
chosen layouts in a given compiler. We choose to sepa-
rate the problem of determining optimal layout from the
problem of finding a suitable data transformation to im-
plement it. The reason for this decision is to make our
framework easy to adapt to languages with different de-
fault layouts as well as to have explicit memory layout
representations.

The problem we address in this paper is defined as follows:

Given a program in which a number of arrays are accessed,
what are the suitable memory layouts for each array such that
the loop nests in the program will have spatial locality (as de-
fined earlier) with respect to each reference that they enclose? If
this is not possible, we want to maximize the number of refer-
ences for which this is possible.

Chandra et al. [6] indicate that due to some conditions
related to storage and sequence assumptions about the
arrays and to passing arrays as subroutine arguments,
data transformations may not always be legal. We as-
sume no such situation occurs for the example programs
given in this paper. Chandra et al. [6] also propose meth-
ods on how to cope with storage sequence and parame-
ter passing problems when data transformations are to
be applied. Investigating these issues is beyond the
scope of this paper.

4.2 Determining Optimal Layouts
In this section, we present our data space restructuring
framework in detail. In particular, we show how to deter-
mine optimal layouts for different arrays referenced in a
loop nest. We start by observing that given large array
bounds and trip counts for the enclosing loops, the spatial
behavior of a reference is largely determined by the inner-
most loop index. Let us now concentrate on two consecu-
tive iterations I  and Inext  of a given loop nest of depth n.
These two iterations have identical values for each loop
index except for the innermost loop, i.e.,

I

i

in
in

=

�

�
���

�

�
���−

1

1

M

and

          I

i

i
i

next
n

n

=

+

�

�
���

�

�
���−

1

1
1

M

In order to exploit the locality for a reference R denoted by

the access matrix AR, two consecutive iterations I  and Inext ,
as defined above, should access two data elements that
have spatial locality in the data space. In particular, we
want the accessed elements to be neighbors so that they can
reside on the same (or at least neighboring) cache line(s).
We can now give the following result:

LEMMA 1. A given loop nest of depth n exhibits spatial locality
with respect to a reference R (denoted by an m × n access

matrix AR) to an m-dimensional array if, for each vector g
defining the memory layout,

g Ker an∈ < A,   (2)

where an is the row vector form of the last column of AR.

PROOF. Two data elements accessed by I  and Inext  are
A I oR +  and A I oR next + , respectively. From (1), in or-
der to have spatial locality

g A I o g A I o g A I

g A I g A I I

T
R

T
R next

T
R

T
R next

T
R next

+ = + ⇒

= ⇒ − =

3 8 3 8 3 8
3 8 3 84 9 0.

Since I Inext
T− = 0 0 1, , ,L2 7 , we have

g A g a a g

g Ker a

T
R

T T
n n

n

0 0 1 0 0 0, , ,

.

L2 74 9
< A

�� �� = ⇒ = ⇒ =

⇒ ∈
o

Whenever we can find such a hyperplane g , we use one

such that gcd{g1, g2, ..., gm} is the smallest. Consider the fol-
lowing loop nest:

do i = li, ui
do j = lj, uj
U(i, j) = V(j, i) + W(i + j, i) +

 X(i + j, j) + Y(n - j, i + j)
enddo

enddo

Assuming that the default layout is column-major for all
arrays, the only exploitable spatial reuses in this loop nest
are due to arrays V and W. Intuitively, for the optimal cache
performance from this loop nest, U should be row-major,
arrays V and W should be column-major, X should have a
diagonal layout, and array Y should have antidiagonal lay-
out. We now show how to determine these layouts auto-
matically. In this example, the access matrices are

AU = �� ��
1 0
0 1 ,

AV = �� ��
0 1
1 0 ,

AW = �� ��
1 1
1 0 ,

AX = �� ��
1 1
0 1 ,

and

  AY = −�� ��
0 1
1 1 .



120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  10,  NO.  2,  FEBRUARY  1999

Using Lemma 1 given above,

 g Ker gU U
T∈ ⇒ =0 1 1 0, ,2 7= B 2 7;

 g Ker gV V
T∈ ⇒ =1 0 0 1, ,2 7= B 2 7 ;

g Ker gW W
T∈ ⇒ =1 0 0 1, ,2 7= B 2 7 ;

 g Ker gX X
T∈ ⇒ = −1 1 1 1, ,2 7= B 2 7 ;

 g Ker gY Y
T∈ − ⇒ =1 1 1 1, ,2 7= B 2 7 .

From Table 1 we see that these vectors represent the opti-
mal layouts for this example.

Notice that our approach as explained so far is superior to
those presented in [21] and [8] as neither of those approaches
can detect skewed (diagonal) layouts. Diagonal layouts are
useful for banded-matrix operations in general. Although
some of the banded-matrix applications can be optimized
using loop transformations [26], they become so at the ex-
pense of complex loop bounds and complex array subscript
expressions. The syr2k code from the BLAS library [9] is a
typical example of that. These complex bounds and subscript
expressions incur lots of run-time overhead in turn. In two-
dimensional data spaces, a single hyperplane family (de-
noted by g ) is sufficient to describe the memory layout of an
array (provided that the relative orders of hyperplanes are
not important). In higher dimensions, however, we may need
to use more than one hyperplane family to describe a mem-
ory layout. In the following subsection, we concentrate on
this issue and take a different look at data layouts.

4.3 Layout Relations
Let us, for a moment, focus on the layout of array X found
in the previous example. Such a layout implies that the
elements X(i, j) and X(i + 1, j + 1) should be stored consecu-
tively in memory in order to obtain the best spatial locality.
This fact can also be observed if we consider the spatial
positions of two data elements (d1, d2) and ′ ′d d1 2,2 7 under
such a layout. In order for these two data points to have
spatial locality, the following equality should hold:

1 1 1 11

2

1

2
, , .− �

��
�
�� = − ′

′
�
��
�
��2 7 2 7d

d
d
d

This means d d d d1 2 1 2− = ′ − ′ . We refer to this equality as
layout relation. In fact, each layout relation corresponds to a
hyperplane and imposes a constraint between two data
points; if those two data points satisfy that constraint, then
they are said to have spatial locality with respect to the as-
sociated hyperplane. In this example, since (3, 4) and (3, 5)
do not satisfy the constraint given above, they do not have
spatial locality. On the other hand, the elements (3, 4) and
(4, 5) satisfy the constraint, therefore, have spatial locality.

We next consider the following three-dimensional loop
nest which accesses three- and two-dimensional arrays.
do i = li, ui

do j = lj, uj
do k = lk, uk
U(j, k, i - 2) =

V(k, i - 1, j + k) + W(k, i + k)
X(i, j, k) = Y(i + j, i + k, j + k) - 1

enddo

enddo

enddo

The access matrices for the arrays referenced in this nest are

AU =
�
��

�
��

0 1 0
0 0 1
1 0 0

,

AV =
�
��

�
��

0 0 1
1 0 0
0 1 1

,

AW = �� ��
0 0 1
1 0 1 ,

AX =
�
��

�
��

1 0 0
0 1 0
0 0 1

,

and

AY =
�
��

�
��

1 1 0
1 0 1
0 1 1

.

Let us first concentrate on array V. Consider two data
points (d1, d2, d3) and ′ ′ ′d d d1 2 3, ,2 7. Using Lemma 1,

g Ker gV V
T∈ ⇒ =1 0 1 0 1 0, , , ,2 7= B 2 7

or

gV
T = −1 0 1, ,2 7.

Consequently, we have two layout relations: d d2 2= ′  and
d d d d1 3 1 3− = ′ − ′ . These two layout relations, together, define
the memory layout for this array. We can view each layout
relation (constraint) as defining a locality group and the in-
tersection of the constraints defines a smaller locality
group. To have a good spatial locality, the elements in this
smaller locality group should be stored in consecutive
memory locations. This can be seen from Table 2, where the
elements of the array V accessed for some representative
iterations are shown. We note that each group in the table
satisfies both d d2 2= ′  and d d d d1 3 1 3− = ′ − ′ . For example,
from the first group V(1, 1, 2) and V(2, 1, 3) should be
stored in memory together as they satisfy both of the con-
straints. As long as the arrays are large enough, it is suffi-
cient to store the elements that satisfy both of the con-
straints as a locality group, provided that these two con-
straints do not conflict with each other. The relative order of
these locality groups (if desired) are determined by consid-
ering a larger locality group. In this example, d d2 2= ′  de-
notes a larger locality group which, for example, contains
V(1, 1, 2) and V(1, 1, 3). Similarly, the other constraint,
d d d d1 3 1 3− = ′ − ′  also determines a larger locality group
which, for example, includes V(1, 1, 2) and V(1, 2, 2). The
choice between those locality groups is made by consider-
ing the second column of the access matrix which corre-
sponds to the second innermost loop in the nest. We are
now ready to give the following lemma:

LEMMA 2. A loop nest of depth n exhibits spatial locality in the
kth innermost loop with respect to a reference R (denoted
by an m × n access matrix AR) to an m-dimensional array,
if, for each vector g  defining the memory layout,

g Ker an k∈ − +1< A,        (3)
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where an−k+1 is the row vector form of the column n − k + 1
of AR.

PROOF. The proof is very similar to that of Lemma 1, there-
fore, is omitted. o

In our example, two data points (d1, d2, d3) and ′ ′ ′d d d1 2 3, ,2 7
have spatial locality in the second innermost (middle) loop if

g
d
d
d

g
d
d
d

V V

1

2

3

1

2

3

�
�
��
�
�
�� =

′
′
′

�
�
��
�
�
�� .

Here, g Ker gV V
T∈ ⇒ =0 0 1 0 1 0, , , ,2 7= B 2 7  or gV

T = 1 0 0, ,2 7.
Therefore, we have two locality relations: d d2 2= ′  and

d d1 1= ′ . Since, d d2 2= ′  does exist as a constraint for the in-
nermost loop as well, we consider it as the dominant relation
when we order the locality groups in memory with respect
to each other. That is, for our example, the larger locality
group will include, say, V(1, 1, 2) and V(1, 1, 3). But, for ex-
ample, V(1, 1, 2) and V(1, 2, 2) will go to different locality
groups. We can now state the resulting layout for this array
as

d d2 2= ′

d d d d1 3 1 3− = ′ − ′ .

The two relations here together give the constraints that
two data items should satisfy in order to have spatial local-
ity. The elements that have spatial locality constitute a lo-
cality group. We can think of such a locality group as inter-
section of the elements in two hyperplanes in the data
space. The order of relations on the other hand define rela-
tive ordering among these locality groups in memory. The
set of constraints above, which defines the memory layout
of array V, can also be expressed as a matrix

0 1 0
1 0 1−
�� �� ,

where each row defines a hyperplane and corresponds to a
layout constraint. We refer to this matrix as layout constraint
matrix and denote it by LV for an array V. In our example,
the layout constraint matrices are as follows:

     LU = �� ��
0 0 1
1 0 0 ,

     LV = −
�� ��
0 1 0
1 0 1 ,

     LW = −1 12 7,

     LX = �� ��
1 0 0
0 1 0 ,

and

     LY = −
�� ��

1 0 0
0 1 1 .

Notice that LX corresponds to row-major layout. Now con-
sider array Y since it demonstrates a different behavior. At
the innermost level,

g Ker gY Y
T∈ ⇒ =0 1 1 1 0 0, , , ,2 7= B 2 7

or
gY

T = −0 1 1, , .2 7
Therefore, the two elements (d1, d2, d3) and ′ ′ ′d d d1 2 3, ,2 7 in a
locality group should satisfy the constraints

d d1 1= ′

d d d d2 3 2 3− = ′ − ′ .

For the relative ordering of the constraints we look at the
second innermost loop

g Ker gY Y
T∈ ⇒ =1 0 1 0 1 0, , , ,2 7= B 2 7

or
gY

T = −1 0 1, , .2 7
which means

d d2 2= ′

d d d d1 3 1 3− = ′ − ′ .

Since the two group of relations have no common relation,
compiler chooses an arbitrary order between the relations
d d1 1= ′  and d d d d2 3 2 3− = ′ − ′ . In general, the approach
works as follows:

•� First, compute the relations corresponding to inner-
most loops and divide the array elements into locality
groups such that two data elements are put in the
same locality group if and only if they satisfy all lo-
cality constraints.

•� Then, to determine the relative order among locality
groups, look at the second innermost loop. If the lo-
cality groups can be ordered by doing so, use the de-
rived order; otherwise choose an order arbitrarily.

•� If the relations cannot be ordered by considering the
second innermost loop, it is possible to continue with
the next outer loop, and so on, but our experience
shows that in practice this hardly makes a difference.

TABLE 2
THREE LOCALITY GROUPS FOR REFERENCE V(k, i − 1, j + k) APPEARING IN (i, j, k)

   Any two data elements in a column have spatial locality with respect to each other.



122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  10,  NO.  2,  FEBRUARY  1999

4.4 Imperfectly Nested Loops
In this section, we consider imperfectly nested loops which
are in general difficult to optimize by loop transformations.
Consider the following example.
do i = li, ui

do j = lj, uj
... U(i + j, j) ...
do k = lk, uk
... U(k, j + k) ...

enddo

enddo

enddo

In this example, the array U is referenced in two different
nesting levels. The access matrices are

AU1

1 1
0 1= �� �� ,

and

AU2

0 0 1
0 1 1= �� �� .

Since, for optimizing spatial locality in the innermost loop,
we are only interested in the last columns of the access matri-
ces and, in this case, because both of the last columns are the
same, there is no conflict between the two references and the
array can be stored in memory diagonally. Essentially, the
observation is that as far as the data transformations are con-
cerned, the imperfectly nested loops case is no different from
the perfectly nested loops case as conflicts between refer-
ences to the same array can occur in both cases.

An important point to note is that the access matrices for
these two references are completely different from each
other. That is, our approach under certain conditions can
optimize an array that has multiple (different—not neces-
sarily uniformly generated) access matrices in the program.
These conditions are discussed in Section 4.7.

4.5 Temporal Locality
A reference that has temporal locality in the innermost
loop can be kept in a register (through scalarization) dur-
ing the entire execution of the innermost loop. This can
improve the performance substantially in many cases. It
should be emphasized that the data layout transforma-
tions do not affect temporal locality of a reference directly
[25]. However, if the trip count of the innermost loop is
small, then the spatial locality in the second innermost
loop may be important. Our approach takes this possibil-
ity into account. To see how this is done, consider again
the previous loop nest, assuming that within the k loop
there is an additional reference U(i + j, j). The access ma-
trix for this reference is

AU = �� ��
1 1 0
0 1 0 .

The last column of the matrix is zero, meaning that the ref-
erence exhibits temporal locality in the innermost loop. In
this case, our method omits the zero column and considers
the second column from right. Applying our method to this
column, we select diagonal layout for this array. In general,
the zero columns in the access matrices can be dropped
from consideration.

4.6 Multiple Loop Nests
Notice that the ability to handle imperfectly nested loops
within a unified framework also enables compiler to handle
multiple loop nests in a single step. As proposed in [25], we
can think of multiple loop nests as a single loop nest en-
closed by an outermost loop with a trip count of one. That,
of course, adds a zero column as a first column in the access
matrices of all the references. But, since we are interested in
the last columns of access matrices, it does not have any
effect during the optimization process.

4.7 Condition for Conflict-Free Layout Optimization
Now we focus on conditions that should hold for multiple
references to the same array to be optimized in a conflict-
free manner. In order to optimize spatial locality for the
innermost loop, our approach focuses on the last columns
of access matrices; thus, intuitively, if the Ker sets of the last
columns of two references are conformant (defined next),
there will be no conflict in optimizing both.

DEFINITION 6. Let x x xs1 2, , ,K  be s column vectors of the
same size. The kernel sets of these vectors, namely,
Ker x Ker x Ker xs1 2= B = B = B, , ,L , are said to be conformant

if for some i (1 ≤ i ≤ s), integer linear combinations of
the basis vectors of Ker xi= B  can generate all vectors that

belong to Ker x Ker x Ker xs1 2= B = B = B, , ,L .

Now we state the condition on conflict-free layouts as follows:

LEMMA 3. Suppose an array U is accessed by s different refer-
ences with access matrices A A AU U U s1 2

, , ,K . Let

a a al l ls1 2
, ,K  be the last columns of these access matrices,

respectively. Then, these references can be optimized in a

conflict-free manner if Ker a Ker a Ker al l ls1 2J L J L = B, , ,K  are

conformant.

PROOF. Follows directly from the preceding discussion. o

The next theorem follows directly from Lemma 3.

THEOREM 1. Within a loop nest, if all references to a specific ar-
ray are uniformly generated, then all the references can be
optimized for spatial locality without any conflict.

PROOF. Trivial, as the UGRs have the same last columns in
their access matrices. o

Let us now consider the following loop nest that accesses
a two-dimensional array with four references
do i = li, ui

do j = lj, uj
U(i + j, j) = U(j, i + j) + U(j, j)

  + U(i + j, 2j)
enddo

enddo

The access matrices are

AU1

1 1
0 1= �� �� ,

AU2

0 1
1 1= �� �� ,
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AU3

0 1
0 1= �� �� ,

and

AU4

1 1
0 2= �� �� .

We note that Ker al1J L , Ker al2J L , and Ker al3J L  are confor-

mant, but not Ker al4J L . Therefore, the first three references

can be optimized without conflict, whereas there is a con-
flict with the fourth reference. In such a case, our method
favors the largest subset of conflict-free references [33], [36]
and decides a diagonal layout with the hyperplane (1, −1)
instead of (2, −1). In the general case, however, whenever
conflicting references occur in different nesting levels, a
conflict resolution scheme is needed.

Our conflict resolution scheme is based on the weight of
references. Essentially, the weight of a reference is the num-
ber of times it is accessed. This number can be estimated by
multiplying the trip counts (the number of iterations) of the
loops which enclose that reference. If the trip counts are not
available at compile-time, we use profiling to get this in-
formation. In practice, average trip count estimations are
sufficient for a majority of applications.

After the weight of each reference is obtained, the refer-
ences are divided into groups such that two references be-
long to the same group if they are conformant in the sense
defined above. It is easy to see that two references are con-
formant if canonical forms of the last columns of their access
matrices are equal. The canonical form of a column vector

x x x xe
T

= 1 2, , ,L2 7  is Canonical x x g x g x ge
T0 5 2 7= 1 2, , ,K ,

where g = gcd{x1, x2, L, xe}.

Thus, two references R1 and R2 belong to the same con-
formity group if the last columns of their access matrices,
xR1

 and xR2
 satisfy

Canonical x Canonical xR R1 24 9 4 9= .

After determining the conformity groups, the compiler
computes the weight of each conformity group. The weight
of a conformity group is sum of the weights of the refer-
ences it contains. Assuming that a conformity group Ci
contains references R1, R2, L and Rf , the weight of Ci can be
computed as

weight C weight R trip count li j
lj

f

j

f

2 7 4 9 1 6= = ∏∑∑
==

,
11

where l iterates over the loops that enclose Rj.
Once the weights of the conformity groups are com-

puted, our approach chooses a reference from a conformity
group with the largest weight as representative reference.
Then the compiler proceeds to optimize locality for this
reference which, in turn, would satisfy the majority of ref-
erences. Notice that all the references in a conformity group
can be assumed to be the same as far as the locality is con-
cerned because we are only interested in the last columns.

In our experiments, this conflict resolution scheme was
needed only in a single array in a single program (btrix).

Although our conflict resolution scheme obviously cannot
be optimal for every case, we expect that in practice it will
be successful.

Contrast the last example with the following that also
contains a nonunit stride access.
do i = li, ui

do j = lj, uj
U(i, j) = U(i, 2j) + U(i, i + j)

enddo

enddo

The access matrices are

AU1

1 0
0 1= �� �� ,

AU2

1 0
0 2= �� �� ,

and

AU3

1 0
1 1= �� �� .

Since, Ker al1J L , Ker al2J L , and Ker al3J L  are conformant (i.e.,

they are generated by the vector (1, 0)T), the array U can be
stored in memory as row-major without any conflict among
the references. Notice that while the nonunit stride causes a
conflict in the previous example, in this example it does not
cause a conflict; rather, it causes under-utilization of cache
lines (for the second reference). Our framework, with appro-
priate modifications, can be extended to handle nonunit stride
accesses as well by shrinking arrays whenever possible.

5 MULTIPROCESSORS

Our data layout optimization technique works well in a mul-
tiprocessor environment as well for the following reasons:

•� Optimizing compilers are in general successful in
parallelizing the outermost loops [40].

•� Our data layout optimization framework generates a
code such that (if possible) only the innermost loops
carry spatial reuse.

To see why these help in a multiprocessor environment, it is
sufficient to note that parallelizing a loop that carries spatial
locality is one of the main reasons for false sharing, a phe-
nomenon that occurs when two or more processors access
logically separate data placed on the same cache line [39].
Since our framework causes spatial locality to be carried by
the innermost loops, in most cases, the compiler can safely
parallelize (provided the dependences allow it) the outer-
most loops without an apparent danger of false sharing.

In those situations where the compiler is able to paral-
lelize only the innermost loops, the performance of data
layout transformations in multiprocessors may be rather
poor because, in those cases, the parallelized loops will also
carry spatial reuse.

In this section, we present a locality enhancing approach
that takes into account parallelism as well. Our approach is
based on the spatial reuse vectors which are explained in
Section 5.1. In Section 5.2, on the other hand, we present a
sketch of an algorithm that can optimize spatial locality and
at the same time reduce the false sharing.
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5.1 Spatial Reuse Vectors under Different Layouts
Let us first concentrate on how to optimize a given loop
nest for a target spatial reuse vector. Consider the following
two-deep loop nest:
do i = li, ui

do j = lj, uj
U(j + 1, i − 1) = V(i − 1, j + 1) +

W(j − 1, i + j + 1)
enddo

enddo

Assuming a column-major memory layout for all arrays, a
spatial reuse occurs when the same column of an array is
accessed more than once. We note that successive iterations
of j loop will access elements in the same column of array
U. In that case, we say that array U has spatial reuse with
respect to j loop. Similarly, successive values of i loop access
elements of the same column of array V; that is, array V has
spatial reuse with respect to loop i. It should be noted that
spatial reuse is defined with respect to a given memory
layout, which is column-major in our case. The spatial reuse
exhibited by array W, however, is slightly more compli-
cated to analyze. For this array, elements of a given column
c are accessed if and only if i + j = c − 1. In mathematical
terms, in order for two iteration vectors I  and J  access
elements residing in the same column, they should satisfy

the condition A I A JU Us s
= , where AUs

 is the matrix AU (for

an array U) with the first row deleted [43]. From this condi-
tion, since AUs

 represents a linear mapping,

A J I J I Ker A r Ker AU U U Us s s
− = ⇒ − ∈ ⇒ ∈3 8 J L J L0 ,

where r J IU = − .
In that case, rU  is termed as the spatial reuse vector and

Ker AUsJ L  is referred to as spatial reuse vector space [43].

The loop that corresponds to the first nonzero element of

the basis vector of Ker AUsJ L  is said to carry spatial reuse.

As an example, for array U, the spatial reuse is carried by
j loop. In this example, there exists a spatial reuse vector

for each reference and these are rU
T= 0 1,2 7 , rV

T= 1 0,2 7 ,

and rW
T= −1 1,2 7 . Notice that the best possible spatial reuse

vector is (0, 0, L, 0, 1)T, which indicates that the spatial lo-
cality is carried (and exploited) by the innermost loop.

Although the spatial reuse vectors are appropriate repre-
sentations to work with, they are based on a uniform layout
for all arrays. This characteristic makes them difficult to use
in a data restructuring framework where data transforma-
tions are applied to arrays in an attempt to obtain desired
spatial reuse vectors. What we need is a new definition of
reuse vector under different memory layouts.

LEMMA 4. Let g  represent a memory layout for an array U and
rU  the spatial reuse vector associated with a reference rep-

resented by the access matrix AU. Then, the following

equality holds between g , rU , and AU :

g A rT
U U = 0.       (4)

PROOF. Let I  and J  be two iteration vectors and r J IU = − .

The data elements accessed by these vectors using AU

are A IU  and A JU , respectively. These two elements

have spatial locality if g A I g A JT
U

T
U= , i.e.,

g A J I g A rT
U

T
U U− = ⇒ =3 8 0 0 .

o

If the memory layout of an array is represented by a
matrix L (as in three- or higher dimensional cases), then (4)
should be satisfied for each row of L. This lemma gives us
the relation between memory layouts and spatial reuse
vectors and is very important. Assume now that we would
like to restructure the data layout to obtain a target reuse

vector rU ′ . In that case,

g A r A r g g Ker A rT
U U U U

T

U U

T
′ = ⇒ ′�

��
�
�� = ⇒ ∈ ′�

��
�
��

%&K'K
()K*K

0 0 .

This means that the basis vector of Ker A rU U

T
′�

��
�
��

%&K'K
()K*K

 can be

the desired hyperplane vector that represents the memory

layout to obtain rU
′  as the spatial reuse vector. This last

equation can be used to select a memory layout for a given
spatial reuse vector.

5.2 Sketch of an Algorithm for Optimizing Locality
and Reducing False Sharing

For shared-memory multiprocessors, we should take into
account the issues related to parallelism as well. As a rule, to
prevent a common form of false sharing, a loop that carries
spatial reuse should not be parallelized [26]. False sharing
occurs when two processors access the same coherence unit
(at least one of them writes) without sharing a data element.
In other words, they share the coherence unit (e.g., cache line,
page) but each accesses different elements in it [17].

We assume that the parallelism decisions are made by a
previous pass in the compilation process and the informa-
tion for a loop nest is available to our algorithm as a form of
vector p , where p(i) (the ith element) is one if the loop i is
parallelized otherwise it is zero.

The memory layout determination algorithm is given in
Fig. 2. In the figure, 8 is the set of all arrays referenced in
the nest. The symbol n denotes the number of loops in the
nest and ei  is a vector will all zero entries except for the ith
entry, which is 1.

The algorithm assumes that there is no conflict (in terms
of layout requirements) between references to a particular
array. If there is a conflict, then the conflict resolution
scheme mentioned earlier should be applied to find a rep-
resentative access matrix. For each array, a subset of all pos-
sible spatial reuse vectors starting with the best possible
vector are tried. The sequence of trials corresponds to
e e en , , ,K 2 1 . A vector is rejected as target spatial reuse vec-
tor if the associated loop is parallelized. Otherwise, ei  with
the largest i is selected as target reuse vector. Once a spatial
reuse vector is chosen, the remainder of the algorithm in-
volves only computation of a null set (Ker set) and a set of
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basis vectors for it. These basis vectors represent the layout
of the array.

It should be noted that we do not attempt to try all possible
spatial reuse vectors. Instead we try only n of them. Since the
optimizing compilers for shared-memory multiprocessors are
quite successful in parallelizing the outermost loops, the algo-
rithm terminates quickly and the spatial locality in the inner-
most loops is exploited without incurring severe false sharing.
It should also be emphasized that although we present our
technique for a single nest, it can be extended for multiple
nests by enclosing the nests in question with an outermost
loop that iterates only once. This is possible because data
transformations are applicable to imperfectly nested loops as
well. In that case, the form of the parallelization information
available to our algorithm should also be modified.

6 DETERMINATION OF DATA TRANSFORMATION
MATRIX AND CODE GENERATION

In this section, we show how to determine a suitable trans-
formation matrix for each target layout. We propose a strat-
egy to find the necessary data transformation matrix in or-
der to obtain the “effect” of the desired (optimal) layout
taking into account the default (canonical) layout adopted
by the compiler. Notice that the notion of data transforma-
tion matrix is different from that of layout constraint matrix.
The previous research [31] investigated the different types
of nonsingular data space transformation matrices and their
effects on the behavior of programs.

A data transformation MU for an array U is applied in
two steps:

•� First, the access matrix (resp. offset vector) is trans-

formed to MUAU (resp. M oU ).
•� Second, the array bounds (i.e., array declarations) are

changed accordingly.

Let us first focus on the first step. Our transformation
framework uses the concept of layout constraint matrix,
introduced earlier. Assume that for an array U, LUdefault

 is the

default layout (which we assume for now, without loss of
generality, column-major following the Fortran convention)
and LUdesired

 is the optimized layout. It is easy to see that, a

data transformation matrix MU can convert the default lay-
out to the optimized layout if

L M LU U Udefault desired
= . (5)

When this equation is solved for the elements of MU, some
of the elements of MU (or at least some relations between

them) will be determined. The remaining elements can be
filled in any way provided that the resulting matrix will be
nonsingular.

Consider the following program discussed earlier, as-
suming that the default layout is column-major; i.e.,

LUdefault
= 0 1,2 7 .

do i = li, ui
do j = lj, uj
U(i, j) = V(j, i) + W(i + j, i) +

 X(i + j, j) + Y(n - j, i + j)
enddo

enddo

From the previous section, the desired layout matrices are

       LUdesired
= 1 0,2 7,

        LVdesired
= 0 1,2 7 ,

       LWdesired
= 0 1,2 7 ,

       LXdesired
= −1 1,2 7

and
        LYdesired

= 1 1,2 7
Using (5), we derive:

0 1 1 0 1 0, ,2 7 2 7M MU U= ⇒ = × ×�� ��
0 1 0 1 0 1, ,2 7 2 7M MV V= ⇒ = × ×�� ��
0 1 0 1 0 1, ,2 7 2 7M MW W= ⇒ = × ×�� ��

        0 1 1 1 1 1, ,2 7 2 7M MX X= − ⇒ = × ×
−

�� ��
0 1 1 1 1 1, ,2 7 2 7M MY Y= ⇒ = × ×�� �� ,

where × stands for an unknown entry. These matrices
should be completed such that they should be nonsingular.
Fortunately, the completion algorithms offered by [26] can
be used for this purpose. An example solution is

     MU = �� ��
0 1
1 0 ,

     MV = �� ��
1 0
0 1 ,

     MW = �� ��
1 0
0 1 ,

     MX = −
�� ��
1 0
1 1 ,

and

     MY = �� ��
1 0
1 1 .

From these matrices, compiler obtains the transformed ac-
cess matrices as follows:

M AU U = �� �� �� �� = �� ��
0 1
1 0

1 0
0 1

0 1
1 0

Fig. 2. Algorithm for optimizing spatial locality.
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M AV V = �� �� �� �� = �� ��
1 0
0 1

0 1
1 0

0 1
1 0

        M AW W = �� �� �� �� = �� ��
1 0
0 1

1 1
1 0

1 1
1 0

M AX X = −
�� �� �� �� = �� ��
1 0
1 1

1 1
0 1

1 1
1 0

    M AY Y = �� ��
−�� �� = −�� ��

1 0
1 1

0 1
1 1

0 1
1 0 .

The offset vectors are transformed in a similar manner. The
transformed loop nest is as follows:
do i = li, ui

do j = lj, uj
U(j, i) = V(j, i) + W(i + j, i) +

X(i + j, i) + Y(n - j, i + n)
enddo

enddo

The order of the loops and the loop bounds themselves are
unchanged, but the array declarations should be changed.
We will come to this issue shortly. Notice that all of the
transformed references exhibit good spatial locality (there-
fore, the loop nest exhibits perfect spatial locality) for the
column major layouts.

We can also transform the same original loop nest as-
suming that the default memory layout is row-major. In this
case, the default layout can be expressed as hyperplane
vector (1, 0). Using (5) again, we can obtain the following
transformed nest:
do i = li, ui

do j = lj, uj
U(i, j) = V(i, j) + W(i, i + j) +

X(i, i + j) + Y(i + 2n, n - j)
enddo

enddo

Notice that the spatial locality is perfect for row-major lay-
outs. And finally, we can optimize the same loop assuming
that the default layout is diagonal, that is, the hyperplane
vector is (1, −1). The resulting code is as follows:
do i = li, ui

do j = lj, uj
U(i + j, j) = V(i + j, j) +

 W(2i + j, i + j) +
 X(i + j, j) + Y(2i + j +
   n, i + j)

enddo

enddo

We note that the spatial locality is perfect for diagonal layouts.
Let us now focus on the problem of modifying the array

declaration statements. Consider the following example:
real U(n/2, n, n)

do i = 1, n
do j = 1, n/2
do k = 1, n/2
... U(k, j + k, i)...

enddo

enddo

enddo

Our approach uses the method of extreme values of af-
fine functions first used by Banerjee [4], in dependence test-
ing. Given an affine function of a number of variables and

inequalities that represent the bounds for the variables, the
extreme values method finds the maximum and minimum
values of the affine function in the bounded region. The
method applies to nonrectilinear regions as well (see [4], [44]).
In this method, the computed extreme values may not be tight
as they could have been if the Fourier-Motzkin elimination
[37] had been used. However, for many programs, applying
Fourier-Motzkin elimination to obtain tight bounds may be
too expensive. The extreme-values method can be best ex-
plained using an example. Consider the affine function f(x, y) =
3x − 2y + 1 with the region {1 ≤ x ≤ 10 and x + 1 ≤ y ≤ 30 − x}.

For the upper bound:

f(x, y) ≤ 3x − 2y + 1

f(x, y) ≤ 3x − 2(x + 1) + 1

f(x, y) ≤ x − 1

f(x, y) ≤ 9

For the lower bound:

f(x, y) ≥ 3x − 2y + 1

f(x, y) ≥ 3x − 2(30 − x) + 1

f(x, y) ≥ 5x − 59

f(x, y) ≥ −54

Therefore, the upper bound of f(x, y) is 9 and the lower
bound is −54. Returning to our example, a suitable trans-
formation matrix is

0 1 0
1 1 0
0 0 1

−
�
��

�
��

.

What this means is that the subscript expressions should be
changed from (k, j + k, i) to (j + k, -j, i). The re-
sultant affine functions in this example are f1(i, j, k) = j + k,
f2(i, j, k) = −j, and f3(i, j, k) = i. For f3, the lower and upper
bounds are 1 and n, respectively. For f2, on the other hand,
the lower and upper bounds are −n/2 and −1, respectively.
For f1, we calculate the bounds as follows:

For the upper bound:

f1(i, j, k) ≤ j + k

f1(i, j, k) ≤ j + (n/2)

f1(i, j, k) ≤ n

For the lower bound:

f1(i, j, k) ≥ j + k

f1(i, j, k) ≥ j + 1

f1(i, j, k) ≥ 2

Therefore, the upper bound of f1 is n and the lower bound is
2. The transformed program is as shown next.
real U(2:n,-n/2:-1,1:n)

do i = 1, n
do j = 1, n/2
do k = 1, n/2
... U(j + k, -j, i)...

enddo
enddo

enddo
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As a final point, notice that our approach is able to find a
data transformation matrix to convert one memory layout
into another. We believe that such a technique will also be
quite useful in a compilation environment that considers
dynamic layout transformations between loop nest
boundaries. In such an environment, an optimizing com-
piler may have to solve the problem of, say, converting a
diagonal layout to row-major layout or a column-major
layout to an antidiagonal layout, etc. It is easy to see that
our framework can readily handle those and the similar
cases.

7 EXPERIMENTAL RESULTS

In this section, we present performance results for both
uniprocessor and multiprocessor cases. Our performance
results include uniprocessor cache miss rates and uni-
processor/multiprocessor execution times.

7.1 Experimental Suite
We present performance results for eight programs: mat-
mult is a matrix-multiplication routine with two versions
(with and without loop unrolling);1 syr2k is banded matrix
update routine from the BLAS library [9]; adi is from
Livermore kernels; btrix, vpenta, and cholesky are from
Spec92/NASA benchmark suite; and, transpose is a ma-
trix transpose program from NWChem [15], a software
package for computational chemistry.

We conduct experiments with C versions of these pro-
grams. For each program in the suite, we experiment with
four different versions:

•� col: original program with column-major layout for
all arrays;

•� row: original program with row-major layout for all
arrays;

•� lopt: a version optimized by loop transformation
techniques; (and)

•� dopt: a version optimized by data layout transforma-
tions studied in this paper.

The lopt versions are obtained by either applying Li’s lo-
cality optimization approach [26] or allowing the native
compiler to derive the best order (whichever performs
best).

In the experiments on multiple nodes, where possible,
the coarsest granularity of parallelism is exploited for all
versions. In fact, for the row, col, and dopt versions ex-
actly the same set of loops are parallelized; therefore, the
degree of parallelism is the same. For all programs, the de-
gree of parallelism of the lopt version is either better than
or at least as good as the other versions.

7.2 Platforms
We report execution times in seconds for up to eight proces-
sors on a Convex Exemplar SPP-2000 and an SGI Origin
2000, two distributed shared-memory machines. The Con-
vex Exemplar uses 180MHz HP PA-RISC 8000 processors
with 1MB data and 1MB instruction cache. The Exemplar is
built around the hypernode configuration. Each hypernode

1. The unrolled version is called matmult/u.

may have up to 16 processors, 16GB of memory, and a CTI
cache of size 256MB. The programs are compiled using the
native C compiler on the Exemplar with the -O3 option.
The timings are taken using the CXpa performance ana-
lyzer. The SGI Origin 2000 uses 195MHz R10000 processors
with 32KB L1 data cache and 4MB L2 unified cache. The
programs for the SGI Origin are compiled using the native
C compiler with the -O2 option. The timings are taken us-
ing the gettimeofday routine.

7.3 Performance
Table 3 shows the single processor miss rates obtained us-
ing an enhanced version of DineroIII [14] for different di-
rect-mapped cache configurations. These results show that
our technique is quite successful in reducing miss rates.

The results from the Exemplar are given in Fig. 3. For
syr2k and transpose, dopt is the winner. The syr2k code
accesses two out of three arrays antidiagonally, so an anti-
diagonal data layout improves the locality without making
the subscript functions too complex. The lopt version
(from [26]), on the other hand, improves spatial locality for
two arrays, but converts temporal locality for the third ar-
ray into spatial locality; in addition, it generates complex
loop bounds and subscript expressions. The transpose
code accesses two arrays with conflicting patterns (row-
major and column-major). Therefore, lopt cannot optimize
this program.

For matmult, the performances of lopt (from [26]) and
dopt are similar. When unrolling turned off, for one and two
processor cases, lopt is better while for all other cases dopt
performs better. When the outermost two loops are unrolled
with a factor of 4, dopt outperforms lopt in Exemplar ex-
cept for the uniprocessor case. The matmult code is an ex-
ample of a group of programs where loop transformations
and data transformations generate competitive codes from
the locality point of view.

The adi benchmark is a program that consists of two
nests. For uniprocessor case, dopt is better than lopt. Be-
yond a single processor, lopt is better, though the perform-
ance of dopt is close. Notice that for all programs explained
so far dopt outperforms the versions with fixed layouts
(col and row), indicating the importance of data layout
optimizations.

The benchmarks vpenta, cholesky, and btrix are
relatively large programs consisting of several nests. In
Convex Exemplar SPP-2000, dopt successfully optimizes
vpenta. The lopt version outperforms dopt beyond
four processors simply because lopt also exploits the
parallelism better, an improvement that cannot be ob-
tained using data transformations alone. In cholesky,
the lopt version is the clear winner as it exploits both
parallelism and locality by several loop transformations
including loop permutation and loop fission. For this
example, dopt also introduces some false sharing which
prevents the success of layout optimizations. For btrix,
on the other hand, the performances of dopt and lopt
are similar.

The results on the SGI Origin 2000 are given in Fig. 4.
As on the Convex Exemplar SPP-2000, for syr2k and
transpose, dopt is the winner. The dopt version is also
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winner for vpenta up to four processors. For matmult,
lopt outperforms dopt, though the performances are
very similar. For the cholesky program, the lopt ver-
sion is the clear winner, mostly because of improved
parallelism. For adi, the lopt version is better than
dopt. For btrix, on the other hand, up to four proces-
sors, dopt performs better than lopt; beyond four proc-
essors, however, the false sharing dominates and dopt
performs poorly.

7.4 Observations
From our experiments, we observe the following:

•� Data layout transformations are very effective in op-
timizing cache locality for uniprocessors. Specifically,
for five out of eight cases on the Convex Exemplar
SPP-2000 as well as on the SGI Origin 2000, the dopt
version outperforms the other versions (including
lopt) in a single node.

•� Our transformations can optimize some programs
such as syr2k and transpose that cannot be fully
optimized by loop transformations.

•� For multiple loop nests, our framework is quite suc-
cessful in detecting the optimal layouts due to the
fact that (except btrix) there was no conflict be-
tween the optimized layout requirements of indi-
vidual nests.

•� Although in general data layout optimizations can be
considered successful for the multiprocessor case, the
performance may be rather poor in cases where out-
ermost loop parallelism cannot be obtained. Also, in
some cases, loop transformations may also improve
parallelism; thus, they may have additional advan-
tage over data transformations (as in cholesky).

•� The relative performances of different versions across
two platforms are different. We attribute this to the
different cache sizes, page sizes, page allocation policies,
and memory organizations of the Exemplar and the
Origin.

8 INTERACTION BETWEEN DATA DISTRIBUTION AND
DATA LAYOUT

On distributed shared memory (DSM) machines, cache locality
improvements (through data layout transformations) and
memory locality improvements (through data distribution) are
complementary. While good cache locality optimization com-
bined with a good page management scheme (such as first-
touch (FT) policy with page migration [24], [41]) can effectively
ensure low memory access costs, merely distributing the data
across the memories of the processors in a best possible way
may not necessarily ensure good cache locality.

TABLE 3
UNIPROCESSOR MISS RATES FOR THE PROGRAMS IN OUR EXPERIMENT SUITE

bs = block (line) and cs = cache size. The problem sizes (in doubles) are as follows: matmult and matmult/u: 1,024 × 1,024 matrices; syr2k: 1,024 ×
1,024 matrices and b = 300; vpenta: 4 × 720 × 720 3D arrays and 720 × 720 2D arrays; cholesky: the size parameters are set to 2,500; btrix: the size
parameters are set to 150; adi: 1,000 × 1,000 × 3 arrays; and transpose: two 2,048 × 2,048 matrices. The programs from Spec92 and the adi and trans-
pose codes have an outer timing loop. The same sizes are used in run-time experiments as well.
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We would like to delve a bit more into this interplay be-
tween cache locality optimization, page management poli-
cies, and data distribution on DSM machines. A detailed
study of such interactions along with how a compiler can
optimize codes for good overall performance, however, is
beyond the scope of this paper. In the Convex Exemplar
SPP-2000, the page placement policy is round robin (RR),
where the pages are allocated in a round-robin fashion

across processors. In the experiments presented in the pre-
vious section, we used this policy.2 The SGI Origin 2000, on
the other hand, uses FT as the default policy but provides a
couple of environment variables and system calls to select

2. Although under the SPP-UX operating system there is a utility called
“mpa” which can be used to set some of the global attributes (program-
wide policies such as which memory class different data structure types
map to, etc.), using this utility appropriately does not seem trivial.

Fig. 3. Execution times in Convex Exemplar. (a) matmult (no unrolling), (b) matmult (unrolling factor = 4), (c) syr2k, (d) vpenta, (e) cholesky, (f) btrix,
(g) adi, (h) transpose.
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RR policy, as well as to enable or disable page migration. In
the experiments on the SGI Origin, we employed the default
FT page allocation policy. We have chosen the SGI Origin as
our example target in this section for investigating the inter-
play between cache locality and memory locality since this
machine not only supports user controllable page manage-
ment strategies, but also HPF-like data distribution compiler
directives [6]. A typical directive is of the form distribute
U( 〈dist1〉,  〈dist2〉, L,  〈distm〉), where U is an m-dimensional
array and  〈disti〉 may be one of block, cyclic, cyclic 〈expr〉, or ∗,

with the same meaning as in HPF. Explicit data distribution
is allowed to be regular or reshaped [6]. In a regular distribu-
tion, each processors’ portion is mapped onto pages from its
own memory. In a reshaped distribution, the layout of data
within the virtual address space is changed to make the data
accessed by each processor local. For example, column-wise
distribution of a very large array which is stored row-major
in memory may require reshaped distribution.

In theory, a compiler can use automatic static (e.g., [13],
[35], [23], [11], [38], [27], [7]) or dynamic (e.g., [12], [32], [3])

Fig. 4. Execution times in SGI Origin 2000. (a) matmult (no unrolling), (b) matmult (unrolling factor = 4), (c) syr2k, (d) vpenta, (e) cholesky, (f) btrix,
(g) adi, (h) transpose.
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data distribution methods developed for message-passing
architectures or nonuniform memory access (NUMA) ma-
chines; once the optimal data distributions are determined,
the appropriate distribution directives can be inserted in
the code.

We considered the C versions of transpose and mat-
mult as case studies. We chose these programs as, given an
outermost loop parallelism, it is easy to find good data dis-
tributions for them using the techniques in the literature
(e.g., [13]). Figs. 5a and 5b show the breakdown of misses
into three classes, primary cache (PC), secondary cache (SC),
and translation look aside buffer (TLB) misses, for the
transpose code on eight processors using 1,000 × 1,000
and 5,000 × 5,000 matrices, respectively. There is an outer-
most timing loop which iterates 10 times. The first four bars
in each figure correspond to (cache) unoptimized programs,
whereas the remaining four bars correspond to cache-
optimized programs using the approach explained in this
paper. FT, RR, RG, and RS correspond to the program ver-
sions with the first-touch, round-robin, regular distribution,
and reshaped distribution, respectively. In the case of regu-
lar distribution, one of the arrays is distributed row-wise,
whereas the other is distributed column-wise to eliminate
communication. But, since the memory layout is row-major,
the column-wise distributed layout will cause memory lo-
cality problems unless it is reshaped.

From Fig. 5a we can see that if no layout optimization is
performed, the FT, RR, and RG versions exhibit similar be-
havior. The RS version, on the other hand, reduces the TLB
misses significantly and reduces some of the PC misses.
When we apply layout optimizations, there is a huge re-
duction in PC and TLB misses for almost all versions. The
RG and RS versions additionally reduce the number of SC
misses. We note that the performance of the program under
layout optimization becomes almost independent of data
distribution. When the input size is increased, if no layout
optimization is done, the RS version reduces the TLB
misses, but increases the PC misses as the data size is much
larger compared to the size of the first-level cache. With
layout optimizations, all types of misses are reduced sig-
nificantly. But since the R10000 is a complex, super-scalar
processor, a lot of misses can be hidden (concurrently serv-
iced with the ongoing computation); therefore, the ultimate

criterion is the execution times. The execution times are
shown in Figs. 6a and 6b for eight processors. It is clear that
in the optimized programs the RG and the RS versions be-
have similarly and result in the best performance. It should
be emphasized that in the Origin that we used there is ap-
proximately a 1:2 ratio between the local and remote mem-
ory latencies. This fact makes the FC and SC misses as im-
portant as the TLB misses.

The miss decomposition for our second example, mat-
mult, is shown in Fig. 7a for 2,500 × 2,500 matrices on eight
processors. It is interesting to note that the (cache) unopti-
mized RS version and the cache-optimized versions show
similar performance. The execution times in Fig. 7b also
follow the same trend showing that the best version is the
layout optimized RG code.

It is important to understand the reason why these two
examples behave differently. In the transpose code, there
are accesses to two arrays with different optimal layouts.
The best data decomposition is to distribute one of the ar-
rays in (block, ∗) fashion and the other in (∗, block) fashion.
But, even after optimal data distribution, we still need data
layout optimizations to optimize all references for perfect
spatial locality. That is why the memory optimized version
(without cache optimizations) does not exhibit good cache
locality. In matmult, on the other hand, after the reshape,
the loop transformation framework of the SGI Origin is able
to optimize all the transformed references for locality. In
that case, both the pure memory-optimized version and the
pure cache-optimized version result in competitive codes.

In conclusion, optimizing compilers should attempt to
improve both cache and memory locality in a unified
framework. As far as the method presented in this paper is
concerned, under a fixed data distribution (or page alloca-
tion) strategy, we obtain improvements using data layout
transformations over the unoptimized programs.

9 RELATED WORK

Loop transformations have been used for optimizing cache
locality in several papers [26], [43], [30]. Results have shown
that on several architectures the speedups achieved by loop
transformations alone can be quite large. McKinley et al.
[30] offer a unified optimization technique consisting of
loop permutation, loop fusion, and loop distribution. By

Fig. 5. Miss decomposition for different versions of matrix transpose for (a) 1,000 × 1,000 and (b) 5,000 × 5,000 double-precision matrices on eight
processors of the SGI Origin.



132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  10,  NO.  2,  FEBRUARY  1999

considering iteration space transformations only, they ob-
tain impressive speedups for several programs. Wolf and
Lam [43] propose a data locality optimization algorithm
based on a mathematical description of reuse. They identify
and quantify reuse within an iteration space. They use
vector spaces to represent the directions where reuse occurs
and define different types of reuses found in dense matrix
programs. Their approach is sort of exhaustive in the sense
that they try all possible subsets of the loops in the nest and
(if necessary) by applying unimodular transformations,
they bring the subset with the best potential reuse into the
innermost positions. In comparison, Li [26] describes a data
reuse model and a compiler algorithm called height reduc-
tion to improve cache locality. He discusses the concept of a
data reuse vector and defines its height as the number of
dimensions from the first nonzero entry to the last entry.
The nonzero entries of a reuse vector indicate that there are
reuses carried by the corresponding loops. The algorithm
assigns priorities to reuse vectors depending on the number
of times they occur, and reduces the height of a global reuse
matrix starting from the reuse vector of highest priority. As
compared with Wolf and Lam’s approach, Li’s approach is
faster and can keep reuse vector information more pre-
cisely. None of [43], [26], or [30] considers data space trans-
formations. In this paper, we show that data space trans-
formations can also make difference on the locality proper-
ties of the programs. Moreover, for some cases they are ap-
plicable where iteration space transformations are not.

Only a few papers have considered data transformations
to optimize locality. O’Boyle and Knijnenburg [31] focus on
restructuring the code given a data transformation matrix,
though they show their method can be used for optimizing
spatial locality. In comparison, we concentrate more on the
problem of determining suitable layouts, deriving a simple
technique that can be applicable to multiple nests as well.
Anderson et al. [2] propose a data transformation technique
for distributed shared memory machines. By using two
types of data transformations (strip-mining and permuta-
tion), they try to make the data accessed by the same proc-
essor contiguous in the shared address space. Their algo-
rithm inherits parallelism decisions made by a previous
phase of the SUIF compiler [42]. While they restrict them-
selves to strip-mining and permutation only, we consider
all types of layout transformations expressible by hyper-
planes. This allows compiler, for instance, to optimize the
syr2k code. Ju and Dietz [18] present a systematic ap-
proach that integrates data layout optimizations and loop
transformations to reduce cache coherence overhead. Since
their work focuses on reducing coherence misses, it is not
directly comparable to ours. Cierniak and Li [8] present a
unified approach to optimize locality. Their approach em-
ploys both data space and iteration space transformations.
The notion of “stride vector” is introduced and an optimi-
zation strategy is developed for obtaining the desired map-
ping vectors and transformation matrix. The main drawbacks
of this approach are as follows: 1) Their method conducts an

Fig. 6. Execution times for different versions of matrix transpose for (a) 1,000 × 1,000 and (b) 5,000 × 5,000 double-precision matrices on eight
processors of the SGI Origin.

Fig. 7. Miss decomposition (a) and execution times (b) for different versions of multiply with 2,500 × 2,500 double-precision matrices on eight
processors of the SGI Origin.
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exhaustive search in a constrained search space for the best
transformation; 2) It restricts the search space by enforcing
the entries of the iteration space transformation matrix to be
1 or 0; 3) The memory mappings considered are a subset of
possible mappings and do not contain diagonal (or skewed)
mappings; and 4) Their approach depends on array bounds.
This, in turn, implies either availability of these bounds dur-
ing compilation or manipulation of symbolic expressions.
Leung and Zahorjan [25] present an array restructuring
framework to optimize locality. Our work differs from
theirs in several points: First, our technique is based on ex-
plicit representation of memory layouts. This is important
because we plan to embed an iteration space transforma-
tion approach in our framework. Under such a unified
framework, we will be able to transform a loop nest as-
suming (say) a diagonal memory layout. Second, our tech-
nique finds optimal memory layouts in a single step rather
than first determining a transformation matrix and then
refining it for minimizing memory space using expensive
Fourier-Motzkin elimination. Third, their code generation
algorithm is also different from ours. Previous work of the
authors [21], [22] considers only dimension reindexing and
like [8] uses a sort of exhaustive search to detect array layouts.
In contrast to [21], [22], and [8], the approach explained in this
paper considers a much larger search space for memory lay-
outs and finds the optimal layouts in a single step.

Finally, as mentioned earlier, there is a huge body of
work on automatic data distribution on distributed mem-
ory machines (e.g., [7], [3], [11], [12], [13], [23], [27], [32],
[38], [36]). The interplay between that work and ours was
discussed earlier in the paper.

10 SUMMARY

In this paper, we presented an approach based on the the-
ory of hyperplanes and the linear algebra framework used
by parallelizing compilers for optimizing memory layouts
of arrays. Our approach divides the layout optimization
problem into two subproblems: 1) detecting optimal layouts
for each array, and 2) implementing optimal layouts within
a compiler that has a default layout for all arrays. We
mainly concentrated on the first subproblem and showed
that our technique can work with different compilers with
different default layouts. We also presented some important
results about data layout optimizations and showed that for
given a loop nest, data layout transformations can be used
to obtain perfect spatial locality, provided that some condi-
tions are satisfied. Experimental results on a Convex Exem-
plar SPP-2000 and an SGI Origin 2000 indicate that our
framework can find opportunities for optimizing spatial
locality without changing the access pattern of the loops.
Our technique can be applied to any architecture with a
memory hierarchy including uniprocessor machines. We
are working on integrating loop and data transformations
in a unified framework based on hyperplanes.
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